Biol. Cybern. 54, 99-106 (1986)

Biological
Cybernetics

© Springer-Verlag 1986

On the Stationary State of Kohonen’s Self-Organizing

Sensory Mapping

H. Ritter and K. Schulten

Department of Physics, Technical University of Munich, D-8046 Garching, Federal Republic of Germany

Abstract. The stationary state of the sclf-organizing
sensory mapping of Kohonen is investigated. For this
purpose the equation for the stationary state is derived
for the case of onc-dimensional and two-dimensional
mappings. The cquation can be solved for special cascs,
including the general one-dimensional case, to yicld an
explicit expression for the Jocal magnification factor of
the map.

1 Introduction

Self-organizing sensory mappings play a crucial role in
the development and maintenance of many functions
of the ncrvous system and cspecially the brain. Differ-
ent sensory inputs, such as tactile (Kaas 1983; Merzen-
ich 1983), visual (Whitteridge 1973) and acoustic (Suga
1979; Pickles 1982) inputs, are known to be mapped
onto different arcas of the cerebral cortex in an orderly,
topology-preserving fashion, i.c., similar inputs are
mapped onto ncighbouring places in the cortex. These
mappings arc not genetically prespecified in a detailed

manner but instcad sclf-organize during the carly

stages of the formation of the nervous system. To some
cxtent the mappings can remain plastic even later and
adapt to subsequent changes in the environment or the
sensors themselves. The degree of plasticity varies for
different cortical mappings. For instance, the mapping
from retina to cortex after its formation remains plastic
only for a rclatively short period of time, whereas for
the somatoscnsory map considerable plasticity has
been found cven in adult animals (Kaas 1983; Merzen-
ich 1983). In addition, different types of reorganisation
after partial damage to afferent inputs have been
obscrved (Kaas 1983).

Several algorithms for the formation of such mapp-
ings have been suggested (Edelman 1985; Takeuchi
1979; Willshaw 1976, 1979). In the following we will

consider a proposal due to Kohonen (Kohonen 1982a,
b). This proposal is not meant to model biological
details but rather tries to capture the most essential
features of such mappings for the benefit of remaining
computationally tractable. The formation of the map is
driven by a random scquence of sensory input signals
whose probability distribution imprints on the final
map in such a way that regions of the input signal space
corresponding to frequent signal occurrences are
mapped onto larger arcas than regions corresponding
to rarer input signals. Thercfore the map magnifics
more important sensory regions at the expense of less
important sénsory regions.

Below we shall illustrate the algorithm, obtain an
cquation for the final (stationary) map in terms of the
signal probability distribution and derive the Jocal
magnification factor for special cases, including the
gencral one-dimensional case.

2 The Model

As in (Kohonen 1982a, b) we consider a map ¢:A—B
where B represents a lattice of ncuronal units labelled
by r and A a spatially continuous scnsory source with
clements v. A may rcpresent, for example, the coordi-
nate sct of somatoscnsory reccplors distributed
densely over the body surface and B the set of those
neuronal units of a layer in the cerebral cortex to which
the somatosensory receptors are linked. The lattice B
receives a sequence of input signals drawn randomly
from A, the t-th signal [1=1, 2, 3...] being represented
by v(1) [v(1)eA]. Each v(1) is received by all elements r
of B simultancously. To each unit belongs a vector
w(r, t)eA, which determines the response of unit r upon
arrival of a signal v(t). The response shall be given by
SO () —w(r, D), where f(x) is 2 smooth real func-
tion peaked at x=0 and of Gaussian type. Calling the
union of all those points of A, which are closer to w(r, 1)
than (o any other wf(s, 1), s+, the “receptive ficld” 4,
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Fig. 1. Units and their roceptive ficlds for the case of A= 0n
and alincar array of S units (full circles, bottom). Above cach unit
racopy of A is shown with the hollow circle denoting the valuc of
w(r). The subsct of A consisting of all those points, which are
closer to w(r) than 1o any w(s), s + 1, is shown bold and constitutes
the receptive ficld of unit r
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Fig.2. Input space A: the hand surfacc is represented by the
subset H consisting of the union of the arcas D, LM, Rand T
corresponding to thumb (D), Jef, middie, right finger (L, M, R)
and palm (T). The iningarca S ding H docs not yicld
inputs to B, i.c. v(1) never lics in this arca

.

Fig. 3. 2 Initial configuration of the w{r,0) in input spacc: each wi(r,0) takes on a value corresponding 10 a2 point in the x— y-plane and
belongs 10 3 unit at the mesh-point r of a 30 x 30 squarc mesh. Ezch mesh-point r is drawn at the location w(r,0). b Initial “cortical™
configuration of the w(r,0): shown is a top view of the array of the 30 x 30 units. Each character position stands for one unit and
characters D, L, M, R, T denote the region containing the reccptive ficld center wir,0) of the respective unit. Dots mark units which have
not yct a2 receplive ficld within the hand surface 11

of unit r (Fig. 1), we always have the maximal response
at that unit r, for which v(1)cA,. The mapping ¢:A—B
we are seeking is then specified as follows: the image of
a vector veA s the particular unit ucB, which maxi-
mally responds to the signal v.

Initially the vectors w(r, 0) and therefore the recep-
tive fields of the individual units reB are distributed
arbitrarily (e.g. randomly) in the input space A. Each
incoming signal v(1)eA, t=1, 2, 3..., causes the follow-
ing adaptation step to take place:

1) Selection of the unit r with maximal response
upon v(t)

2) Modification of the receptive fields of unit r and
all neighbouring units s according to

w(s, t+1)=w(s, )+ h(r—s, 1) - (v(1)—w(s, 1)).

For each ¢, h(x,1) is peaked at x=0 and again of
Gaussian type (cither in each component if B is a high
dimensional lattice or in the modulus of x), whose
width d(1) is a slowly decreasing function of 1. All units
s at a distance 1o unit r exceeding d(f) receive only very
little modification through 1), whereas all closer units
are modified notably so as to improve their response to
signal v(z). In the spirit of Edelman’s group sclection
theory (Edelman 1985)a unit might be interpreted as a
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Fig. 8. 2 Readaptcd map afler 50000 itcrations subscquent to
disscction of M. Formerly deprived units arc re-cmployed by
adjacent rcgions L, R, T thus allowing a fincr represcntation
there. b The same in “cortical view” as in Fig.3b: formerly
deprived units have developed receptive ficld cenlers located in
ncighbouring regions L, R, T

thereafter. Figures 4-6 show different stages in the
formation of the map. After 20000 iterations the map
has reached a rather orderly state. Following an
experiment of Merzenich and Jenkins (Merzenich
1983) we “remove” at this stage the middle finger by
envoking in the continuation of the algorithm no
further inputs from the region M of this finger (sce
Fig. 7). The algorithm with a d(t) value of 2 lattice
spacings still exhibited enough plasticity to slowly
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adapt in the course of 50000 further itcrations to this
removal. Figure 8a shows the final distribution of the
values w(r, t) over the input space and Fig. 8b depicts
the array B with its units marked by the location of
their center of maximal sensitivity. The “cortical
rcgion” which in Fig. 7b immediately after the “ampu-
tation™ is scen o be deprived of inputs has now been
“invaded” by sensory input mainly from the adjacent
regions L, R and T respectively, whercas more distant
parts have changed only slightly. This plasticity is very
similiar to that found for the somatosensory map in the
experiment referred to above. The rearrangement of
the map is accompanied by an increase of the map's
local magnification factor for the adjacent parts of
regions L, R and T, which results in a higher spatial
sensory resolution there. This is also discernible from
Fig. 8a, where an increase in the local density of the
mesh-points w(r, ) in the surround of the “ampu-
tation” can be seen. This latter effect is also in good
qualitative agreement with cxperimental observations
(Merzenich 1983).

3 Equation for the Final (Stationary) Mapping

As is shown in Kohonen (1982a, c), repeating the
above steps 1) and 2) and decreasing d(t) sufficiently
slowly yiclds an ordered mapping from A onto the
array of units such that neighbouring units are sensi-
tive to neighbouring regions of A, irrespective of the
initial values w(r, 0). The important dependence of the
final mapping upon the probability distribution of the
input signal v(t) was discusscd only qualitatively in
(Kohonen 1982a) and shall be supplemented here by a
motc quantitative treatment.

As long as d(t) is nonzero, w(r,1) undergocs a
usually nonzcro change at cach time stcp. Given a
configuration w(s, t) at time ¢, the expectation value of
its change up to time t+1 is

w(s, t+1)—w(s, )>=Ch(s—r, d(1))
(V) —wis, 0)) (O]

where {...) denotes the average over all possible
valucs of v(t) and h(r, d(1)) stands for the former h(r, ¢)
to make the d-dependence explicit.

Keeping d(t) =d fixed for the moment, we shali call
a configuration w,(s) an equilibrium configuration, if
w(s, t)=w,(s) yiclds a vanishing expectation value in
(1). We want to consider the equilibrium configuration
in the limit of vanishing fluctuations, i.e.

wo(s): = 31_[1‘1] w,(s).
The following analysis will be restricted 1o the case

of A and B being of the same dimension n (although the
algorithm is capable of establishing a map between
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diffcrent dimensional A and B cither, sce (Kohonen
1984) and the validity of two main assumptions:

i} We assume that for sufficicntly many units and
all sufficiently small d the cquilibrium configurations
w,(r} arc sufficiently slowly varying with r to allow
replacing them by corresponding smooth functions
over a continuum of r-values and consequently sctting
¢~ ' =w,. This basically assumes that the topological
ordering of the finai state has already occurred.

iy We will assume bijective cquilibrium configur-
ations w,. This is a rcasonable assumption, since the
discretc algorithm has the tendency to avoid mapping
the same subregion of the signal space A to different
parts of B.

In additional we require h(x, d) to be of Gaussian
type with width of order d and with vanishing first and
isotropic second moments for all, d, i.e.

I h(x, d)x;x;d"x=5,;M,. (¥))

\h{e are now going to derive a necessary and
sufficient differential cquation for w, to be stationary.
We start with the equilibrium condition for w,

Ch(r—s, d) - () —w(s)>=0 3

for_ all s. The location r of the maximally responding
unit in B is in our continuum approximation deter-
mined through the implicit equation

w,(r)=v(1). @
As we now proceed to average over v(t), we will
drop all references to ¢ as P(v) is indcpendent of ¢, so
that the only remaining time dependence is via d = d(t).
We then obtain
0=Ch(r(v)—s, d) - (v—w,(s)))
= Ch(r(v) s, d) - (war()) — w,(s)))
=§ h(r(v)—s, d) - (Wr(v))—w,5))
- PW)d'v.
Wc'immducc g=r—s instead of v as the integration
variable, write Q(r) instead of P(v(r)) and denote by

D(r) the absolutc value of the determinant of the
Jacobian J(r): = dv/or i.e.

D(r)= ldc“aiwl‘j)l (5
where we have made use of (4) to replace v(r) by
wei=(w, ,...w, )" These steps yicld
0={h(q, d) - (Wu(s+ )~ W,(s))

- Q(s+q)D(s+q)d"q. ©

For smali values of d h(q,d) is sharply peaked at
§=0, so that wc may expand in q and retain only the

contribution _duc to the lowcst nonvanishing moments
of h (doublc indices are to be summed over)

0=[h(q, d) @0we+19:9,0.0w,+ ...)
(Q+¢,0,0+...) - (D+g0,D+...)dq
={h(q, d)gq,d"q
- (Giw)o{0D)+ 10D - 9,0,w,) (s)+0(d*)
=M, - [(0:»,)0{QD)
+310D - 32w} (s)+0(d*).

A necessary and sufficient condition for this equation
to hold in the limit d—0 is

3,0 9,D
AN (_Q— + T) =—0,0,Wo/2 (7
or, introducing the Jacobian J =0, 1:
J-V.In(Q - D)=—}4w,. (8)

As we are only interested in the limit d =0, we shall
henceforth denote w, by w solely. An alternative form
of (8) is obtained via

Vin(Q - D¥?)=—4J"} 4w+ 4 ViIn(D)

1 -

=—353p (D-J"'4w—-VD),

or

1
Vin(@ - D)= — . 4.

n(Q - D33) 75" sgn(det J), 9)

where u is given by
u=det(J) - J~' aw—Vdet(J).

In two dimensions with w(r)=(a(r), b(r))” this can
bc written more symmetrically as

oo ((w»)’az( Va)—(Va)fa,Wb))
(%a)"d,(Vb)~(b)73,(Va))

Equations (8) or (9), together with suitable boundary
conditions, determine the equilibrium configuration
w(r), which in turn represents the inverse of the original
map A—B, since w(r) is the center in A of maximal
sensitivity of unit reB.

(10)

4 Discussion

Although the nonlincarity of (8) and (9) makes a
general discussion unfeasible, in one and two dimen-
sions some consequences concerning the relationship
betwcen the local magnification factor and the driving
probability distribution P may be drawn immediately.

As w(r) represents the inverse of the map A- B, the
local magnification factor M of the latter is given by



M =1/D (cf. (4)). It has a simple dependence on the
density P(v(t)) of inputs in at lcast two cascs.
The first casc ariscs for w such that u vanishes. Then
Q - D¥? =const. and, thercfore, (cmploying the identity
P(w(r))=Q(r))
M(W)=D""ac P(w)*". (11)
u vanishcs whenever A, B are ceither (i) both onc-
dimensional or (ii) of rcctangular shape and P is a
product P(w)= P ,(a)- Pg(b) with w=(a,b)". In the
latter case the choice a=a(x), b=b(y) splits (9) into
two first order cquations with x and y dccoupled,
yielding

x=c, - | Pa)*da (12)

y=er- § PUBIRaR. i

The four integration constants ¢,, ¢,, aq, b, are fixed
by a particular choice for the (arbitrary) starting point
and the (arbitrary) scale for the labelling of the units in
the x- and y-directions, respectively.

The second case in which a relationship between
P(¥) and w(r) can be cstablished is when w can be
represented by a complex function

w=(Rew, Imw)™ (14)

with @ analytic in z=x+iy. This yields QD =const.
and therefore

M(w)oc P(w). (15)

An example is given by P(w)=const./||w||? and the
spaccs

A={wle "< [wl<]l & w,>0},
B=[0, N}x[0, N].
For this choice follows for w(z) defined through (14)

nei-z

wfz)=cxp N (16)

This yiclds a map ¢ from the scmi-annulus A onto the
square B. Such a kind of map connccts, for cxample,
the retina with the visual cortex.

In general, in the case of a two-dimensional
mapping thc magnification factor M(w) of the station-
ary map is not cxpressible as a simple function of the
local probability density P(w) of the driving input as is
implicd in (Kohonen 1982¢, 1984). Only in the onc-
dimensional casc such relationship can be derived. The
derivation yiclds M(w)oc P(w)*/, a result which may
be in contrast to the intuitive, but incorrect expectation
M(w)oc P(w) suggested in (Kohonen 1984).

To test our findings we simulated Kohonen’s map
for the case of a onc-dimensional latticc B of 1000 units
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Fig.9. Lincar map aficr 100000 Iicrations. Shown is In(w{r))
versus Inr for a probability density P(v)=2v, wve[0,1].
Supcrimposed are the starting configuration w(r,l=0)=|/r
(upper line scgment) and the theorelical stcady state map
w(r) =r3* (lower linc scgment). The apparcnt lefiward incrcasc of
remnant fluctuations is due to the logarithmic axes

and an interval A=[0, 1]. The probability density of
inputs from A was chosen linearly, i.c. P(w)=2w.
Figurc 9 represents the result of this simulation, Initi-
ally we chose the map w(r)=[/;, whose magnification
factor is proportional to P. After 100000 itcrations the
map has developed away from its initial configuration
and reached the equilibrium curve w(r)=r3, corre-
sponding to a magnification factor M(w)cw?? as
predicted by (11).

5 Conclusion

We have derived an cquation for the cquilibrium state
of a self-organizing topographic mapping due to
Kohonen and for some special cases derived analytical
expressions of the local magnification factor in terms of
the probability density of the driving input. Itis shown,
that the local magnification factor in the one-
dimensional casc is proportional to P*3, whercas in
two dimensions no general local expression in terms of
the probability density can be given. '
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