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ABSTRACT

Topology conserving mappings play an important role for biological processing of sensory
input. We suggest that principles found capable of establishing such maps can also be applied to
organize the learning of motor tasks. As an example we consider the task of learning to balance
a pole.

INTRODUCTION

In this contribution we like to suggest that principles found capable of establishing topol-
ogy conserving mappings between sensory input and cortical brain areas can also organize the
learning of motor tasks, This is demonstrated for an example, the teaching of a robot device to
balance a pole. Our study is motivated by the observation that the aquisition of many higher
motor skills requires a period of consciously controlled generation of the respective movements
until their execution becomes automatic. We model this behaviour by a control system which
consists of three components: i) a controller C with output f C capable of solving the control task
at hand and acting as a teacher for ii) an initially unorganized array A of units y , which modifies
the controller’s output f€ to a value f4 and passes it to iii) the system S to be controlled (Fig.1).
Both controller C and array A receive informa-

tion about the current state x of the system S

I Controller C ] and the task of the array shall be to leazn grad-

1 7€ ually to take over the function of the controller

I Array A I by establishing a topology conserving maPping

between the states of the system and suitable

154 ) control responses. For this purpose we employ

xl System S ] a modified form of an algorithm which orig-

¥ inally goes back to Kohonen!?34 and which

. we have investigated recently in the context of
\FIE“" 1 somatotopic mnppingss.

THE MODEL

The evolution of the system dynamics and the topology conserving mapping will be described
in discrete timesteps ¢, = nAt. The array A will play the most important role in the following.
It serves two purposes: First it monitors at each time step t, the state z,, of the system
S associating a particular unit y* € A with the current state. Second, it associates responses
14 (y) with each of its units y. The response fA(y*) of the unit y* sclected at time ¢y, constitutes
then the force which controls the system S until one timestep has elapsed and a new system
state z,41 is obtained.

Let X denote the state space of the system S to be controlled, A the array of units y € 4
and F the space of admissible forces to control S. With cach unit y € A we associate at time
tn two vectors ¢n(y) € X and fA(y) € F. The force for a given state z € X shall then
be given by f4(y'), where y* is that particular unit for which:$,(y*) is closest to x, i.e.
$n{y*) — z| = minye |nly) — z}. This prescription specifies a {discretized) map Oy between
states 2 € X and control responses f € F at time t,,. The initial map Py is chosen arbitrarily,
e.g. is random. This map shall now be gradually transformed into a map sending state vectors
x into adequate control actions f.

The desired final map should fulfill two demands: (1) Each of the units y shall be devoted



to a small subregion of X and to 2 response f4(y), such that neighbouring units in the array
belong to neighbouring subregions in X and to similiar responses fA. (2) The resolution of the
discretized map shall be fine in those regions of the state space X which are often realized by S
and may be coarser in those regions which are less frequently assumed by the system. These are
just the demands met by algorithms capable of esta.bhshmg topology conserving maps between
a sensory source and a cortical brain areal=%, The role of sensory signals for such maps is played
in the present application by the sequence of pairs (zn, o ) produced by the time evolution of

the state of S and the respective action of the "teacher® C. However, for a good mapping the:

dimension of X should not exceed the dimension of A. Although this is not so severe a restriction
for a technical application, it is a difficulty in the biological case, where one would expect A
to correspond to a two dimensional neural sheet thus allowing only a mapping of the two most
relevant degrees of freedom. This problem seems to be overcome in the biological organism by
using several suitably interacting neural sheets or by compressing higher dimensional spaces into
2-dimensional sheets at the price of discontinuities.

The goal of our algorithm is the gradual refinement of the map &, from an initial random
choice to a state where ®p, can take over the control of the system S. For this purpose we suggest
the following refinement procedure for &5, at each time step n:

1) Search for unit y* with v
li$n(y") = znll = min figa(y) — zal (1)
~ VEA B ) .

where z,, is the state of S at time ¢,

2) Update &, via
$nt1(y) = $nly) + 2y — ¥°,tn) - (zn — alv))

721 (6) = FAW) + By — v*, 1) - (1€ = FA(W)) @

where f€ is the output of the controller C for state z, and h(y, t) is a function of Gaussian -

type centered at zero in its first argument and of width and amplitude decreasing with
increasing second argument t.

3) Act upon S with a control force

1 =cltna) f + (1- altnr1)) /€ (3)

until the next time step. Here aft) is a function which gradually increases from a = 0
at t=0 to a = 1 at the end of the learning.

Steps 1) and 2) have been shown to lead to a topology conserving map if the pairs (zn, 1©)
can be considered as a series of independent stationary random variables!:?:4, However here the
developing map itself feeds back onto the source of its input by controlling the time evolution
of S. This can modify the precise dynamics of the evolution of the map, but our simulations
suggest that the properties of this process to converge to the topology conserving map remain
preserved.

The advantage of the above algorithm over a control rule given by a fixed table of values ¢
and corresponding forces f4 lies in its capability to distribute the pairs (¢, ]A) over the space
X ® F with regard to the density of control actions required by the given motor task. This
adaptation occurs automatically in the course of learning without the need for prior knowledge.
Furthermore the spreading of the local adjustments into the immediate neighbourhood of a
selected unit y* in step 2 of the above refinement procedure brings about the topology conserving
property of the resulting map and can be consxdered as a rudimentary form of generalization
which facilitates convergency. The values fA need not necessarily specify directly a control force.
They can as well be input parameters of a Iower level control law which serves to calculate the
proper response actions from the parameter f4 and the aystem state x. From the view of the

algorithm this amounts to replacing the original system S by a new system S’, which is the
concatenation of this control law and S.

SIMULATION RESULTS -

In the i'ollowmg we will show the results of the algorithm for the case of learning to balance a
pole. Here the system S represents a massless

Mass 1 rod with two point masses 1 and m attached

. to its upper and lower end, respectively. The

Gravity g rod’s motion is restricted to a vertical plane

with the mass m confined to glide along the

horizontal x-axis and gravity pointing down-

ward along the negative z-axis. # denotes the

counterclockwise angle subtended by the rod

Mass m ] Force f and the positive x-axis and balancing can be
> achieved by exerting a horizontal force f upon
Figure 2 the mass m (Fig.2). The pole motion was sim-

ulated in time steps of 0.1s.
The state vector of the system S was represented by the last two successive pole inclinations,
i.e. Zn = (0n, 05~1). The force delivered by the controller was given by

1€ = const - (L4 cosé — 0.16). (4)

A two dimensional square array of 25x25 units was assumed for A. Learning was achieved
by a series of trials, each trial starting with an initial value for § drawn randomly from the
interval [60%,120°] and lasting until either § had left the interval [0°,90°] or 60 timesteps had
elapsed.

Figures 3-6 below show the development of the map ®,, during the simulation. Each of the

. left diagrams shows the distribution of the units y in the state space X of pairs of successive

pole inclinations fy,6,—1. Each unit y is depicted at the location in X given by its associated
vector ¢n(y). In order to illustrate the emerging topology conserving character of ®5n we have

connected those points ¢,,(y(1)) = (0,(‘1), ,('1)1) and ¢, (y(’)) = (.9(2) (2) 4) for which v} and

(2) are neighbouring units in A. The increased order of these connechons in gomg from Figure
3 (mltxa.l map $g) to Figure 6 (final map Pn, n=10 000) attests to the emerging topology
conserving property of the ¢n(y).
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The right diagrams in Figs. 3-6 show the value of the force /4 (y) as a mesh surface above
the array A. Figure 3 presents the initial state of ®. The values for both ¢(y) and f4(y) for each
unit y were chosen randomly from fixed intervals. The following figures 4 and 5 show the gradual
development of the map after 100 and 1000 timesteps respectively. The units rapidly begin to
"tune in® along the line f; = 6.1, which reflects the fact that successive pole inclinations ¢
usually differ only by a small amount and which therefore constitutes the essential region of X
for the problem. Finally Fig.6 shows the asymptotic state reached after 10 000 time steps.
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A smooth mapping has evolved and the controller now may be disposed of without signifi-
cantly affecting the balancing performance of the system.

Actually the array is capable of performing the balancing task on its own considerably
earlier, but at a correspondingly reduced level of performance. This is shown in Fig.7, which
compares the time evolution of the inclination § for a pole initially inclined at an angle of § = 70°
under the control of ® after 1000, 5000 and 10 000 time steps. During the time displayed in
Fig.7 the controller had been disabled.
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