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Abstract: Rapid limb movements are known to be initiated by a brief torque pulse
at the joints and to proceed freely thereafter (ballistic movements). To initiate such
movements with a desired starting velocity u requires knowledge of the relation between
torque pulse and desired velocity of the limb. We show for a planar two-link arm model
that this relationship can be learnt with the aid of a self-organizing mapping of the
type proposed earlier by Kohonen. To this end we extend Kohonen’s algorithm by a
suitable learning rule for the individual units and show that this approach results in a
significant improvement in the convergency properties of the learning rule used.

1. Introduction

A most important task of biological or robot motor systems is the precise execution
of movements of the limbs. In view of the great variability of body parts across indi-
viduals of biological species and over age it seems unlikely that this capability can be
completely prewired into the nervous system. Instead it seems necessary for biological
motor control systems to be adaptive and to rely to a considerable extent on learning.
This same adaptive property would also be advantageous for robots which experience
alterations of their limb characteristics through wear, may be outfitted with new limb
parts during their life time, or need to adjust to new loads.

In this contribution we shall focus on the case of so-called ballistic movements of
multi-jointed robot arms. Such motions are initiated by brief torque pulses acting on
the joints. The pulses cannot be controlled through long-loop sensory feedback and,
instead, need to be known before execution.. We will show that the knowledge of the
relationship between torques and the desired velocity of the arm’s end effector can
be acquired through suitable learning rules for the formal neurons of a computational
network. This demonstration will be carried out for the most simple, non-trivial arm
movement, namely that of a two-jointed robot arm confined to a plane (Fig.1, Section
2).

The robot learns during an exploratory phase the relationship between the torques
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11,7 and the desired end effector velocity Ugegired- The learning procedure applied is
based on Kohonen’s algorithm [2-4] for the formation of topology (neigborhood) con-
serving mappings between a continuous feature space F (here the tuple of joint angles
0;,02) and a discrete net N of formal neurons and represents an extension of our previ-
ous work on the pole balancing problem [6]. We applied Kohonen’s algorithm to map
arm configurations to a net N, however, extended the algorithm by appending to each
neuron y € N a tensor A(y) which connects Ugesired and 71,72 by the relationship
7= AlUg,yireq- These tensors are learnt through a comparison of the desired velocity
Ug,sired and the velocity Vgceyqr actually achieved at a particular state of the learning
cycle. A most important feature of the extension is that the neighborhood conserving
aspect of Kohonen’s algorithm is applied to the learning of A(y): when a neuron up-
dates its own tensor, its neighbors also participate in the adjustment. This cooperation
results in a significant increase of the speed of convergency of the learning rule for A
and its robustness to poor starting values.

2. Model and algorithm

We consider a planar two-jointed arm in the absence of gravity. For suitable ranges
of the two joint angles 81,07 each cartesian position x = (z1,2) corresponds uniquely
to a pair of joint angles. This enables us to equivalently use either the end effector
coordinates or the joint variables to describe the arm configuration unambiguously.
This property does no longer hold for an arm model with redundant degrees of freedom,
the discussion of which shall be postponed to a subsequent paper.

The arm can be actuated by applying suitable torques at its two joints. If a torque
d(t) is applied, the arm moves according to the equation of motion ([1]):

di(t) = 3 A(X)ijE; + 2 B(x)ijktsdk- (1)
J Jk

Here A(x) and B(x) are configuration-dependent matrices containing the information
of the dynamics of the arm. We want to address the question, how the necessary values
for these matrices can be learnt to be able to accelerate the end effector of the arm
from any given initial rest position to a specified velocity u = (u1,ug) by applying a
suitable short, but intense torque pulse (ballistic movement). The torque pulse is given
by

d;(t) = ;- 6(t). (2)
For the velocity u attained immediately after this torque pulse, Eq.(1) yields
ui = AT ), 3)
J

i.e. for a 6-shaped torque pulse the resultant velocity does not depend on the B;j’s.
For a realistic torque pulse of finite width this result is only approximately valid, but
for a sufficiently narrow pulse the error involved can be kept very small.
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For any fixed starting position x the matrix A in the linear relationship (3) can be
estimated by a simple learning rule of error-correction type ([4),{7]). Each movement
trial generates a new approximation A(x,t + 1) using the following adjustment rule:

Alx,t+1) = A(x,t) + e(f'— A(x, t)v)vT. (4)

Here 7 is the amplitude of the torque pulse amplitude of the trial and v is the resulting
actual velocity of the end effector (which during learning may differ from the desired
u ). € €[0,1] is a fixed parameter (see below). This learning rule yields a sequence of
successive approximations A(x,t),t = 1,2, ... to A(x) and is described and analysed in
Section 4. However, A (x) must be learnt for all configurations x. To this end we employ
a set of units (formal neurons) arranged in a planar grid and labeled by indices y = (3, ).
Each unit shall accomplish two things: it shall assign itself to a small subregion of the
configuration space of the arm, and it shall learn the correct relationship between a
desired velocity and the torque pulse amplitude for the arm being in this subregion.
To achieve this, two quantities 6(y,t) and A(y,t) are associated with each unit y at
trial £. They represent two different kinds of data: whenever the current configuration
6* is closer to 6(y*,t) than to any 6(y,t),y # y*, then unit y* is selected to take over
control for that configuration. For each movement, the tensor A (y*,t) associated with
the selected unit y* is used to calculate for the desired velocity u the necessary torque
amplitude 7" according to Eq.(3). After each movement, the velocity v actually achieved
is used to adjust the values §(y, t) and A(y) for all units y in the neighborhood of the
selected unit y*. The adjustment involves three steps: i) all 5(y"‘, t) are shifted towards
the configuration 6* from which the movement was started; ii) the error correction rule
(4) is used to calculate an improved estimate A* of the correct transformation between
7 and u, based on the actual outcome of the movement; iii) all A(y,t) for y in the
neighborhood of y* are shifted towards the improved estimate A*.

This procedure is summarized in the following equations:

o) Select unit y* which satisfies

16(y*,1) — 6*|| = mjin |8y, 1) - 6°. (5)

i) Adjust § for all units y

—

6(y,t+1) = 6(y,1) + haly = v*, ) (6* - 0y, 1)). (6)

ii) Choose a desired velocity u and execute movement with 7 = A(y*,t)u. Use
velocity v actually achieved to obtain the improved estimate A*

A*=A(y*,t) + e(r - A(y*,t)v)vT. (7)

iii) Adjust A for all units y

A(y,t+1) = Ay, 1) + ho(y —¥*,t) (A" — A(y,1)). (8)
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The functions h;(y—y*,t) in i) and iii) determine the neighborhood of y* which receives
significant adjustments. To this end h;(s, t) is taken to be a positive function of gaussian
type with respect to s, centered at s = 0, whose width and height are slowly decreasing
with iteration number .

Performing step i) alone yields a neighborhood conserving mapping between the
units y and the configuration space of the arm, i.e. close configurations are mapped to
neighboring units in the ij-grid of the units. The generation of such mappings by the
above procedure was first suggested and analysed by Kohonen ([2-4]) in the context of
sensory mappings. Steps ii) and iii) are a natural extension of this algorithm: during
the process of choosing a region in configuration space, each unit simultaneously learns
a mapping between a desired movement (here given by velocity u) and the required
motor command (here represented by torque amplitudes 7) valid for this region. This
approach has already been applied successfully to the pole-balancing-problem ([6]). As
a further extension of Ref.[6], which dealt with supervised learning, we here supplement
Kohonen’s algorithm by the learning rule (4) which allows unsupervised learning. In
Section 4 we will derive some properties of this learning rule in order to show in Section
5 that rules i)-iii) considerably improve both speed and range of convergency of each
unit’s tensor A to its correct value, compared to the case when each unit has to learn
its tensor independently by means of Eq.(4).

3. Simulation of the Model

Before proceeding to a formal analysis in Secs.4 and 5 we shall illustrate the algo-
rithm. We simulated for this purpose a network of 100 units arranged in a 10 x 10-grid.
The arm providing the input to the algorithm consisted of two massless links of lengths
1 and 0.9 respecively, with unit point masses at its distal joint and end effector, re-
spectively. During the learning phase we cycled repeatedly through steps o)-iii) above,
each cycle providing one learning step. Before each cycle
the end effector was positioned at a location x in the region
R shown in Figure 1. For each cycle x was chosen ran-
domly with uniform distribution over R, thereby providing
the value § required for steps o) and i). To perform steps i)
and iii), a vector u for the desired velocity was chosen. u was
chosen of unit length (|[u]| = 1) and pointing in a random
direction with all directions equiprobable. The parameter €
in (7) was 0.25 and the functions hy and hg were taken to
be Gaussians with respect to ||y — y*|| with identical initial
amplitudes of 0.99 and widths of 2 lattice spacings.

Figure 1

The width of both functions h; and hy was slowly decreased to a final value of 0.8 lattice
spacings during the 3000 learning steps of the simulation. In addition the amplitude of
hy was also decreased to a final value of 0.1. This had the effect of gradually diminishing
the degree of plasticity of the network. The initial values for A were obtained by adding
a random error of amplitude 2 to each of the matrix elements of the correct matrices.
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Figure 2

This resulted in the initial state shown in Fig.2. On the left of the figure the initial
mapping between units y and end effector positions is shown. Each unit is drawn at the
end effector position corresponding to 8(y,0), positions belonging to lattice neighbors
being connected by lines to make the neighborhood relations visible. Obviously there
is very little initial regularity in the correspondence between units and end effector
positions.

As for the matrices A a similiar convenient representation cannot be given, the
right diagram instead shows the initial reaction of the system on movement requests.

Figure 3

For each end effector position represented by a unit, the diagram shows the end effector
velocity actually achieved by this unit, if either an upward or a rightward movement
with unit velocity is required from the system: due to the random errors introduced
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Figure 4

in the values provided for the matrices A(y,0) the responses are far from the desired
ones. The situation resulting after only 300 learning steps is shown in Fig.3. Both, the
mapping between units and end effector locations (left) and the execution of the test
movements (right) has markedly improved. Finally after 3000 learning steps (Fig.4),
the algorithm has found a satisfactory mapping between units and end effector positions
and the units have learnt to respond quite accurately to the test movement requests
[perhaps it should be stressed, that neither the learning steps nor the performance
at any stage of learning is restricted to these test movements, which serve only as
a convenient means to visualize the degree of convergency achieved by the matrices

A(Yat)]’

To demonstrate the cooperation of neighboring units in the adjustments iii) of
the matrices A(y,t), we have run a simulation from the same initial conditions as
above, but with the width of the neigbor-
hood for the adjustments iii) decreased to
zero, i.e. ho(y —y*,t) = by y+. In this case
each unit learns in isolation from all others,

relying only on the learning rule (4). As a
/ \ result, only very few units manage to con-
L/- verge to the correct result, which is shown

in Fig.5: only a minority of the units react

correctly whereas most of them have been

attracted to a wrong solution. The result-

\ ing state cannot be amended by providing

)F })‘L/‘ //‘/K more learning steps, and we shall show in
7 7/ the next Section that it is due to the pres-
ence of additional stationary points of the

learning rule (4), from which, once reached,
no escape is possible.

Figure 5
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4. Analysis of the Learning Rule

In this section we shall analyse the convergency properties of the learning rule
Eq.(4), when used to learn A(x) for a single configuration x. For an analysis of more
general aspects of this type of learning rule see e.g. [4],[7]. In the following we will drop
the argument x , i.e. in this section we denote the correct transformation by Ag and
the estimate after ¢ iterations by A(t). Thus Eq. (4) reads now

A(t+1) = A(t) + (7~ A(t)v)v7. (9)

As in (4), v is the actual velocity of the trial and 7 obeys 7 = Apv = A(t)u with u
denoting the desired velocity of the trial. Hence we have

v=A7A(t)u. (10)

It is actually mathematically more convenient to consider the the convergence of a
matrix B defined through B(t) := Ag™1A(t) — 1. We obtain from (9) and (10):

B(t+1) - B(t) = —B(t) (1+ B(t)) uuT (1 +B(t)T). (11)

For the following we assume that for each trial the desired velocity u is given by
a bounded random variable independent of prior trials and with stationary distribu-

tion. Let .|| denote the euclidean matrix and vector norms respectively, i.e. [|B|| =
(Zijij)l/z and |[u]| = (I u?)1/2 and define a := sup|[u]|2. We then obtain for

AB :=B(t + 1) — B(t)
A||B|[* = ATr (BBT) = Tr (2aB BT + ABABY),
where Tr denotes the trace operation. Inserting (11) we obtain
A|B|[? = —¢ Tr (B(1 + B)u[z - eaT(1+B)T(1 + B)uju”(1+B)TBT), (12)
or
AllBIf* = ~¢[2~ [|(1 + B)u|[?]||B(1 + B)ul|*. (13)
If at step t the condition

0<e<2/a(l+]|B@))? (14)

is fullfilled, Eq.(13) together with the inequality ||(1 + B)u|| < (1 +{|B{)|u]] tells us
that ||[B(¢+1)|| < [|B(t)|| and therefore (14) remains valid with ¢ replaced by t+1. Thus
the norms ||B(¢)||, t = 0,1,2.. form a strictly monotonously decreasing sequence whose
only stationary points can be at either B = 0 or any nonzero B obeying B = —B2,
The latter possibility is ruled out if we require ||B(0)|| < 1. Thus we have shown

Theorem 1: Let [|B(0)|| < 1 and 0 < € < 2/a(1 + ||B(0)||)? with a := sup ||ul|2.
Then (11) entails lim;—, oo B(t) = 0, i.e. limg_oo A(t) = A,.
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The stationarity condition B2 = —B shows that besides B = 0 a whole manifold M
of additional, non-vanishing stationary points exists. In the following we will demon-
strate that at least a large submanifold of this manifold has an attractive neighborhood
and, therefore, can be reached for suitable initial values not obeying the condition
[|B|| < 1 of theorem 1.

The manifold M is formed by all matrices B # 0 obeying ||B(B + 1)|| = 0. This
motivates considering the change of the quantity d(B) = ||B(B + 1)||2 = Tr B(B +
1)(B + 1)TBT under (11). Assuming € sufficiently small to neglect terms of order €2
and using the cyclic properties of the trace, we obtain

Ad(B) = —2¢Tr B(1+B) |[Buu” (1+B)T +uu? (1 +B)T(1+ B)| (1 + B)TBT. (15)

The general expression (15) is not very amenable to further analysis. Therefore
we will focus on the case where (15) may be replaced by its average over the random
variable u and assume u to be isotropically and independently distributed in every
component, such that (after a suitable rescaling) we have (uuT) = 1. This leaves us
with

(Ad(B)) = — 2¢Tr B(1+ B)

/—\

1+2B +BT + BBT + BTB)(1+ B)TB”
=—2TrB(1+B (1+—B+ BT+BBT+BTB)(1+B)TBT (16)
= —2¢Tr B(1+ B)H(B)(1 + B)TBT.

where the matrix H(B) is defined by

3 3
H(B) =1+ B+ 5BT +BBT + BTB. (17)

We will now show that there are regions of the stationary manifold M where H
is a strictly positive definite matrix and, therefore, (Ad(B)) < 0. Hence any point B
sufficiently close to these regions is on the average attracted towards M. A condition
for this to happen follows from

Theorem 2: Let Bg := Y;=1 piqg‘ where p;, q; are 2n vectors whose scalar prod-
ucts obey the conditions

Pi-P; =0, q;-q; =0, (i#J);

together with ||p;|| - ||a;|| > 3/2, ¢ = 1..n. Then for any B sufficiently close to By we
have (Ad(B)) < 0.

Proof: Define for : = 1..n:
a; :=||q;ll;
3
Bi =g < Ipalls
=g S 1P

w; i=o;p; + B
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This yields

H(Bo) =1+ Y wiw!+ 3 (lIpl® - BHaial. (18)

i=1.n 1=1.n

This shows explicitly the strict positivity of H(Bg). As H depends continuously on
its argument, this is valid in a whole neighborhood around By entailing (Ad(B)) < 0
there.

Two remarks may be necessary. First, there are many matrices By for which
Theorem 2 holds, but which are far away from the manifold M, i.e. for which ||[Bo(1 +
By)|| is large. For these starting values convergency towards M cannot be guaranteed
on grounds of the above theorem, as successive iteration steps, though diminishing
||B(1+ B)|| on the average, may leave the neigborhood of the starting value for which
this property holds. A sufficient condition for By € M is given by p; - q; = 5ij-
Second, there are points in M, for which (Ad(B)) < 0 cannot be guaranteed for a
whole neighborhood so that an approach to M cannot be ensured near these points. It
can be shown that e.g. B = —1 constitutes such a case.

Summarizing this section we have proven the convergency of the learning rule (9)
to the correct value, provided that the initial estimate for A is not too poor. The basin
of attraction comprises at least the region ||A; A — 1|| < 1 (Theorem 1). In addition
there exists a whole manifold of different undesired fixed points, towards which the
learning rule can converge (Theorem 2).

5. Convergency Improvement due to Network Properties

In this Section we will focus on the effect of the adjustment rule (8) on the con-
vergence properties of the network as a whole. The essential property of (8) is, that
the adjustments prescribed by the learning rule of the previous section are not only
confined to the particular unit y* optimally matching the current configuration, but in
addition are partially spread also to all units within a certain neighborhood of unit y*.
We shall show that this feature results in at least two benefits: First, it increases the
rate of convergency and, second, it leads to an increased robustness of the network to
poor initial values for the mappings to be learnt, i.e. even for initial values from which
part of the units would not be able to converge to the correct mapping if they had to
learn in isolation, successful convergency for all units is achieved with (8).

In order to carry out the analysis, we must make some simplifying assumptions.
First, we assume that the ordering of the variables 4(y,t) has already occurred and
reached an asymptotic distribution such that the probability to be selected at step o)
is equal for each unit. It has been shown elsewhere [3,4,5] that to approximate such a
state is one of the prominent features of the adjustment rule i). Second, we will restrict
ourselves to the case where the correct mapping Ay is independent of the configuration
) and, therefore, is the same for each unit. We expect that the results of our analysis
will not be affected in an essential way by dropping this condition, as the variation
of Ag over the adjustment region given by the function Ay in (8) usually will be only
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small. Further we shall take the function hj to be time-independent and assume that all
adjustments are sufficiently small to drop quadratic and higher terms when necessary.

Taking these conditions and using the matrix B introduced in Section 4 instead of
A, we have to consider the algorithm:

o) Select unit y* from the grid.

i) Choose a random desired velocity u and set
B* =B(y*,t) + A B(y*,¢) (19)

where ALB(y*,t) = —eB(y*,t)(1 + B(y*,t))uul (1 + B(y*,t))T is the change
of B(y*,t) if we apply only the learning rule of Section 4.

i)  Adjust all B(y,t) according to
B(y,t +1) = By,t) + ho(y - ¥*)(B* - B(y,t)) (20)

and go to step o).

Consider now the quantity

= ;HB(YJ)“- (21)

For each cycle 0)-ii) we have

A||B(y,t)]I> = 2Tr AB(y,t)B(y,t)”
= 2hy(y —¥*)Tr [(B* - B(y,t))B(y,t)”]
< 2hy(y — y*) (IIB*]| = IB(y, )]) 1By, )|
= 2ho(y —v*)(ALIBI*, 1) + 1B, 1)l - B, ) IIB(, )],

(22)

where we have written ||B*|| — ||B(y*,t)|| =: A||B(y*,t)||. Equation (22) gives us
AlB, )l < ha(y —¥*) (ALIBE* Ol + B Ol - B 1)),  (23)

where we must keep in mind that Ay ||B(y*,t)|| still depends on the random variable
u, which again shall be distributed with identity correlation matrix as in Section 4.
Inserting (23) into (21), averaging over both u and the selected unit y* and making
use of the symmetry of hg we then arrive at

(B8 < Z ha(y = y")(IIBG* )l = 1By, )l + ALIB(y*,1)]])

= N§<AL||B<y*,t)n>u <0
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where N denotes the number of units and we have set

h= Y holy - "), (25)
Yy

which is independent of y* if we neglect edge effects. If at each time step any adjustment
were exclusively confined to the unit y* selected at that time step, i.e. ha(y=y*) = byy+,
we would have obtained the result (24) with h replaced by a value of unity. Therefore,
the ”lateral adjustments“ increase the change of || AB|| per iteration step, i.e the rate of
convergency, by a factor of h over the value without them. As & is a measure of the size
of the neighborhood region over which the adjustments are spread, this neighborhood
region should be made as large as possible. However, the conditions of this derivation
require restraining the neighborhood to a region over which A, respective B, do not
vary too much.

This result concerning the rate of convergency is still fairly general, as we hitherto
have not used any special properties of the learning rule prescribing A;B. These will
be invoked in the subsequent paragraph to show that in addition to an increased rate of
convergency the lateral adjustments lead also to an increased radius of convergency, i.e.
to an enhanced robustness to poor starting values for the mappings of the individual
units.

To this end we shall show the following lemmas:

Lemma 1: Let hy(y — y*) be non-negative, symmetric with respect to interchange
of y and y* and non-vanishing at least for all nearest neighbor pairs y and y* from the
lattice. Then for the average change of the network per time step to vanish all norms
||B(y,t)|| must be equal.

Proof: We consider the quantity Q(t) := Ty 1By, t)||2. For the change AQ be-
tween two consecutive time steps we have from (22) and Az|[B{y*,t)|| < 0:

AQ <23 hy(y —y*)(IIB(y*, 1)l - 1B, 4)lI)IIB, )l (25)
Yy
Averaging over y* and using the symmetry of ho we finally obtain

(AQ)y < -5 X haly ~¥*) (B, )1l - B, ) (26)
vyt

Together with ha(y —y*) > 0 for all nearest neighbor pairs y,y* this proves the lemma.

Therefore all matrices B(y, t) share the same fate with respect to their convergency
to the desired fixed point B = 0: either all of them reach B = 0 or they all settle on
the manifold M of undesired fixed points described in the previous Section. But once
the average value of ||B(y,t)|| in the lattice has fallen below a value of unity, Eq.(24)
together with Theorem 1 of Sect.3 shows us that at least some units will converge
to B = 0 and as a consequence all others will have to follow, no matter how poor
their initial starting values B(y,0) may have been. Without lateral adjustments, i.e.
ha(y ~¥*) = by y+, this consequence does not obtain. In this case Eq.(25) places no
restriction on the norms (|B(y,t)|| and the above Lemma does not apply. Therefore we
have shown that the lateral adjustments enable units with starting values accidentally
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well within the basin of attraction of the desired fixed point to effectively increase the
convergency zone for all other units of the array. As a result a fair proportion of units
with very poor starting values can be tolerated before the capability of the array to
globally converge to the correct solution is affected.

The bound on the critical average norm ||B(y,t)|| for convergency can be further
refined. To this end we shall need

Lemma 2: For sufficiently small ¢, the expectation value (d(B(t))}u of the function
d(B) = ||B(B + 1)||? subject to Eq. (15) obeys the inequality

(d(B(¢)))u = d(B(0)) - exp(—2¢At), (27)

where A is any constant majorizing the matrix H of Eq.(17) over its whole time trajec-
tory:

A > sup |[H(B(1))]]. (28)
B(t)

(This is always possible, as ||H|| can be bounded by a polynomial in ||B}|, which itself
remains bounded).

Proof: From (16) and Tr AB < ||A|| - ||B|| we obtain

(Ad(B))u
2 —2¢||H(B)|| > —2€A. (29)

For sufficiently small ¢ we may replace (29) by
(Alnd(B))u > —2¢. (30)
Thus
(d(B(t)))u > exp((In(d(B(t)))u)
> d(B(0)) - exp(—2€Xt),

proving the lemma.

We now have
(ALIIBY",t)|[)u = -;-(ALIIB(y*,t)|12>u/IIB(y*,t)ll
- %(IIB(y*,t)(B(y*,t) +1)u||%)u/|IBy*, )| (31)

- LBy, 0)/IBO" O

Il

Combining (24), (31) and Lemma 2 yields

b dBEY)
(AS(t))y*u < 2N ;: [[B(y*, )]l

< _ che %X d(B(y,0))
- 2N 5 [IB(y,)]]

: (32)
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From this we can see that |[B(y,t)|| decreases on the average. Therefore the replace-
ment of the denominator ||B(y,t)|| by ||B(y,0)|| should not destroy the inequality,
leaving us with

ehe 2\t d(B(y,0))

AS(t))yr y < — . 33)
(45w < =~ 2 By, 0] (
Integrating (33) gives our final result
. h
Jim (S Oy < 5(0) = 3:Do, (34
where
1 d(B(y,0))
Dy= — S )
0 ZNZY: [|B(y,0)|| (35)

- - ‘le > A LIB(Y.0) ).

The quantity —Dg can be interpreted as the initial average change of ||B]| of a unit
due to the learning rule of Section 4, normalized to € = 1.

From Eq.(34) we see that on the average each ||B(y,0)|| moves by an amount of
at least hDg/2N A closer to the desired fixed point B = 0. This increases our previous
bound of unity on the critical value for the average norm [|B(y,t)|| required for global
convergency to B = 0 to the new value of 1 + ADy/2NA. Remarkably, the increment
is again proportional to the strength of the lateral adjustments as measured by h.

6. Conclusion

We have presented an extension of the self-organized mapping algorithm proposed
earlier by Kohonen [2-4] and have shown that the new algorithm can be applied to the
unsupervised learning of ballistic movements. The novel features of the algorithm are i)
the representation of the desired mapping as a collection of locally valid linear approxi-
mations to be learnt by Kohonen’s original algorithm and ii) the use of a learning rule of
error correction type to obtain values for the adjustment steps in Kohonen’s algorithm
on the basis of trial movements. We further have demonstrated, that employing the
error correction rule in this fashion results in an increase of both its convergency rate
and its range of convergency.

Finally we should like to remark that the applicability of the presented algorithm is
not resticted to ballistic movements. We envisage its use also for other computationally
similiar tasks, such as e.g. learning to control compliant robot arm motions from force
feedback.
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