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Jarzynski's equality is applied to free energy calculations from steered molecular dynamics
simulations of biomolecules. The helix-coil transition of deca-alanine in vacuum is used as an
example. With about ten trajectories sampled, the second order cumulant expansion, among the
various averaging schemes examined, yields the most accurate estimates. We compare umbrella
sampling and the present method, and find that their efficiencies are comparaB@033American
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I. INTRODUCTION where the equality holds only if the process is quasi-static

) _ ) (see, e.g., Ref. 37According to this inequality, a nonequi-
Calculation of free energy is of great importance for un-jiprium process provides only an upper limit for the free

derstanding the kinetics and the structural determinants anergy difference. However, Jarzyrisiliscovered an equal-
biomolecular processes, such as transition between differep& that holds regardless of ',[he speed of the process:
conformations of DNA, folding and unfolding of proteins,

ligand binding to receptors and enzymes, and transport of e FAF= (g AW) 2)
small molecules through channels. However, since they re-
quire thorough sampling of configuration space, free energifhis equality has been tested against computer simulations
calculations are extremely costly for complex systems likeand experiment¥’
biomolecules and efficient calculation of free energy is one  Jarzynski's equality opens the possibility of calculating
of the most challenging tasks in computer simulatibns. free energies from nonequilibrium processes. We refer to this
There exist various methods that are based on equilibrium arpproach asionequilibrium thermodynamic integratipas
quasi-static simulations, such as thermodynamic integratioropposed to the conventional thermodynamic integration
and umbrella samplirigfor a review see Ref.)4Triggered based on quasi-static processes for whidh equals(W).
by the discovery of Jarzynski's equaltythe realm of free Various nonequilibrium processes that are routinely studied
energy calculation is now being extended to nonequilibriumn computer simulations or experimentgor example,
simulations such as steered molecular dynami@mD). stretching proteins or RNA, pulling a small molecule through
SMD simulations, reviewed in Refs. 6 and 7, have beerg channel, et¢.can now be used for free energy calculations.
widely used to investigate mechanical functions of proteinsSome work has been done in this regardi*°~?*but free
such as stretchifg® or binding and unbinding>2 From  energy calculations from nonequilibrium processes as yet re-
the beginning SMD simulations have attempted to determingnain a challenge. The major difficulty is that the average of
free energy profile$>'*and recently have employed Jarzyn- exponential work appearing in Jarzynski's equality is domi-
ski's equality for that purpos€:'® nated by the trajectories corresponding to small work values
Jarzynski's equality is a relation betweeguilibrium  that arise only rarely. An accurate estimate of free energy
free energy differences and work done througinequilib-  hence requires suitable sampling of such rare trajectories.
rium processes. Consider a process that changes a parametéerefore, although Jarzynski’s equality holds for processes
\ of a system from\, at time zero to\, at timet. The  of any speed, practical applications are currently limited to
second law of thermodynamics states that the average wostow processes for which the fluctuation of work is compa-
done on the system cannot be smaller than the differenckable to the temperature.
between the free energies corresponding to the initial and the The purpose of this article is to guide the application
final values of\: of Jarzynski's equality to the calculation of free energies
from SMD simulations, with the main focus on large systems

AF=F(\)—F(ho)=(W), (1) such as biomolecules. In SMD simulations, one applies
force to induce the process of interest so that one can focus
3Electronic mail: kschulte@ks.uiuc.edu on important aspects while minimizing the computational
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cost®’2° Often, because of limited computing power, a pro-covered by changing. with a constant velocityX,= X\,
cess involving native biopolymers is simulated at a speedtwvt. This scheme of a moving guiding potential matches
several orders of magnitude higher than the quasi-statiparticularly well SMD simulationsand atomic force micro-
speed, and besides one can sample only a small number séope experiments

trajectories. Thus, Jarzynski’'s equality may not appear to be By employing, for example, NoséHoover ther-

promising in this case. However, one can overcome this difmostat’?® or Langevin dynamics schemes, constant-
ficulty to a certain extent by using approximate formulas viatemperature molecular dynamics simulations can be
the cumulant expansioht>?2 implemented in a manner that satisfies the conditions for

We introduce a method of free energy calculations basedarzynski's equality, namely the Markov property and
on Jarzynski’s equality. The helix-coil transition of deca- detailed balanc& Applying Jarzynski's equalityEq. (2)] to
alanine, which is relevant to protein folding, is used as anhe H-system leads to
exemplary system. The transition is induced by fixing one _
end of the molecule and pulling the other end. The free en- exp— BLF (M)~ F(Xo) ]} = (exp(— BWo_.1)). ©®

ergy as a function of the end-to-end distance is calculategiere F is the Helmholtz free energy of the-system,
with various averaging schemes, namely the exponential av-

erage Eq. (2)] and various orders of the cumulant expansion. gy — gF(\)]= f drdpexd — BH(r,p;\)], 7
We examine the accuracy of the calculated free energies to

find which averaging scheme works best at which puIImgade\,%t is the work done on thél- -system during the time
speed and how much error one would expect with a limiteqnteryal between zero arid
number of trajectories. We also perform umbrella sampling

and compare its efficiency to that of the present method. (97\t/ r9H(r P \)
Wo_.+= d ®)
(PN =(ry P ihy)
Il. FREE ENERGY CALCULATION BASED ON
JARZYNSKI'S EQUALITY AND THE STIFF-SPRING Note that the work\V,_,; depends on an entire trajectory, not
APPROXIMATION just its initial and final states. The averagé is taken over

the ensemble of trajectories whose initial states,) are

In most cases, free energy calculations are aimeelat . 4
ampled from the canonical ensemble corresponding to the

tive free energies; one is interested in how free energf
changesas a function of either an external parameter or arHamiltonianH (ro,po; o).
internal coordinate. In this section we describe a method of SO far, we have obtained a formula for the free endtgy
using Jarzynski's equality for calculating free energy withof theH-system. But what we actually want is the PMFof
respect to an internal coordinate. A free energy profile as &e original H-system. In general, sincé(r;) fluctuates
function of a coordinate is called a potential of mean forceamong trajectories, in order to calculat&é) one needs to
(PMF), and the coordinate is referred to as the reaction cocombine the work\,_; for different values ot (or \). This
ordinate. is not impossible(see Ref. 21, but an easier and perhaps
Consider a classical mechanical systemNofparticles ~ more efficient way is to use a sufficiently large force constant
described by molecular dynamics simulation at constant temk for the guiding potential, i.e., a sufficiently stiff spring, so
perature T. A state of the system is specified by that the reaction coordinateclosely follows the constraint
3N-dimensional positiorr and momentunp. Suppose that centerA.

we are interested in the PMB(¢) of the system with respect The free energy can be written in terms of the PM&
to some reaction coordinatér). The PMF®(¢) is defined as follows:
by

k
exp[—ﬁF(M]:fdrdpexp[ ~BH(rp) %[f(r)—w]
extf -~ p(¢')1= | drdpal &)~ lexit— BH(rp))

® =fdrdpfd§'a[5(r>—§']
whereg is the inverse temperatur@ € 1/kgT) andH is the
Hamiltonian. In order to apply Jarzynski's equality to the Bk 5
calculation of®(&), we need to introduce an external param- xexp —BH(r,p) = —-[£(r) —A]
eter\ in such a way thak is correlated withé. This can be .
achieved by adding a guiding potential ZJ , B N :3_ RN

) d&’ exp —BO(&) — 5 (£'-N)7). (9
h(rin)= 5[5“)_}\]2' (4) Whenk is large, most of the contribution to the preceding

. ) ) o integral comes from the region aroundwhich leads to the
i.e., a spring, that constraigsto be nean. The Hamiltonian  gjff.spring approximation:

of the new systenithe original system plus the guiding po-
tential) is then F(A)=®(N). (10)
~ N ) In the Appendix, we systematically derive the stiff-spring
H(r,piA) =H(r,p)+h(r;n). ®) approximation including the correction terms. Using this re-
The region of¢ for which the PMFd(¢) is to be calculated is  sult in Eq.(6), we obtain
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B

The exponential averaggexp(—AW,_)) is dominated
by the trajectories corresponding to smal}_,; values and,
therefore, is difficult to estimate because such trajectories are
rarely sampled. Approximate formulas provided by the cu-
mulant expansion are often more effectv@:?> The last
term in Eqg.(11) can be expanded in terms of cumulants:

2 3
log{e™#%) = = B(W) + = (W) —(W)?) — 27 ((W?)

D(A)=D(No) — log(exp(— BWo_.))- (11)

= 3(WA)(W) +2(W)®) +- -+, (12)

where the subscripts & are suppressed. If the distribution
of work W is Gaussian, third and higher cumulants are iden-
tically zero?® Depending on the number of terms being kept,
various orders of approximation are possible. In fact, the
second order cumulant expansion formula is identical to the
near-equilibrium formul#3! predating Jarzynski's equality.
But only after the discovery of Jarzynski’'s equality, the near-
equilibrium formula was recognized as an approximation to
the exponential average.
When these approximate formulas are used, two kinds of
(herr(r)]r are :jnvowed' a S);Stematl.c ?rrcl)r due tg the trlflncaf?.o.n 0EIG. 1. Unfolding of helical deca-alanine. Left, a folded configuratian
g er. oraer term; _an a statistica . errori ue to msu. ICIen elix). The six hydrogen bonds that stabilize the helix are shown. Right, an
sampling. If an infinite number of trajectories were available extended configuratiofcoil). The backbone of the peptide is represented as
the statistical error would vanish and hence the exponentidd ribbon. The N atom of the first residue was fixed during the simulations.
average, Eq(ll), would give the best estimate fdr: there The moving gq|d|qg potential used in the pul!lng simulations is represented
. . . by a spring which is connected to the C-terminus and pulled with a constant
would be no nee_d touse the cumulz_in'F expansion in this CaSGelocity v. Figure made with VMD(Ref. 39.
However, since in practice only a limited number of trajec-
tories are sampled, the statistical error may dominate the

systematic error. Thus the approximate formulas may give

better results since lower order cumulants are estimated with@" P€ induced in a reversible manner. The work done during
smaller statistical errors the reversible simulation can be considered the exact free

energy and be used for assessing the accuracy of the free

energies calculated from irreversill@onequilibrium simu-
IIl. HELIX-COIL TRANSITION OF DECA-ALANINE: lations.

ACCURACY OF THE CALCULATED FREE ENERGY In the simulation, we fix one end of the moleciitee N

In this section, we apply the method described above t&tom of the first residyeat the origin and constrain the other
an exemplary system, helix-coil transition of deca-alanine irend (the capping N atom at the C-terminus move only
vacuum, and examine the accuracy of the resulting free erlong thez axis, thereby removing the irrelevant degrees of
ergy. Deca-alanine is an oligopeptide composed of ten aldreedom, i.e., overall translation and rotatiSnA guiding
nine residuegFig. 1). In vacuum at room temperature, the Potentialh(r;\)=(k/2)[&(r)—\]? is added to control the
stable configuration of deca-alanine is aelix.32 We con-  end-to-end distance. Obviously, £ is a function of the
firmed this by several equilibrium simulations with various 3N-dimensional positiom of the system. The parameteis
initial conformations including extended coik-helix, and ~ changed between 13 and 33 A with various constant veloci-
B-hairpin. All the simulations converged to taehelix struc-  tiesv. Aforce constant ok=500 pN/A is used, unless men-
ture. Stretching the molecule by an external force can inducioned otherwise. With this force constant, the end-to-end
its transition to an extended fortaoil). This helix-coil tran- ~ distance¢ closely follows the constraint centaras can be
sition represents a simple but basic folding system, henc&€en in Fig. 2. From Ed8), the external work is calculated
constituting an interesting problem. We calculate the PMF&S
d(¢) of the molecule with respect to the end-to-end distance t
¢ of the molecule. Wo_ = —kvj dt'[&(ry)—Np—vt']. (13

Deca-alanine is chosen because it is suitable for a sys- 0
tematic study. The system is small enoud®4 atomgto  Depending on the sign af, the procedure corresponds to
permit simulation of many trajectories, yet complex enougheither stretching or contracting the molecule. For the sam-
to be considered a prototype of a large biopolymer. Alsopling of trajectories, we select initial coordinates from an
since the system does not contain solvent molecules, the rensemble generated la 1 nsequilibrium simulation withA
laxation time is sufficiently short that the helix-coil transition fixed at Ay, and initial momenta from the Maxwell-
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FIG. 2. Typical trajectoriegend-to-end distance vs timor different values = 8
of the force constark and the pulling velocity . The horizontal axetime) 2 38
are approprlately scaled. Thg stra|g_ht_ I|n_es_ rep_resent the position _of the & 10 3 g
constraint center. li6d), the trajectory is indistinguishable from the straight o 2
line. ' )
0
0

Boltzmann distribution. All simulations were done at con-
stant temperatur€800 K) with the temperature controlled by

Langevin dynamics. We used the molecular dynamics proFIG. 3. Reversible pulling|¢|=0.1 A/ns).(a) Work done by forward pull-
gram NAMD 34 with the cHARMM22 force field3® ing (strgtghlng and backwar_d pulllngcgntragtlng. For the forward pulling,

the position of the constraint centgris varied from 13 to 33 A; for the
backward pulling, from 33 to 13 A. For the sake of comparison, the
backward-pulling work curve has been shifted vertically so that it coincides
with the forward-pulling work curve ak =33 A. (b) EnergyE, PMF @,

To induce the unfolding in a reversible manner, we triegand entropyS calculated from four forward pullings. The error bars are

; : : own as dotted lines. Also shown is the number of hydrogen b@wes-
stretching the molecule at various pulling speeds. For eacgged over time windowsplotted against the end-to-end distar{circles

pulling speed, the reverse eveénbntracting was also simu-  with error bars. A minimum heteroatomic distance of 3.5(Between N and
lated by applying the same speed in the opposite directior) and a minimum bond angle of 14QR—H---O) were used for defining a
We find that at a pulling speed of 0.1 A/ns, which requireshydrogen bond.

200 ns of simulation for the full extension, the process is

reversible as can be seen from the overlap of the two work

end-to-end distance (A)

A. Reversible pulling

curves corresponding to forward pullingtretching and P(E)=E(6)-TS(E). (16)
backward pulling(contracting in Fig. 3(@). Therefore, Eq.  The energyE can be calculated from the Hamiltonian
(1) becomes an equality in this case: H(r,p). We first take averages over time windows of 5 ns to
FOv)—F(No)=(Wo_0), (149 ~ Smooth out the fluctuatiofof the qrd(.ar ofyN) and then take
) ) . o averages over the four trajectorigs(\) =(H(r;,p,)). The
or, using the stiff-spring approximatidiEq. (10)], entropyS is then calculated from E@16). As can be seen in
D(N)=DP(Ng)+ (W ). (15) Fig. 3(b), the entropy generally increases with the end-to-end

. . i ) distance, reflecting that a larger configuration space is avail-
From four repeated forward pulling simulations, we estimateypje 1o the coil than to the helf. The energy also increases
(Wo_), and obtain®; the outcome is plotted in Fig.(8).  \ith ¢ but faster than the entropy, thereby making the free
The standard deviation of the wovk, shown as error bars in - gnergy increase with from the equilibrium distance 15.2 A.
Fig. 3b), is small (less than 0.%gT) as expected in the \ost of the increase of the ener@(£) can be attributed to
reversible regime. The PMF calculated from these reversiblg,o breaking of the intrahelical hydrogen bonds. Figuis 3

pullings is considered exact and will be used as a referencaeaﬂy shows that the number of hydrogen bonds decreases
for assessing the accuracy of the results obtained from irresg the molecule is stretched.

versible pulling simulations.

Although the focus of the present study lies on method-B F lculation f . ibl li
ology, it is worth noting some interesting features of the ™" ree energy calculation from irreversible pulling
obtained free energy profile. The PMF assumes a minimum In studying large systems like biomolecules, the time
at é~15.2 A, corresponding to the helical structure of thescale accessible to computer simulation is often much shorter
molecule that forms in the absence of the constraint. Departhan the natural time scale of the process of interest. There-
ing from this minimum, the free energy increases as the molfore such a process needs to be accelerated in simulations; in
ecule is stretched into a coil. Free energy can be divided intaddition, only a small number of trajectoriégpically about
energy and entropy: ten) can be obtained. In order to study the helix-coil transi-
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different averaging schemes are tested: the exponential aver-
age[Eq. (11)] and the first, second, and third orders of the
cumulant expansiofEqg. (12)].

Since the process is irreversible, the average external
work done on the systerfidentical to the first order cumu-
lant expansiohis larger than the free energy difference. The
excess amount of work, known as the irreversible work,
grows with the pulling distance. Far=10 A/ns, it grows
up to 2.7 kcal/mol (4.%gT). This irreversible work is dis-
counted by Jarzynski's equality. As can be seen in Fig. 4,
both the second order cumulant expansion and the exponen-
tial average yield reasonably good estimates for the free en-
ergy, though the former is slightly better than the latter. The
third order cumulant expansion shows big fluctuati¢mser

10 20 30 10 20 30 the blocks.
end-to-end distance (A) end-to-end distance (A) For v =100 A/ns, the irreversible work is much larger,
FIG. 4. PMF calculated from irreversible pulling € 10 A/ns) through the growing up to 18.8 kcal/mol (3_1'BT)'_ In Fhls case, the .
block average of ten blocks of ten trajectories. The error bars indicate th§€cond order cumulant expansion again gives the best esti-
standard deviation over the blocks. The exact PMF calculated from thenate. The third order again shows big fluctuations. We have
reversible pulling is plotted as a solid line in each panel. also examined fourth order results, but they show even big-
ger fluctuationgnot shown here As for the exponential av-

) o o erage, the fluctuation over the blocks is relatively small but
tion of deca-alanine in a comparable situation, we stretch thg,o estimate is far from the actual PMF. This is due to the

molecule at speeds higher than the speed of the reversiblgsy convergence of the exponential average, and suggests
regime. It is then examined heuristically what accuracy ongpat good statistics in block averaging do not always imply
can achieve in the free energy calculation from a limited;scyrate estimatesThis can be explained roughly as fol-
number of nonequilibrium trajectories and which averagingiows: For an accurate estimate of the exponential average,
scheme gives the best result. e AAF=(e AY) one needs to sample work values around
AF. With a limited number of trajectories, the region around
AF may not be sampled at all. For=100 A/ns, all the 100

. ] total work values(for the full extension fall within the re-

We use two different pulling speeds,=10 and 100 gjon 35 kcal/mok W=50 kcal/mol, while the free energy
Alns, for our irreversible simulations. These speeds are 1Ogifference between the initial and final conformations is only
and 1000 times higher than the speed used for the reversiblg) 4 kcal/mol. This makes the exponential-average estimate
regime. For each pulling speed, 100 trajectories were genefyy from the actual free energy difference. On the other hand,
ated and grouped into ten blocks of ten trajectories. Figures he functione™ AW changes only by a small amount within

and 5 show the averages and the standard deviations of thge region where the 100 work values were sampled, which

]
(a) :!!"’I! (b)
20| 1st order !!I!! 2nd order
cumulant expansion 2 cumulant expansion

PMF @ (kcal/mol)
=

(c)
3rd order
cumulant expansion

(d)

exponential average

PMF @ (kcal/mol)
) S

(=]

1. Comparing various averaging schemes

2. Finite-sampling correction

401 (a) it (b) With M independently sampled work valud¥;, the
2] %rlc::; eroansion !,:!‘H zﬂiaﬁirexpansion {H free energy estimate given by the exponential avet&ge
I IIHHHH (2)] is biased**° because

1 1Y 1

—Zlog— 2>, e i )=~ "logle "M =AF, (1
51003 2, gloge ) (17)
where the equality holds i is infinite. The inequality is
due to the convexity of the logarithmic function. In general,
any finite-sampling estimate of a nonlinear average is biased.
The cumulant expansidEqg. (12)] is not an exception. For
the second order cumulant expansion which, according to
our results, is the best choice for a small number of trajecto-
ries, the bias is expressed as

M

PMF @ (kcal/mol)
s 8

(=]

(c)
3rd order
cumulant expansion

(d)

exponential average III!!!

IN
S

w
(=]

il

PMF @ (kcal/mol)
s 3

(=]

—
(=]

20 30 10 20 30 1 Bl 1 M 1 M 2
end-to-end distance (A) end-to-end distance (A) < 2 2
_ W.___E W2— _z W,
M ~ I 2 “— | M “= I
FIG. 5. PMF calculated from irreversible pulling €100 A/ns) through =1 =1 =1
the block average of ten blocks of ten trajectories. The error bars indicate the B
standard deviation over the blocks. The exact PMF calculated from the 2(W>— —((WZ)—<W>2). (18
reversible pulling is plotted as a solid line in each panel. 2

Downloaded 01 Sep 2003 to 130.126.120.80. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



3564 J. Chem. Phys., Vol. 119, No. 6, 8 August 2003 Park et al.

(a) (b)
:30 v=10A/ns v=10A/ns 30 (a)
g 2nd order 2nd order k = 500 pN/A
= o cumulant expansion cumulant expansion %‘ - p
V] (biased estimate) {unbiased estimate) £
s s 1
10 )
=
Fon S
0 e 10
=
o
(c) (d)
:30 v=100A/ns ] v=100A/ns 0
g 2nd order HH] 2nd order
=50 cumulant expansion {IH cumulant expansion
g (biased estimate) {unbiased estimate; (b)
=~ 30
© 10 - k = 35000 pN/A
: g
0 = 20
0]
&
10 20 30 10 20 30 ~
end-to-end distance (A) end-to-end distance (A) (=] 10
[T
FIG. 6. Finite-sampling correction. PMFs calculated through the biased es- E
timate[Eq. (18)] and the unbiased estimafEq. (19)] are compared. The 0
solid lines show the exact free energy calculated from the reversible pulling.
10 20 30

end-to-end distance (A)

However, in this case the bias can be corrected by using thIE‘J’IG. 7. PMF calculated by using two different force constai®80 and

unbiased estimator for the Variarﬁzd'\lamely’ if we use 35000 pN/A for the same pulling speed00 A/ng. The unbiased formula
M M M 2 for the second order cumulant expansion, B@), was used.
I :iz W_EL iE W2— iEW
MME T 2M-1iMiE T IMiE

(19 error is 6.7 kcal/mol, corresponding to 31%. These errors

. . dicate the accuracy of the free energy calculated from ten
to estimate the second order cumulant expansion, the resul{1 . 4 oy

. . X . ajectories.
ing estimate is unbiased: J

B > 2 4. Choice of the force constant
(W)= (W) — 5 (W) —(W)?). (20 . L
2 The proper choice of the force const&rfior the guiding

The effect of this finite-sampling correction is shown in Potential[Eq. (4)] is important. The stiff-spring approxima-

Fig. 6 for two different pulling speeds, 10 and 100 A/ns.t?o,n’ i.e., Eq.(10), is valid o.nly if the .force constant is suf-
Although not to a large degree, the finite-sampling correctioﬁ'c'emly large that the reaction coordinate closely follows the
improves the resuling PMF. The unbiased estimpe. constraint position. As shown in the Appendix, the chosen

(19)] is hence recommended, especially when the number dPrce constantk=500 pN/A, is large enough to ensure the
trajectories at hand is small. validity of the stiff-spring approximation. But, following

Ref. 13 we ask if one can choose any arbitrarily large force

constant. In order to address this question, we repeated the
3. Work fluctuation and the accuracy pulling simulation with significantly larger force constant,
of the calculated free energy 35000 pN/A, which is in the range of typical force constants

The fluctuation of work is often used as a measure of théor covalent bonds. In Fig. 7, the resulting PMF is compared

applicability of Jarzynski's equality. Only when the fluctua- t?] that obtained W,'t:‘ dt.r;fe ongmag force cohnstant. Althlougr;]
tion of work is comparable to the temperature, Jarzynski’st ere lslnol essentlle;] r'] elrence ; etween the tWOh resu Its, the
equality is considered practically applicaB®?'Thus it is ' MF calculated with the larger force constant shows larger

worth comparing the fluctuation of work and the accuracy 0ffluctuations, which is likely due tolt?e large quc_tqation of the
the calculated free energy in the present example. Since tfxtermnal force that scales a&kgT.”™ Therefore it is recom-
accuracy of the calculated free energy generally decreas@iended that the force constant be chosen large enough to
with pulling distance, we report the standard deviation of thefnSure small deviation of the reaction coordinate from the
total work Wi, and the accuracy of the estimated free en-Constraint position, but not much larger than that.

ergy differenceA ®EE, between the initial and the final con-

figuration. Forv=10 A/ns, the standard deviation of the C- Comparison with umbrella sampling

total work, (W) —(Wiewm)?, is about 1.9 kcal/mol Umbrella samplingis a traditional method of PMF cal-
(3.1kgT). The mean error\/Z(Ad)fost;—A(I)totm)z)bbck cal- culation. In order to compare the efficiencies of the present
culated through a block average is about 1.6 kcal/mol, whiclnonequilibrium thermodynamic integration method and um-
corresponds to 7.6% of the actual valueAd,,  brella sampling, we performed a PMF calculation for our
=21.4 kcal/mol). Forn=100 A/ns, the standard deviation system based on umbrella sampling. Ten harmonic biasing
of the total work is 4.3 kcal/mol (7.kgT) and the mean potentials, A/2)(£é— &o)? with A=70 pN/A and&,=13.4,
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5 X 100000 x 10000 successful application of umbrella sampling depends on an
(a) (b) optimal choice of biasing potentials, whereas nonequilibrium
thermodynamic integration seems more robBust.

histogram

IV. CONCLUSION

We have presented a method of free energy calculation
based on Jarzynski's equality and the stiff-spring approxima-
(© () i tion, and applied it to an SMD simulation of the helix-coil

mﬁ]ﬂm transition of deca-alanine in vacuum. We find that when only
a limited number(about ten of trajectories of irreversible
processe$100—1000 times faster than the reversible regime
are available, the second order cumulant expansion yields the
most accurate estimate, which can be further improved by
10 0 30 10 20 30 using the unbias_ed estimate. This. conc_:lusion only applie; to
end-to-end distance (A) end-to-end distance (A) the case of relatively small sampling sizes. As the sampling
FIG. 8. PMF calculated from umbrella sampling simulatiof@.and(c): 2 size grows, the %ponentlal average will eventually become
ns simulation for each histogram; ten histograms for each block; ten block;l,he most accura -We have compared the pre.sent. method
in total. (b) and(d): 0.2 ns simulation for each histogram; ten histograms for and umbrella sampling and found that the efficiencies of the
each block; ten blocks in totala) and(b) show histograms in one block out  two methods are comparable.
of the ten blocks. Ir(c) and(d), the error bars indicate the standard devia-
tion over the blocks, and the exact PMF is plotted as a solid line. The

minimum at¢é=15.2 A was chosen as a reference point for calculating
block averages. ACKNOWLEDGMENT
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were used to sample the end-to-end distaéic&he histo-

grams obtained from simulations with biasing potentials at .
different locations were combined with the weighted histo-APPENDIX A: THE STIFF-SPRING APPROXIMATION

gram analysis methot. Here we systematically derive the stiff-spring approxi-
We compare the two methods based on an equal amouiation formula, Eq.(10), including correction terms. As

of simulation time. The result shown in Fig(& was ob-  ghown in Eq.(9), the exact relation between the free energy
tained with the same simulation time as in the pulling Simu-g 53nd the PMFD is

lation at the speed of 10 A/ns. Thus FigcBcan be directly sk

compared to Fig. @®). Likewise, Fig. &) can be directly _ :f PR 2

compared to Fig. @). As in the pulling simulations, aver- ex—AF(V] déex 2 (6=M)"=BP(5) .

ages and fluctuations of PMF were calculated through a (A1)

block analysis of ten blocks. As can be seen from these figyhen k is large, most of the contribution to the integral

fluctuation over blocks is smaller in the umbrella samplingapoutk=c can be obtained by taking the Taylor series of

method, but the deviation from the exact PMF is more noeyq — gdb(£)] about\ followed by respective integrations:

ticeable. Hummé? also compared nonequilibrium thermo- Bk

dynamic integration and umbrella sampling in a calculation _BF :J' PR 2

of PMF for the separation of two methane molecules in Wa_exp[ BFOV] dgex 2 (6=2)

ter, and concluded that the efficiencies of the two methods

are comparable. Xexq_ﬁq)()\)][1_13q)'()\)(§_)\)
In general, the analysis involved in the present method is

simpler than that involved in umbrella sampling in which B

one needs to solve coupled nonlinear equations for the — Z[D"(N) = BD'(N)Z](E—N)>+---
weighted histogram analysis methbdlin addition, the 2

present method has the advantage of uniform sampling of a 2

reaction coordinate. Whereas in umbrella sampling a reaction =exg—BP(N)]/ E

coordinate is sampled nonuniformly proportional to the Bolt-
zmann weight, in the present method a reaction coordinate
follows a guiding potential that moves with a constant veloc-
ity, and hence is sampled almost unifornigomputing time

is uniformly distributed over the given region of the reaction (A2)
coordinate. This is particularly beneficial when a PMF con- Upon taking the logarithm and dropping the terms indepen-
tains narrow barrier regions as in Ref. 15. In such cases, dent of\, we find

1
X{1— E[CID”()\)—[M)’()\)2]+O(1/k2)}.
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d"(N)+O(1/K?).
(A3)

This series can be inverted to yield a formula &\ ):

1o, 1

1 " 2
~agcF )+ 01,

(Ad)

— 1 ’ 2
d(N)=F(\)+ ﬂF (N)
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