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■ Abstract Computation is one of the centerpieces of both the physical and bi-
ological sciences. A key thrust in computational science is the explicit mechanistic
simulation of the spatiotemporal evolution of materials ranging from macromolecules
to intermetallic alloys. However, our ability to simulate such systems is in the end
always limited in both the spatial extent of the systems that are considered, as well as
the duration of the time that can be simulated. As a result, a variety of efforts have
been put forth that aim to finesse these challenges in both space and time through
new techniques in which constraint is exploited to reduce the overall computational
burden. The aim of this review is to describe in general terms some of the key ideas
that have been set forth in both the materials and biological setting and to speculate on
future developments along these lines. We begin by developing general ideas on the
exploitation of constraint as a systematic tool for degree of freedom thinning. These
ideas are then applied to case studies ranging from the plastic deformation of solids to
the interactions of proteins and DNA.

UNIVERSALITY, SPECIFICITY, AND THE
ROLE OF COMPUTATION

The Tension Between Universality and Specificity

One of the key threads running through much of modern physics is the search
for those features of the world around us that are universal. Indeed, the notion of
universality is one of the central tenets of statistical physics and posits that in certain
cases only a minimum of information about the system (i.e., the dimensionality
of space and the order parameter) must be in hand in order to characterize that
system. The study of phase transitions has exploited such universality at every
turn. However, the notion of universality can be construed more broadly to reflect
our ability to construct scaling descriptions of material response. This thread will
be elaborated below, but as an example to set ideas we note that the scaling of
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the radius of gyration of a polymer blob with the number of monomers can be
thought of as a universal feature emerging from entropic elasticity. Similar results
are commonplace in materials science as well.

By way of contrast, there are a number of settings within which we search
for features of a system that are system specific. Such questions range from the
relatively mundane issue of what makes one system elastically different from
another to the full complexity of the structure-function relationship of certain pro-
teins. As is described below, one important example of such specificity concerns
the detailed mechanisms that give rise to dislocation nucleation in solids. From
the biological setting, a second case study is that of DNA-protein interactions
in which special sequences within the overall DNA sequence serve as ports for
the docking of proteins. Part of the argument to be made in our review is that
despite the difference in outlook between the search for universal and specific
insights, multiscale methods have begun to serve as the basis of linking these
viewpoints.

Universality and Specificity in Materials Science

The tension between universality and specificity transcends any particular field of
analysis. In the context of materials science, there are a number of scaling laws
that reflect the existence of universal features of materials. For example, the famed
Hall-Petch laws posit a relation between the strength of a material,σy, and the
mean grain size,d, of the formσy ∝ d−1/2. In this instance, the fundamental scaling
structure is independent of material particulars. A second example arises in the
consideration of diffusion for those cases in which a particular microscopic mech-
anism dominates. In this case, the robust result of interest is the assertion that the
temperature dependence of the diffusion rate scales as

diffusion rate∝ exp(−Ea/kBT), 1.

whereEa is the activation energy for the process of interest andkB is Boltzmann’s
constant. A final example is the existence of elasticity, with the key understanding
embodied in the existence of an equation of the form

Estrain = 1

2

∫
Ä

Ci jkl εi j (x)εkl(x)d3x, 2.

which describes the energy stored in a strained solid. We have introduced the tensor
εi j (x), which describes the strain at pointx and the elastic modulus tensorCi jkl .
Although we are using the notion of universality in a sense that is more general
than the standard nomenclature, it suits our purposes to note that certain features
of materials transcend the particulars of any one material.

In fact, each of the examples cited above has a complementary feature that
strikes to the heart of what we mean by specificity. For example, in the case of
diffusion, it is well known that from one case to the next the overall rate will depend
in a detailed way on the particulars of the diffusion pathway, a fact that is embodied
in the activation energy,Ea. Similarly, although materials as diverse as rubber and
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steel both exhibit elasticity, the particular characteristics of rubber and steel are
widely different and are reflected in their quite different values for the elastic
moduli, as implied by the elastic modulus tensor,Ci jkl . This type of specificity
has been elegantly expressed in graphical form in the work of Ashby & Jones (1)
who depict the huge diversity in material parameters for quantities such as the
elastic moduli, the thermal conductivity, the diffusion constant, the yield strength,
and fracture toughness. From the standpoint of computational materials science,
one of the most compelling challenges is to first understand such specificity, with
the ultimate goal being the more ambitious task of tailoring such specificity for
particular applications.

Universality and Specificity in Biology

As noted in our description of materials, there are two levels of understanding,
both of which are indispensable. On the one hand, the physics approach is often
built around searching for those features of systems that are universal. For exam-
ple, in the context of macromolecules, the way in which the radius of gyration
depends upon the number of monomers would constitute a universal result. Sim-
ilarly, the existence of allosteric reactions is a kind of universal insight. On the
other hand, biological specificity is a well known precept and often requires the
use of atomic-level arguments in order to determine the precise relation between
structure and function. Indeed, both in the materials setting and in the biological
setting this insight has been elevated to the status of a central dogma. One of our
main arguments is that much of the work of explicating the relationship between
structure and function must be carried out at the atomic scale.

One area in which the relationship between structure and function described
above is especially evident is in the context of the emerging field of single-molecule
biomechanics. The basic point is that as a result of the tremendous experimental ad-
vances that have followed on the heels of such tools as the atomic-force microscope
and laser tweezers, it is now possible to pull on macromolecules in a controlled
way. For examples, see the papers of Bustamante et al. (5), Essevaz-Roulet et al. (6),
Marszalek et al. (11) and Strick et al. (20). One of the conclusions to emerge from
this analysis is the existence of what could be called mechanical spectroscopy, in
which each molecule exhibits its own unique force-displacement curve, with the
detailed features of this curve emerging in turn from the underlying macromole-
cular structure. A key challenge at the level of molecular specificity is to determine
the way in which structure dictates the specific details of such force-displacement
curves.

An example of the type of specific understanding that can be gleaned in the
macromolecular setting is that associated with the force-induced unfolding of
immunoglobulin domains in titin. With the emergence of experimental methods
for exerting force on single macromolecules, a new era in mechanical manipulation
has been ushered in in which it is possible to measure the force-displacement curves
of large molecules, as shown, for example, in Marszalek et al. (11). The quantitative
assessment of these measurements requires a precise atomic-level description of
the structural specifics of the molecule of interest. The direct numerical simulation
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of this process in the case of titin has been undertaken in Lu et al. (9) and Lu and
Schulten (10), in which it was found that the key unfolding event corresponds to
the collective breaking of hydrogen bonds between different strands.

Degree of Freedom Thinning and
Effective Theory Construction

The central thesis of this review is now spelled out as follows. First, we argue that
in many circumstances, it is detailed, material-specific understanding that is the
objective. In these cases, we are inevitably led to mechanistic investigations aimed
at ferreting out the precise atomic or molecular events that correspond to the
phenomenon of interest. We argue that despite the clear importance of such atomic-
level investigations, it is necessary to construct a computational formalism in which
only those atomic-level degrees of freedom that are really of interest are kept. We
imagine the creation of a new suite of atomic-level simulation tools in which the
tandem challenges of multiple scales in both space and time have been successfully
hurdled. However, for our purposes here, we concentrate on the question of spatial
degree of freedom thinning and refer the reader to the works of Voter (22) for a
taste of some of the innovative thinking that is being done in the context of the
time scale problem.

THE PHYSICS OF CONSTRAINT

The Geometry of Constraint

It is clear that the computational challenges of the type mentioned above will
continue to stretch molecular simulations to their very limits. As a result, the key
point of this section and the culmination of this article is the argument that we must
continue to actively seek alternatives to brute force atomic simulation. All of the
methods that one might wish to bring to bear on problems of the type described
above involve in one way or another the notion of constraint. For example, if we
are to invoke a continuum description, there is an inherent assumption that nearby
molecular sites suffer identical deformations. From the perspective of atomic-level
simulation in thinking about the spatial domain, the key idea involves in some form
or another trying to eliminate some subset of degrees of freedom, keeping only
those that are relevant. Another example is those cases in which density functional
calculations are used to examine macromolecules such as enzymes (15). In these
cases, only atoms in the vicinity of the active site are resolved explicitly and the
remaining atoms are either frozen or ignored altogether. Similarly, in the temporal
domain, the search for constraint involves fixing certain bonds in the hope that
the resulting dynamics will respect the processes of real interest. A particularly
provocative recent idea has involved the use of artificially high temperatures with
an associated extrapolation scheme for backing out the nature of the diffusive
processes that will occur at lower temperatures (19).
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Thus far, we have argued that the traditional tools for carrying out atomic-level
simulation in computational materials science and computational biology suffer
from a variety of limitations including the inability to handle sufficiently large
systems or long times. Indeed, such simulations are usually restricted to spatial
scales much smaller than microns and times shorter than nanoseconds. One of the
thrusts of this article centers on the idea of exploiting certain geometric regularities
found in both crystals and certain macromolecules that might allow uniting atomic-
level simulation and the machinery of the finite element method. The basic idea
is to resolve the following question: Given a potential energy5(R1, R2, . . . RN),
which depends upon all of the atomic coordinates, how can we find a surrogate
energy function that features only a subset (or a linear combination) of the full set
of original degrees of freedom?

One example of this type is the quasicontinuum method in which the tools
of atomistic simulation are united with those of structural and fluid mechanics
(12, 16). The key kinematic idea behind this method is the systematic use of con-
straint such that a large fraction of the atomic-level degrees of freedom is relegated
to a form of kinematic slavery in which the motions of a small subset of master
atoms dictate the positions of all the others. These kinematic constraints then al-
low for a replacement of the full, total energy function,5(R1, R2, . . . RN), which
depends on the coordinates{Ri} of all N atoms with an approximate surrogate,
5(X1, X2, . . . XM), which depends only upon the coordinates{X i} of theM master
atoms. From a computational point of view the key advantage arises from the fact
thatM < N and usually,M ¿ N.

In order to effect the type of degree of freedom reduction advocated above,
we have invoked the existence of an underlying template. For example, in the
context of crystalline solids, the atomic positions of the unaccounted for degrees
of freedom are determined (if and when they are needed) by displacing them from
their reference (template) positions according to the prescription

u(X) =
∑

i

ui Ni (X), 3.

whereu(X) is the displacement of the atom at positionX, the ui’s are the dis-
placements of the nodes surrounding the atom of interest andNi(X) is the shape
function (see Figure 1) associated with theith such node. The basic idea is that
the displacement at a position within a given element is computed as a weighted
average of the displacements on the three nodes surrounding the point of interest.
As is revealed below, we propose that the same sort of geometric thinking can be
brought to bear on macromolecules, where the underlying template is provided
by the various structural motifs (e.g., proteins are built up of a sequence of amino
acids, DNA is built up of a sequence of nucleotides) that make up such molecules.

Constrained Energy Minimization and Constrained Dynamics

Our characterization of the physical foundations of degree of freedom thinning
has been to divide such analyses into two parts, the first of which is kinematic and
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Figure 1 Illustration of the shape functions used in conjunction with two-dimensional
finite elements.N1(X) is given in the leftmost schematic,N2(X) is shown in the middle
figure andN3(X) is shown in the right figure.

was described above and the second of which considers the motions of the thinned
degrees of freedom. This separation is to some extent artificial, although it suits
the pedagogical purposes of the present discussion.

Given the set of reduced degrees of freedom{X i} and the associated energy
function5(X1, X2, . . . XM), our next question is how do we determine the energy
minimizing configurations (statics) or the dynamical trajectories of the effective
degrees of freedom. We begin by noting that a number of different variants of
the question of how to find either the energy minimizing configurations or an ef-
fective dynamics for constrained kinematic representations have already been in-
vestigated. The most conceptually transparent scheme is that of zero-temperature
energy minimization in which the effective energy function is relaxed with re-
spect to the unknown nodal coordinates{X i} using methods such as the conjugate
gradient method or the Newton-Raphson method.

As the aim of this review is to highlight both successes and challenges, we
note that in addition to the ability to carry out static energy minimization, qua-
sicontinuum calculations have also been carried out dynamically (but in the ab-
sence of thermal effects) and using free energy minimization in which an ef-
fective free energy function associated with the master degrees of freedom is
minimized (17). However, critical challenges remain surrounding the use of these
methods as a full-fledged alternative to molecular dynamics because the dynam-
ics of the master degrees of freedom at finite temperatures continues to pose
challenges.

CASE STUDIES IN DEGREE OF FREEDOM THINNING

Case Studies from Conventional Materials Science

The development of systematic techniques for degree of freedom thinning is both
a conceptual and computational necessity. Recent success in the conventional ma-
terials setting has been especially revealing in the context of defects in crystalline
solids. Indeed, significant progress has been made in elucidating the structure, ener-
getics, and interactions of dislocations, grain boundaries, and cracks. As a concrete
incarnation of these methods, we describe the application of the quasicontinuum
method to the nucleation dislocations.
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NUCLEATION OF DISLOCATIONS The general program of constructing first-princi-
ples models of plasticity in which plastic deformation is transmitted directly on
the basis of dislocation motions remains one of the holy grails of computational
materials science. Indeed, much progress has been made in this quest with the
construction of a host of dislocation dynamics codes in which the dislocation
population within a material responds to externally applied stresses. Nonetheless,
one of the many difficulties with such analyses is the fact that they rely on a variety
of mechanisms that are not within the direct purview of the linear elastic theory
of dislocations. In particular, the treatment of dislocation nucleation, cross slip
and dislocation interactions within dislocation dynamics codes is usually put in by
hand in the form of various rules. The determination of the appropriate rules for
these processes is one of the insights that can come from atomic-level analysis.

The conceptual underpinning for the development of dislocation dynamics has
been the idea that rather than appealing to an uncertain phenomenology concerning
plasticity, it would be more appealing to build up plasticity directly on the basis
of the nucleation, motion, and interaction of dislocations. Unfortunately, just as
there are uncertainties that attend the use of constitutive models of single-crystal
plasticity, so too do models of dislocation dynamics call for insights external to
the theory itself. One of the most damning uncertainties is that of the ways in
which dislocations are nucleated at free surfaces, crack tips, and grain bound-
aries. An attractive experimental system within which such questions can be ad-
dressed is that of nanoindentation in which the surface of a material is deformed
by a tip with a small (≈60 nm) radius of curvature. As the force associated with
this tip is increased, the deformation of the underlying material passes from in-
nocent elastic deformation to permanent deformation in the form of dislocation
nucleation.

An intriguing set of dislocation dynamics simulations of this phenomenon has
been undertaken by Robertson & Fivel (14). An example of the type of experi-
mental results it is the aim of these simulations to explore is shown in Figure 2.

Figure 2 Experimental results revealing the nucleation of dislocations beneath an indenter
(courtesy of M. Fivel & C. Robertson).
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Figure 3 Simulation results revealing the nucleation of dislocations beneath an
indenter (courtesy of M. Fivel & C. Robertson).

These results can be complemented using simulations of dislocation dynamics,
as shown in Figure 3. These methods are used to examine the size and shape
of the plastic zone beneath an indenter directly on the basis of dislocation dy-
namics. However, the dynamics is founded upon a series of ad hoc rules that
determine when and where new dislocation loops are to be formed beneath the
indenter.

What atomic-level analyses of the quasicontinuum type have to offer is the
possibility of converting such ad hoc rules into well-formulated nucleation cri-
teria. To that end, a series of calculations were performed by Tadmor et al. (21)
and Shenoy et al. (18) in which a pseudo-two-dimensional indenter geometry
was examined from the standpoint of the quasicontinuum method. In addition to
examining the limits and validity of various analytic approaches to dislocation nu-
cleation, these quasicontinuum results permitted the formulation of a nucleation
criterion in which new dislocations are nucleated when the resolved shear stress
on the slip plane admitting dislocation nucleation reaches a critical value. Two
examples of the indented sample are given in Figure 4, which shows the way in
which the plastic deformation which takes place beneath the indenter depends
upon the relevant crystal orientation. The key insight to emerge from these simu-
lations is a prescription for incorporating dislocation nucleation into higher level
dislocation dynamics models directly on the basis of atomic-level understanding
of the nucleation process.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Figure 4 Application of the quasicontinuum method to the nucleation of dislocations
beneath an indenter. This figure reveals the type of dislocation geometries induced by
the presence of the indenter, which is represented by the white rectangle on the crystal
surface (from Reference 21).
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Case Studies from Computational Biology

Although models like those described above have already revealed their useful-
ness in the context of traditional materials, the most intriguing possibilities for
such methods lie in the biological setting. Several examples of the application of
multiscale analysis to problems of biological significance are discussed below.

MECHANICS OF DNA-PROTEIN INTERACTIONS Coarse-graining methods can clear-
ly have an impact in the context of DNA-protein interactions. The importance of
such interactions as a central element in genetic control is spelled out eloquently by
Ptashne (13). For example, the regulation of gene expression associated with the
enzyme used to digest lactose is carried out by a protein known as the lac repressor.
The lac repressor binds to two spatially distinct sites on the DNA molecule thus
inducing a loop in the region between these two sites and excluding this part of
the DNA from further transcriptional action. An elegant set of experiments aimed
at examining the kinetics of loop formation under the action of lac repressor was
carried out by Finzi & Gelles (7) who attached one end of a DNA molecule to a
glass slide and had the other end tagged by an optical bead. The fluctuations of the
tethered DNA as a result of Brownian motion were monitored with the insight that
when a loop had formed, the length of the tethered molecule would be effectively
shortened resulting in a different dynamics than in the absence of looping.

Despite the impressive progress in deducing both the existence and action of the
lac repressor, as well as the resulting DNA dynamics, a wide variety of mechanistic
questions remain concerning this system that range from the precise structure of
the DNA-protein binding complex, to the energetics of this binding, to the kinetic
processes that govern the life history of the lac repressor. All of these problems call
for atomic-level understanding. On the other hand, the computational demands that
attend attacking these problems are exorbitant and have led to the development of
mixed atomistic-continuum formulations much like those discussed above in the
context of defects in solids. One way in which degree of freedom thinning can be
brought to bear on this problem is to examine the DNA-protein complex without
having to pay the full atomistic price for the treatment of the looped DNA region.
To that end, Balaeff et al. (2) have constructed an elastic rod model of the looped
DNA that is solved for boundary conditions of the DNA-protein complex. The
representation of the looped DNA is shown in Figure 5, with Figure 5a illustrating
the kinematic description of the DNA in terms of a local set of vectorsd1(s), d2(s)
andd3(s), wheres parametrizes the position along the DNA molecule; Figure 5b
is a schematic of the way in which the elastic solution can be fed back to the
full atomistic simulation, adding loop-induced forces to the latter. In particular,
the idea is that the loop above the actual simulation box is present only in terms
of the forces it imposes on the parts of the molecules that are subject to direct
atomistic investigation. Although our discussion does not spell out the details of
how these calculations were done, our main intent is to show that the results of such
calculations can be used as a boundary condition for the purposes of traditional
atomic-scale analysis.
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A CALCULUS OF STRUCTURAL MOTIFS The central theme of this article is the con-
cept of a systematic elimination of degrees of freedom on the basis of constraint.
It provides a powerful tool not only for the reduction of the computational bur-
den but also as a measure to help judge which features are particularly important
in determining a macromolecule’s biological function. One venue within which
we believe that such techniques will be especially useful is in the construction
of mesoscopic models of biophysical significance. Herein we provide an outline
of a strategy to devise coarse-grained models of biopolymers and biopolymeric
complexes in their natural environments. We also present preliminary progress in
our recent efforts to build a coarse-grained description for proteins.

Almost all approaches to simulate protein structure and protein dynamics, using
e.g., molecular dynamics (MD) simulation techniques, tackle the problem from an
all-atom point of view. However, consideration of a generic enzyme reveals that
often there is an underlying separation of spatial scales. To make this idea more
concrete consider an enzyme embedded in a membrane and performing hydroly-
sis of some compound in a living cell. Clearly, the active site where the chemical
transformation of the substrate takes place may require a fully atomistic descrip-
tion. Upon receding from this site, however, one often encounters regions in the
protein that solely serve a structural role, constituting a polypeptide framework to
hold the active site in its correct shape. The same kind of arguments can be applied
to the lipid bilayer membrane surrounding the protein. In order to achieve realistic
simulations of membrane proteins, it is necessary to include membrane patches
of considerable size as part of the MD simulations, often more than doubling
the number of atoms to be considered. The membrane’s purpose, on the other
hand, is mostly that of a scaffold for the protein core, providing the necessary
hydrophobic environment for intra-membrane parts of the enzyme. Treating the
membrane in an all-atom fashion is probably overkill, and an approach similar to
the one used for dislocations in solids seems far more appropriate; namely a more
refined treatment of lipid molecules close to the protein core and increased coarse
graining using a finite element interpolation scheme in regions farther away. The
underlying theme for both the protein and its surroundings is the use of adaption,
meaning that the description should be as coarse-grained as necessary to retain
and capture the functionally relevant pieces, with superfluous degrees of freedom
discarded.

The remainder of the discussion focuses on the description of proteins. Adopting
a bottom-up point of view when considering the protein structural hierarchy, one
first encounters the proteins’ building blocks, namely, the 20 naturally occuring
amino acids arranged into polypeptide chains of different length. The structural
hallmark of amino acids is their identical backbone, their sole distinctive feature
being the 20 different amino acid side chains. Advancing one step up from the
linear arrangement of amino acids on the primary structure level, is the realm
of secondary structure. Here a wealth of structural motifs is encountered, and it
is a well-established fact that most proteins can be pictured as a collection of
such structural units (4); the most prominent ones are theα-helix and theβ-sheet.
It is possible to judge a protein’s function or even its location in the cellular
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environment by its composition in terms of secondary structural elements, for
example, the sevenα-helix bundle typical for membrane embedded G protein–
coupled receptors. The importance of structural motifs is also apparent in the fact
that whole protein databanks such as CATH or SCOP are organized around the
composition of proteins in terms of secondary structure elements. Based upon this,
we aim to establish a coarse-grained description on both the single amino acid as
well as the secondary structure level, thereby reducing the number of degrees of
freedom by a factor of at least ten.

In the remainder of this section, we describe our ideas for a constrained rep-
resentation of amino acids. To illustrate such a representation consider an amino
acid at positioni in a polypeptide chain. We focus our attention on the backbone
consisting of an NH-group, a carbonCα and a CO-group. TheCα atom is con-
nected to a side chain of one of the 20 amino acids in proteins. The carbon atoms
involved are labeledCα, Cβ, etc. The scheme of constraint that we propose rests
on the notion of master atoms, which are being kept track of explicitly, and slave
atoms, which are constrained to follow the master atoms in their motion. To keep
track of the spatial location of residuei, we define byRi

Cα
the position of theCα

atom. The orientation of the peptide bond and the side chain are described by a
fixed set of vectors that connectCα to the hydrogen HN (Ri

H ), to the oxygen (Ri
O)

and toCβ (Ri
Cβ

). The vectorsRi
H , Ri

O and Ri
Cβ

are used to define the axes of
an affine coordinate system centered on theCα; N, C andHα are slave atoms the
positions of which are tied toRi

Cα
as are the side chain atoms. The position vector

r i
S of a slave atomsScan then be obtained through the relation

r i
S = Ri

Cα
+ αi

S1Ri
H + β i

S1Ri
O + γ i

S1Ri
Cβ

, 4.

where1Ri
γ = (Ri

γ − Ri
Cα

) are constant vectors and the quantitiesαi
S, β i

S andγ i
S

are defined below.
Three of the 20 amino acids require a slightly modified description: In the case

of glycine we invokeHβ instead ofCβ; in the case of cysteine we keep track
of sulfur Sγ to model disulfide bridges as closely as possible, and in the case of
proline, we keep track of the ring hydrogenHγ rather thanCβ. For the case of
alanine the representation outlined is shown in Figure 6. We also note that our
eventual objective is to decide on the level of refinement used in our constrained
calculations in an adaptive fashion, with the level of resolution changing during
the course of a simulation.

According to Equation 4, the positions of the slave atoms are defined through
their coordinatesαi

S, β
i
S andγ i

S. These coordinates are chosen according to the
initial protein structure but subsequently are independent of protein conforma-
tional changes. Naturally one has to address the question of how to best choose
the coordinates. One can either select the coordinates to reproduce the initial PDB
structure (3) or choose them to reflect optimally average protein conformations.
The description as outlined in terms of master and slave atoms provides consid-
erable motional freedom to the backbone itself but limits the movement of side
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chains. Several remedies to provide more flexibility to side chains may be em-
ployed, e.g., separate affine coordinate systems for both backbone and side chains,
both centered on theCα. One might also envision a description of the backbone
as explained but represent side chains through spherical or ellipsoidal shapes that
are tracked through their centers and orientation.

The next crucial conceptual issue is the calculation of effective forces on the
master atoms. The potential energy of the protein as described in the constrained
scheme can be expressed as5({r i

S({Ri
α})}, {R j

β}) wherer i
S({Ri

α}) denotes the posi-
tion of the slave atoms in residuei in terms of the coordinates of the master atoms.
The forces on the master atoms can be calculated via the chain rule

Fi
α = − ∂5

∂Ri
α

−
∑

j

∂5

∂r j
S

∂r j
S

∂Ri
α

. 5.

To compute these forces requires knowledge of the forces on all atoms as evidenced
by the second term on the right-hand side of the equation and, as a result, the
present scheme is crippled if one cannot find a way to find effective forces on
the master atoms without visiting every atom. Devising a scheme that requires
only force calculation for master atoms is of utmost importance. We have already
implemented the constrained kinematic representation outlined above and used
Equation 5 to determine the energy-minimized protein structures as a diagnostic
relative to the goodness of approximating protein structure on the basis of subsets
of the full set of atomic degrees of freedom. The current implementation of this
method is built around the suite of molecular modeling tools, known as TINKER,
from the Ponder group at Washington University. Calculations were performed
on oligopeptide chains as well as on bovine pancreatic trypsin inhibitor (BPTI).
The structures agree well with with all-atom calculations in the interior of the
protein with somewhat larger deviations for longer side chains at the periphery.
The calculated root mean square deviation is 1.17Å. This deviation results mainly
from to a total of 16 residues having a root mean square deviation larger than
1.0 Å. With the exception of PHE4 and LEU29, all are charged or polar, and
most are oriented toward the outside of the protein. This is illustrated in Figure 7.
Further analysis shows that the root mean square deviation of 4 out of the 16
residues (ASP3, ARG39, ARG42, and GLU49) is due to a conformational change
of the side chains, namely folding back of their charged groups onto the main chain.
The root mean square deviation for the remaining 11 residues is caused by a rigid
shift or a rigid rotation of the whole amino acid. The potential energies obtained
from our calculations were generally found to be too high, the major deviation
being due to the 4 charged residues that change their side chain conformation.
Presently we seek to implement a dynamical implementation of the constrained
representation to evaluate its performance in the dynamic setting. We will also
devise and test routes toward calculating effective forces on nodes without the
need to know the forces on every atom explicitly.
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A VISION FOR COMPUTATIONAL SCIENCE:
COMPUTATIONAL EFFECTIVE THEORIES

We have argued that universality and specificity pose complementary demands
in the development of understanding in both the materials science and biological
settings. One of the key tools in effecting the analysis of specificity is atomic-level
simulation. Unfortunately, such simulations carry with them a huge computational
burden that makes the simulation of large systems and long times prohibitive. As
a result, one of the central challenges of computational science is the need to find
computational surrogates in which the choice of degrees of freedom is made such
that full atomic-scale resolution is used only where it is needed. Such ideas have
already shown their worth in the setting of traditional materials, and we contend that
a central challenge for the consideration of biological materials is the successful
development of tools for systematic coarse graining.
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Figure 5 DNA-protein interaction as described in a mixed atomistic-continuum
framework. (a) Continuum elastic rod model of DNA. Shown is (top) a molecular
model of DNA with its central axis depicted as a curved elastic rod and (bottom) the
coordinate systems used to calculate the minimum energy conformation of the rod.
(b) A twisted DNA loop (top) as described by elastic rod theory held by the lac re-
pressor (bottom), the latter being simulated in a bath of water molecules and ions by a
full atom molecular dynamics simulation that takes into account forces, computed by
elastic rod theory, that resist the looping of the DNA.
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Figure 6 Illustration of the constrained representation for amino acids. This figure
shows an alanine residue together with the affine basis vectors centered on theCα atom.
All slave atoms are represented as linear combinations of the basis vectors in terms of
their coordinatesαi

S, β i
S, andγ i

S according to Equation 4.
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Figure 7 Comparison of the relaxed structures obtained using all atom calculations
(red) and the constrained scheme (green). The backbone is shown in tube representa-
tion together with a subset of the side chains. Ten side chains with a root mean square
deviation larger than 1.0̊A are shown inblue (all atom calculation) andyellow (con-
strained scheme). With the exception of PHE4, all are charged or polar and are located
at the periphery of the protein.


