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ABSTRACT

The control of dynamical systems under constraints on the the controlling force can require
long term trajectory preplanning to avoid entering dead ends in phase space. To handle such
problems in a flexible way we suggest to formulate them as a path finding problem on a suitably
discretized version of the phase space of the system. This path finding problem can then be solved
with a standard relaxation method in a parallel computation by exploiting a physical analogy: the
target point in phase space is considered as the source of a diffusing substance whose concentration

gradient serves as a local guide to the destination point.

I.INTRODUCTION

Many control tasks require to bring a given mechanical system in a state A, e.g. a robot arm,
to a destination state B by applying a sequence of suitable control actions. Often the dynamics of
the system given the pertinent restrictions on the available control force forbids a great many of
the geometrically possible trajectories and leaves available only few possible paths. These paths
often assume such an indirect route from A to B that search algorithms are required for their
identification. An illustration of such a situation is provided by a pendulum with initial and
final states A and B as shown in Fig.l. The state B shall be reached by applying a suitable
torque F(t) € [Fpins Fmaz), where Fp;,, and Fpaz are the limits on the control torque. If the

torque interval [Fy;p, Fmaz| is very narrow the pendulum cannot be moved directly into the



upward position B (see Fig.1), but can be moved to this state only by passing first through a few
oscillatory cycles of increasing amplitude and energy about its position of stable equilibrium.
The reason for this indirect route from A to B is that from any given point x in phase space the
neighboring points are not equally accessible if only small external forces are available. Actually,
in the absence of external control forces, i.e., for F,;, = Fmaz = 0, solely the points lying on
the forward part of the phase space trajectory passing through x are accessible. For a small,
but nonvanishing range of the control force the set of possible trajectories through x fills a conical
region with apex at x. This region is accessible from x , all other points are blocked. The dynamics
can be considered, therefore, as an obstacle blocking the access to most of the surround of x ,
leaving only a small subset of available paths emanating from x. This is mainly due to the inertia
of mechanical systems which for finite forces restricts the range of possible accelerations.
We represent this situation by employing a discretization

of the phase space. The continuous phase space is replaced
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by a discrete lattice of points x, and all lattice points in the

" >

neighborhood of x, which are accessible from x, are connected
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to x through directed links. The links depend on the size of
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the interval {Fpp;n, Frmaz]. The phase space is then covered by
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a directed graph G with the lattice points as nodes, whose link

structure represents the constraints imposed by the dynamics
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of the system and the restricted range [Fp;p, , Frmaz| of available
control forces. The initial and final states A and B correspond
to nodes z 4 and zg of G and the task of finding an admissible

Figure 1.
trajectory reduces to finding a path on G which joins z4 and

zp.

For the purpose to find such a path, we compute an auxiliary function u(x) which represents
the concentration of a fictitious substance emitted at the destination point zp and undergoing
a diffusion-like spread on G. u(x) can only spread along the links of G, but opposite to their
direction. Therefore starting at z4 and always following the link along which the increase of u is
greatest, we obtain a path leading from z 4 to zg. Among all possible alternative paths this path
is most favourable in the sense that it would be preferred by diffusion along the links.

The function u(x) can be calculated in a fully parallel manner by means of a standard relaxation
algorithm ([1]). As long as the destination point zp remains fixed u(x) can be used without any
recomputation to find paths from arbitrary starting points z. This is of practical significance for if
on execution of the originally intended trajectory an unprecedented disturbance shifts the current
state to a new location , so that the remaining part of the intended trajectory does no longer
apply, u(x) can be reemployed for the determination of the remaining path to zg. Our present
discretization scheme restricts our method to a two dimensional phase space, i.e. to systems with
one degree of freedom. Improved discretization schemes requiring only very few lattice points
along each dimension should render also systems with more degrees of freedom tractable.

In the subsequent Section II we describe the discretization of the phase space leading to the



graph G. In Section III the path finding method is discussed and in Section IV we illustrate the

application of the method to the example mentioned above, the motion of a pendulum.

I1. PHASE SPACE DISCRETIZATION

We consider a system described by an equation of motion of the form

d%q : .
oz = Rla,d) + F(e) - M(g, g) (1)

where F(t) is the control parameter, subsequently called "force“ and R, M are given continuous
functions with M nonvanishing. By z = (g,¢) we denote the phase space coordinates. For the
purpose of the numerical computation the continuous set of 2-dimensional vectors z is represented
by a lattice of ng X ny points (qij-,d,-j),i = l.ng, J = l.n,. The lattice coordinates ¢;; and §;;
are chosen as follows:

Omin + (1 — 1) - Ag if j is odd, o
= Gin + (1 —1) - Ag+ §Aq if j is even. )
q'z'j = Gmin + (7 — 1) - A (3)

The assumed lattice spacings for g and ¢ are Aq = q%ﬂf‘m and Ag = %ﬂ, respectively,
where gypins Imaz 304 §ymin, dmaz are the limits of ¢ and 4.

The shift of %y for any other row j by %Aq is introduced in Eq.(2) in order to have nearest
neighbors in 6 directions for each point instead of in only four directions as in the case of a simple
square lattice. As this number determines the degree of the directional discretization associated
with replacing the continuous trajectories by chains of links connecting neighboring lattice points,
we additionally include for each point the six next nearest sites into its neigborhood, thereby
obtaining a total of 12 potential directions for the formation of links emanating from a given
lattice point.

After the discretization of the phase space is specified we determine for each lattice point x
those of its 12 lattice neighbors which are “accessible” from x and join each of them to x by a
directed link emanating from x. A neighbor y is called “accessible from x” if it is possible to find

a value F of the control force such that the following conditions are satisfied:

1. F € [Fpin> Fmazl,

2. y can be reached in a time 7 < At from z, using the linearized equation of motion with
force F =const. over time 7; here At is a parameter which should be chosen such that
the linearization of the equations of motion is a reasonable approximation over times up

to At and that the trajectories can bridge one lattice spacing in a time significantly less
than At.



Given z = (¢z,4dz),y = (gy, dy), the values for r and F are calculated from
T, .
ay =9z + (4= + dy) (4)
. T . . 1 . .
qy =4z + E(R(%,Qx) + R(Qy,Qy)) + ET F- (M(Q::’Qz) + M(anQy)) (3)

If ¢z = gy and ¢z + gy = 0, Eq.(4) is valid for arbitrary 7. In this special case we choose F' to
minimize a positive solution for 7 in (5), which, if possible, yields either F = F,;,, or F = Fyas.

The result of forming for each lattice point links to all its accessible neighbors yields a di-
rected graph G, which represents a discretization of the phase space together with the possible
trajectories on it. The connectivity of this graph increases with increasing interval [F,,;,,, Frnaz).
This property reflects the fact that a wider range for the admissible control force makes more
trajectories realizable. On the other hand, if the interval for the control force is too small or the
discretization too coarse, the above discretization scheme may not be able to represent all possible
trajectories.

The main advantage of our scheme is its ability to deal flexibly with very general constraints
(e.g. position dependence) on the available control forces and the admissible system configurations.
These constraints are represented solely in the graph structure of G and, once this has been done,
the actual part of the algorithm operating upon G and described below runs without further

consideration of the dynamics and the control forces.

III. THE PATH FINDING ALGORITHM

Let A and B denote the initial and final states of the desired trajectory and z4,zp the two
lattice points of G matching A and B closest. We search for a sequence (z;);=1..n, To = Z4,Zn =
zp of points of G forming a linked chain connecting z4 and zg. Once we have found such a chain
we know by construction of G that the z; can serve as successive states of the desired trajectory,
as each z; can be reached from its predecessor z;_; by applying a constant force F € [F,;., Frnaz)
over a time 7 < At.

To find such a chain we search for a real valued auxiliary function u(z) defined on the nodes

x obeying the following conditions:

u(zp) =1 (6)
u(z) = Nﬁ > u(y) ifz#zp (7
* yeU,
Here U, denotes the set of all nodes which are neighbors of z, i.e. y € Uy if and only if there is a
link of G which points from z to y. N; is the number of nodes in Uy.
The above conditions can be interpreted as follows: The destination point zg is the source

of a ficticious substance, whose concentration at node z is u(z). The substance can spread only



along the links of G. A link carries a flux equal to the concentration difference between the two
nodes at its ends, provided that its direction is towards the node with the higher concentration.
Otherwise the flux is set to zero, i.e. the links act as "one way“ connections.

At node zp the substance is injected at such a rate as to maintain u(zpg) = 1 (condition (6)).
In the stationary state and without any losses, condition (7) with m = 1 holds. Any smaller value
m € [0,1] corresponds to absorptive losses at the nodes, which can be used to avoid the trivial
stationary solution u(z) = u(zp) = constant for finite G.

The path leading from z4 to zpg can then be found by starting at z4 and taking as the next
station always the neighbor with maximal u(z), i.e the path starts at rg := z4 and continues
according to the rule (¢ = 0,1,2...) z;,.;:=y where u(y) = maXzey,, u(z) until finally
zp = zp. Since G is finite, the algorithm is guaranteed to terminate, yielding a sequence of
stations z4 = zg,Zy,...Zn—-1,zpg Which by construction constitutes a proper path. Moreover, this
path is short in the sense that it takes that route towards zp which maximizes the increase of
u(z) at each step.

To calculate u any procedure to solve a stationary discretized diffusion equation can be used.
So far we did not try to optimize this part of the calculation and used the rather unsophisticated

relaxation scheme

uip1(z) = { N;l.,.—l Tyev, wily) if z#zp (8)
1 else.

which corresponds to the choice m = le\_fh This scheme could be improved, e.g. by using an

overrelaxation method. It is actually not strictly necessary to iterate until good convergence to

the stationary solution has been obtained. Instead choosing u initially equal to zero (except at z)

the calculation may be stopped as soon as u;(z4) gets positive. This corresponds to "freezing“

the propagation of the aforementioned substance as soon as it has reached z 4. However this may

render a recomputation of u necessary if later paths from other initial points to zp are sought.

IV. SIMULATION RESULTS

We applied the above method to the task of planning a trajectory for a pendulum in a vertical
gravitational field of unit acceleration. The motion of the pendulum can be affected by a torque
F(t) acting at its pivot. The equation of motion is given by

d%e

7 —sind = F() 9)



The equilibrium position for this pendulum is at § = 180°. The control task is to bring the
pendulum into the inverted state § = 0° and stabilize it there, starting from different given initial
conditions and with different admissible intervals for F(t). The discretized region of phase space
is the rectangle (—5.37,2.49] X [—2,2] (the numbers are adjusted to yield discretization points at
6 = —m and § =0) in (0,9)-space. This phase space was represented by a mesh of 31x19 discrete

nodes.
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Figure 2: The phase space discretization graph G for F € [-0.5,0.5].

Figure 2 shows the graph G, which is obtained if F(t) is restricted to the interval [-0.5,0.5]. If
the pendulum is initially at rest in its stable equilibrium position £ 4 = (—,0) a direct movement
into the inverted position zp requires a torque larger than 0.5 and such movement is therefore
not possible. This manifests itself in the fact that the only paths on G which connect z4 and zp
are spiralling outwards from z 4 before they approach zp. This behaviour indicates the necessity
of a few oscillatory cycles of the pendulum before attaining the state zp. Such a path, which has
been obtained using the algorithm of Section II, is shown superimposed on G in Figure 3.

Figure 4 shows the trajectory which corresponds to the path of figure 3. A naive way to
construct a trajectory for a path of lattice points 4 = zj,z3,...zp would be to store the time
steps 7; and the force values F; connected with each of the links z; — z;,4, and then to apply these
forces F; over timesteps 7; in an exact integration of the equation of motion, Eq.(9). However,
because of the linear approximation in constructing the links in Figure 3 the deviation of the
resulting trajectory from the path z4 = zy,z3, ...z tends to increase in time. Therefore we have
adopted an alternative procedure which keeps the actual trajectory close to the discretized path.
Let z be a point reached after a certain number of integration steps and let z; be the lattice point

closest to z. We then try to reach the lattice point y € Us; for which u(y) = max,ey, u(2).
7



Figure 3: Trajectory starting at z4 = (—,0) (stable equilibrium position of pendulum) and
ending at £g = (0,0) (unstable equilibrium position of pendulum) superimposed on the discretized
phase space G.
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Figure 4: Simulation of the trajectory in Fig.3. The simulation starts with state z = z4 at
time ¢t = 0 and uses equations (4) and (5) to determine the force F and the time 7 required, so
that the linearized trajectory passes through the neighbor y of z with u(y) =maximal, i.e. y = z3.
These data are used to simulate the exact motion until time ¢ + 7 after which z is replaced by the
new state obtained and the whole cycle is repeated. Once the unstable equilibrium position zg
has been reached, the motion gets trapped there, since any deviation from zp means just a new
starting value z4 which, however, is already very close to zg.
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Figure 5: Angle 6(t) for ¢t € [0,50] for the trajectory in Figure 4.

The corresponding force F' and time step 7 are determined according to Egs. (4) and (5). These
quantities are then applied for the next integration step. The described procedure is then repeated.
In this way the simulated trajectory follows the path of Figure 3 until zp is reached.

As zpg is no stable equilibrium point, the system cannot stay there. The best it can do is to
choose as next station that neighbor y of zg with u(y) = max,ey, . u(z), although now this value
is less than u(zpg). In our example this turns out to be the lattice point "south-west“ of zg. But
after this one inescapable step away from z g to y, the further steps again are directed back to zp,
because y is just a new initial state like formerly z4. This yields the small ”"diamond-shaped“
limit cycle visible in Figure 4, which contains zp as its "east corner®. The effect can be seen still
more clearly in Figure 5, which depicts the angle 6(t) after the system has been released from z 4.
First 4(t) undergoes a few cycles of increasing amplitude until it reaches its final value g = 0°
and remains there with the small limit cycle oscillations superimposed.

Figure 6 shows the constructed path and Figure 7 the simulated trajectory for a different initial
position z 4. In this second example again no direct path is possible from z 4 to g but rather the
pendulum first has to be swung back and then forth before zg can be reached.

If the admissible intervall for the torque F(t) is larger the connectivity of G increases and
additional paths open up. This is shown in Figure 8, which compares the graphs G for the three
F-intervals [—0.5,0.5], [—0.75,0.75] and [—1, 1], corresponding to weak, medium and strong control
torques, respectively. The corresponding trajectories from the initial downward resting state z 4 to
the inverted state g are superimposed for each case. This illustrates the effect of the range of the

available control torque on the shape of the trajectories obtained. For weak torques the pendulum



Figure 6: Trajectory starting from a different initial value z4 = (—1.17,—-0.67) and ending at
zg = (0,0) superimposed on discretized phase space G.

Figure 7: Simulation of the trajectory in Figure 6 as explained in the text.
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Figure 8: Phase space discretization graph G with trajectory from z4 = (—,0) to zp = (0,0)
for F € [—0.5,0.5] (top), F € [—0.75,0.75] (middle) and F € [-1,1] (bottom).



has to be swung back and forth several times before it can be moved to zg (top), whereas for
medium torques one previous cycle suffices (middle). Strong torques allow turning the pendulum

directly from z4 to zp (bottom).

V. CONCLUSION

We have presented a method for control tasks of mechanical systems. The method treats the
task as a path finding problem in the phase space of the system. Using a physical analogy we
can solve this problem by means of a relaxation method together with a suitable discretization
scheme. This approach enables us to handle constraints on the admissible control forces and
system configurations in a very flexible manner. However the discretization scheme employed here
limits the method to systems with one degree of freedom only. We are currently extending the

method to the control of higher dimensional mechanical systems.
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