
JOURNAL OF CHEMICAL PHYSICS VOLUME 119, NUMBER 6 8 AUGUST 2003
Free energy calculation from steered molecular dynamics simulations
using Jarzynski’s equality
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Jarzynski’s equality is applied to free energy calculations from steered molecular dynamics
simulations of biomolecules. The helix-coil transition of deca-alanine in vacuum is used as an
example. With about ten trajectories sampled, the second order cumulant expansion, among the
various averaging schemes examined, yields the most accurate estimates. We compare umbrella
sampling and the present method, and find that their efficiencies are comparable. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1590311#
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I. INTRODUCTION

Calculation of free energy is of great importance for u
derstanding the kinetics and the structural determinant
biomolecular processes, such as transition between diffe
conformations of DNA, folding and unfolding of protein
ligand binding to receptors and enzymes, and transpor
small molecules through channels. However, since they
quire thorough sampling of configuration space, free ene
calculations are extremely costly for complex systems l
biomolecules and efficient calculation of free energy is o
of the most challenging tasks in computer simulation1

There exist various methods that are based on equilibrium
quasi-static simulations, such as thermodynamic integrat2

and umbrella sampling3 ~for a review see Ref. 4!. Triggered
by the discovery of Jarzynski’s equality,5 the realm of free
energy calculation is now being extended to nonequilibri
simulations such as steered molecular dynamics~SMD!.
SMD simulations, reviewed in Refs. 6 and 7, have be
widely used to investigate mechanical functions of prote
such as stretching7–10 or binding and unbinding.11,12 From
the beginning SMD simulations have attempted to determ
free energy profiles,13,14 and recently have employed Jarzy
ski’s equality for that purpose.15,16

Jarzynski’s equality is a relation betweenequilibrium
free energy differences and work done throughnonequilib-
rium processes. Consider a process that changes a para
l of a system froml0 at time zero tol t at time t. The
second law of thermodynamics states that the average w
done on the system cannot be smaller than the differe
between the free energies corresponding to the initial and
final values ofl:

DF5F~l t!2F~l0!<^W&, ~1!

a!Electronic mail: kschulte@ks.uiuc.edu
3550021-9606/2003/119(6)/3559/8/$20.00
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where the equality holds only if the process is quasi-sta
~see, e.g., Ref. 17!. According to this inequality, a nonequ
librium process provides only an upper limit for the fre
energy difference. However, Jarzynski5 discovered an equal
ity that holds regardless of the speed of the process:

e2bDF5^e2bW&. ~2!

This equality has been tested against computer simulatio18

and experiments.19

Jarzynski’s equality opens the possibility of calculati
free energies from nonequilibrium processes. We refer to
approach asnonequilibrium thermodynamic integration, as
opposed to the conventional thermodynamic integrat
based on quasi-static processes for whichDF equals^W&.
Various nonequilibrium processes that are routinely stud
in computer simulations or experiments~for example,
stretching proteins or RNA, pulling a small molecule throu
a channel, etc.! can now be used for free energy calculation
Some work has been done in this regard,15,16,20–24but free
energy calculations from nonequilibrium processes as ye
main a challenge. The major difficulty is that the average
exponential work appearing in Jarzynski’s equality is dom
nated by the trajectories corresponding to small work val
that arise only rarely. An accurate estimate of free ene
hence requires suitable sampling of such rare trajector
Therefore, although Jarzynski’s equality holds for proces
of any speed, practical applications are currently limited
slow processes for which the fluctuation of work is comp
rable to the temperature.

The purpose of this article is to guide the applicati
of Jarzynski’s equality to the calculation of free energ
from SMD simulations, with the main focus on large syste
such as biomolecules. In SMD simulations, one app
force to induce the process of interest so that one can fo
on important aspects while minimizing the computation
9 © 2003 American Institute of Physics
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cost.6,7,25 Often, because of limited computing power, a pr
cess involving native biopolymers is simulated at a sp
several orders of magnitude higher than the quasi-st
speed, and besides one can sample only a small numb
trajectories. Thus, Jarzynski’s equality may not appear to
promising in this case. However, one can overcome this
ficulty to a certain extent by using approximate formulas
the cumulant expansion.5,15,22

We introduce a method of free energy calculations ba
on Jarzynski’s equality. The helix-coil transition of dec
alanine, which is relevant to protein folding, is used as
exemplary system. The transition is induced by fixing o
end of the molecule and pulling the other end. The free
ergy as a function of the end-to-end distance is calcula
with various averaging schemes, namely the exponential
erage@Eq. ~2!# and various orders of the cumulant expansio
We examine the accuracy of the calculated free energie
find which averaging scheme works best at which pull
speed and how much error one would expect with a limi
number of trajectories. We also perform umbrella sampl
and compare its efficiency to that of the present method

II. FREE ENERGY CALCULATION BASED ON
JARZYNSKI’S EQUALITY AND THE STIFF-SPRING
APPROXIMATION

In most cases, free energy calculations are aimed atrela-
tive free energies; one is interested in how free ene
changesas a function of either an external parameter or
internal coordinate. In this section we describe a method
using Jarzynski’s equality for calculating free energy w
respect to an internal coordinate. A free energy profile a
function of a coordinate is called a potential of mean fo
~PMF!, and the coordinate is referred to as the reaction
ordinate.

Consider a classical mechanical system ofN particles
described by molecular dynamics simulation at constant t
perature T. A state of the system is specified b
3N-dimensional positionr and momentump. Suppose that
we are interested in the PMFF~j! of the system with respec
to some reaction coordinatej~r !. The PMFF~j! is defined
by

exp@2bF~j8!#5E drdpd@j~r !2j8#exp@2bH~r ,p!#,

~3!

whereb is the inverse temperature (b51/kBT) andH is the
Hamiltonian. In order to apply Jarzynski’s equality to th
calculation ofF~j!, we need to introduce an external para
eterl in such a way thatl is correlated withj. This can be
achieved by adding a guiding potential

h~r ;l!5
k

2
@j~r !2l#2, ~4!

i.e., a spring, that constrainsj to be nearl. The Hamiltonian
of the new system~the original system plus the guiding po
tential! is then

H̃~r ,p;l!5H~r ,p!1h~r ;l!. ~5!

The region ofj for which the PMFF~j! is to be calculated is
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covered by changingl with a constant velocity:l t5l0

1vt. This scheme of a moving guiding potential match
particularly well SMD simulations7 and atomic force micro-
scope experiments.26

By employing, for example, Nose´–Hoover ther-
mostat27,28 or Langevin dynamics schemes, consta
temperature molecular dynamics simulations can
implemented in a manner that satisfies the conditions
Jarzynski’s equality, namely the Markov property a
detailed balance.18 Applying Jarzynski’s equality@Eq. ~2!# to
the H̃-system leads to

exp$2b@F~l t!2F~l0!#%5^exp~2bW0→t!&. ~6!

HereF is the Helmholtz free energy of theH̃-system,

exp@2bF~l!#5E drdp exp@2bH̃~r ,p;l!#, ~7!

andW0→t is the work done on theH̃-system during the time
interval between zero andt,

W0→t5E
0

t

dt8
]l t8
]t8

F ]H̃~r ,p;l!

]l
G

(r ,p;l)5(r t8 ,pt8 ;l t8)

. ~8!

Note that the workW0→t depends on an entire trajectory, n
just its initial and final states. The average^•& is taken over
the ensemble of trajectories whose initial states (r0 ,p0) are
sampled from the canonical ensemble corresponding to
HamiltonianH̃(r0 ,p0 ;l0).

So far, we have obtained a formula for the free energyF

of theH̃-system. But what we actually want is the PMFF of
the original H-system. In general, sincej(r t) fluctuates
among trajectories, in order to calculateF~j! one needs to
combine the workW0→t for different values oft ~or l!. This
is not impossible~see Ref. 21!, but an easier and perhap
more efficient way is to use a sufficiently large force const
k for the guiding potential, i.e., a sufficiently stiff spring, s
that the reaction coordinatej closely follows the constrain
centerl.

The free energyF can be written in terms of the PMFF
as follows:

exp@2bF~l!#5E drdp expH 2bH~r ,p!2
bk

2
@j~r !2l#2J

5E drdpE dj8d@j~r !2j8#

3expH 2bH~r ,p!2
bk

2
@j~r !2l#2J

5E dj8 expF2bF~j8!2
bk

2
~j82l!2G . ~9!

When k is large, most of the contribution to the precedin
integral comes from the region aroundl, which leads to the
stiff-spring approximation:

F~l!'F~l!. ~10!

In the Appendix, we systematically derive the stiff-sprin
approximation including the correction terms. Using this
sult in Eq.~6!, we obtain
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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F~l t!5F~l0!2
1

b
log^exp~2bW0→t!&. ~11!

The exponential averagêexp(2bW0→t)& is dominated
by the trajectories corresponding to smallW0→t values and,
therefore, is difficult to estimate because such trajectories
rarely sampled. Approximate formulas provided by the c
mulant expansion are often more effective.5,15,22 The last
term in Eq.~11! can be expanded in terms of cumulants:

log^e2bW&52b^W&1
b2

2
~^W2&2^W&2!2

b3

3!
~^W3&

23^W2&^W&12^W&3!1¯ , ~12!

where the subscripts ofW are suppressed. If the distributio
of work W is Gaussian, third and higher cumulants are id
tically zero.29 Depending on the number of terms being ke
various orders of approximation are possible. In fact,
second order cumulant expansion formula is identical to
near-equilibrium formula30,31 predating Jarzynski’s equality
But only after the discovery of Jarzynski’s equality, the ne
equilibrium formula was recognized as an approximation
the exponential average.

When these approximate formulas are used, two kind
error are involved: a systematic error due to the truncation
higher order terms and a statistical error due to insuffici
sampling. If an infinite number of trajectories were availab
the statistical error would vanish and hence the exponen
average, Eq.~11!, would give the best estimate forF; there
would be no need to use the cumulant expansion in this c
However, since in practice only a limited number of traje
tories are sampled, the statistical error may dominate
systematic error. Thus the approximate formulas may g
better results since lower order cumulants are estimated
smaller statistical errors.

III. HELIX-COIL TRANSITION OF DECA-ALANINE:
ACCURACY OF THE CALCULATED FREE ENERGY

In this section, we apply the method described above
an exemplary system, helix-coil transition of deca-alanine
vacuum, and examine the accuracy of the resulting free
ergy. Deca-alanine is an oligopeptide composed of ten
nine residues~Fig. 1!. In vacuum at room temperature, th
stable configuration of deca-alanine is ana-helix.32 We con-
firmed this by several equilibrium simulations with vario
initial conformations including extended coil,a-helix, and
b-hairpin. All the simulations converged to thea-helix struc-
ture. Stretching the molecule by an external force can ind
its transition to an extended form~coil!. This helix-coil tran-
sition represents a simple but basic folding system, he
constituting an interesting problem. We calculate the P
F~j! of the molecule with respect to the end-to-end dista
j of the molecule.

Deca-alanine is chosen because it is suitable for a
tematic study. The system is small enough~104 atoms! to
permit simulation of many trajectories, yet complex enou
to be considered a prototype of a large biopolymer. Al
since the system does not contain solvent molecules, the
laxation time is sufficiently short that the helix-coil transitio
Downloaded 01 Sep 2003 to 130.126.120.80. Redistribution subject to A
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can be induced in a reversible manner. The work done du
the reversible simulation can be considered the exact
energy and be used for assessing the accuracy of the
energies calculated from irreversible~nonequilibrium! simu-
lations.

In the simulation, we fix one end of the molecule~the N
atom of the first residue! at the origin and constrain the othe
end ~the capping N atom at the C-terminus! to move only
along thez axis, thereby removing the irrelevant degrees
freedom, i.e., overall translation and rotation.33 A guiding
potential h(r ;l)5(k/2)@j(r )2l#2 is added to control the
end-to-end distancej. Obviously, j is a function of the
3N-dimensional positionr of the system. The parameterl is
changed between 13 and 33 Å with various constant vel
tiesv. A force constant ofk5500 pN/Å is used, unless men
tioned otherwise. With this force constant, the end-to-e
distancej closely follows the constraint centerl as can be
seen in Fig. 2. From Eq.~8!, the external work is calculated
as

W0→t52kvE
0

t

dt8@j~r t8!2l02vt8#. ~13!

Depending on the sign ofv, the procedure corresponds
either stretching or contracting the molecule. For the sa
pling of trajectories, we select initial coordinates from
ensemble generated by a 1 nsequilibrium simulation withl
fixed at l0 , and initial momenta from the Maxwell

FIG. 1. Unfolding of helical deca-alanine. Left, a folded configuration~a-
helix!. The six hydrogen bonds that stabilize the helix are shown. Right
extended configuration~coil!. The backbone of the peptide is represented
a ribbon. The N atom of the first residue was fixed during the simulatio
The moving guiding potential used in the pulling simulations is represen
by a spring which is connected to the C-terminus and pulled with a cons
velocity v. Figure made with VMD~Ref. 39!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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3562 J. Chem. Phys., Vol. 119, No. 6, 8 August 2003 Park et al.
Boltzmann distribution. All simulations were done at co
stant temperature~300 K! with the temperature controlled b
Langevin dynamics. We used the molecular dynamics p
gramNAMD34 with the CHARMM22 force field.35

A. Reversible pulling

To induce the unfolding in a reversible manner, we tri
stretching the molecule at various pulling speeds. For e
pulling speed, the reverse event~contracting! was also simu-
lated by applying the same speed in the opposite direct
We find that at a pulling speed of 0.1 Å/ns, which requir
200 ns of simulation for the full extension, the process
reversible as can be seen from the overlap of the two w
curves corresponding to forward pulling~stretching! and
backward pulling~contracting! in Fig. 3~a!. Therefore, Eq.
~1! becomes an equality in this case:

F~l t!2F~l0!5^W0→t&, ~14!

or, using the stiff-spring approximation@Eq. ~10!#,

F~l t!5F~l0!1^W0→t&. ~15!

From four repeated forward pulling simulations, we estim
^W0→t&, and obtainF; the outcome is plotted in Fig. 3~b!.
The standard deviation of the workW, shown as error bars in
Fig. 3~b!, is small ~less than 0.5kBT) as expected in the
reversible regime. The PMF calculated from these revers
pullings is considered exact and will be used as a refere
for assessing the accuracy of the results obtained from
versible pulling simulations.

Although the focus of the present study lies on meth
ology, it is worth noting some interesting features of t
obtained free energy profile. The PMF assumes a minim
at j'15.2 Å, corresponding to the helical structure of t
molecule that forms in the absence of the constraint. Dep
ing from this minimum, the free energy increases as the m
ecule is stretched into a coil. Free energy can be divided
energy and entropy:

FIG. 2. Typical trajectories~end-to-end distance vs time! for different values
of the force constantk and the pulling velocityv. The horizontal axes~time!
are appropriately scaled. The straight lines represent the position o
constraint center. In~d!, the trajectory is indistinguishable from the straig
line.
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F~j!5E~j!2TS~j!. ~16!

The energyE can be calculated from the Hamiltonia
H(r ,p). We first take averages over time windows of 5 ns
smooth out the fluctuation~of the order ofAN) and then take
averages over the four trajectories:E(l t)5^H(r t ,pt)&. The
entropyS is then calculated from Eq.~16!. As can be seen in
Fig. 3~b!, the entropy generally increases with the end-to-e
distance, reflecting that a larger configuration space is av
able to the coil than to the helix.36 The energy also increase
with j, but faster than the entropy, thereby making the f
energy increase withj from the equilibrium distance 15.2 Å
Most of the increase of the energyE(j) can be attributed to
the breaking of the intrahelical hydrogen bonds. Figure 3~b!
clearly shows that the number of hydrogen bonds decre
as the molecule is stretched.

B. Free energy calculation from irreversible pulling

In studying large systems like biomolecules, the tim
scale accessible to computer simulation is often much sho
than the natural time scale of the process of interest. Th
fore such a process needs to be accelerated in simulation
addition, only a small number of trajectories~typically about
ten! can be obtained. In order to study the helix-coil tran

he

FIG. 3. Reversible pulling (uvu50.1 Å/ns).~a! Work done by forward pull-
ing ~stretching! and backward pulling~contracting!. For the forward pulling,
the position of the constraint centerl is varied from 13 to 33 Å; for the
backward pulling, from 33 to 13 Å. For the sake of comparison,
backward-pulling work curve has been shifted vertically so that it coinci
with the forward-pulling work curve atl533 Å. ~b! EnergyE, PMF F,
and entropyS calculated from four forward pullings. The error bars a
shown as dotted lines. Also shown is the number of hydrogen bonds~aver-
aged over time windows! plotted against the end-to-end distance~circles
with error bars!. A minimum heteroatomic distance of 3.5 Å~between N and
O! and a minimum bond angle of 140°~N–H¯O! were used for defining a
hydrogen bond.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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tion of deca-alanine in a comparable situation, we stretch
molecule at speeds higher than the speed of the rever
regime. It is then examined heuristically what accuracy o
can achieve in the free energy calculation from a limit
number of nonequilibrium trajectories and which averag
scheme gives the best result.

1. Comparing various averaging schemes

We use two different pulling speeds,v510 and 100
Å/ns, for our irreversible simulations. These speeds are
and 1000 times higher than the speed used for the rever
regime. For each pulling speed, 100 trajectories were ge
ated and grouped into ten blocks of ten trajectories. Figur
and 5 show the averages and the standard deviations o
PMFs calculated from the blocks of ten trajectories. Fo

FIG. 4. PMF calculated from irreversible pulling (v510 Å/ns) through the
block average of ten blocks of ten trajectories. The error bars indicate
standard deviation over the blocks. The exact PMF calculated from
reversible pulling is plotted as a solid line in each panel.

FIG. 5. PMF calculated from irreversible pulling (v5100 Å/ns) through
the block average of ten blocks of ten trajectories. The error bars indicat
standard deviation over the blocks. The exact PMF calculated from
reversible pulling is plotted as a solid line in each panel.
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different averaging schemes are tested: the exponential a
age@Eq. ~11!# and the first, second, and third orders of t
cumulant expansion@Eq. ~12!#.

Since the process is irreversible, the average exte
work done on the system~identical to the first order cumu
lant expansion! is larger than the free energy difference. T
excess amount of work, known as the irreversible wo
grows with the pulling distance. Forv510 Å/ns, it grows
up to 2.7 kcal/mol (4.5kBT). This irreversible work is dis-
counted by Jarzynski’s equality. As can be seen in Fig
both the second order cumulant expansion and the expo
tial average yield reasonably good estimates for the free
ergy, though the former is slightly better than the latter. T
third order cumulant expansion shows big fluctuations~over
the blocks!.

For v5100 Å/ns, the irreversible work is much large
growing up to 18.8 kcal/mol (31.3kBT). In this case, the
second order cumulant expansion again gives the best
mate. The third order again shows big fluctuations. We h
also examined fourth order results, but they show even b
ger fluctuations~not shown here!. As for the exponential av-
erage, the fluctuation over the blocks is relatively small b
the estimate is far from the actual PMF. This is due to
slow convergence of the exponential average, and sugg
that good statistics in block averaging do not always imp
accurate estimates. This can be explained roughly as fo
lows: For an accurate estimate of the exponential avera
e2bDF5^e2bW&, one needs to sample work values arou
DF. With a limited number of trajectories, the region arou
DF may not be sampled at all. Forv5100 Å/ns, all the 100
total work values~for the full extension! fall within the re-
gion 35 kcal/mol&W&50 kcal/mol, while the free energy
difference between the initial and final conformations is on
21.4 kcal/mol. This makes the exponential-average estim
far from the actual free energy difference. On the other ha
the functione2bW changes only by a small amount withi
the region where the 100 work values were sampled, wh
makes the variance of the exponential average small.

2. Finite-sampling correction

With M independently sampled work valuesWi , the
free energy estimate given by the exponential average@Eq.
~2!# is biased24,30 because

K 2
1

b
log

1

M (
i 51

M

e2bWiL >2
1

b
log^e2bW&5DF, ~17!

where the equality holds ifM is infinite. The inequality is
due to the convexity of the logarithmic function. In gener
any finite-sampling estimate of a nonlinear average is bias
The cumulant expansion@Eq. ~12!# is not an exception. For
the second order cumulant expansion which, according
our results, is the best choice for a small number of trajec
ries, the bias is expressed as

K 1

M (
i 51

M

Wi2
b

2 F 1

M (
i 51

M

Wi
22S 1

M (
i 51

M

Wi D 2G L
>^W&2

b

2
~^W2&2^W&2!. ~18!

e
e

he
e
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However, in this case the bias can be corrected by using
unbiased estimator for the variance.37 Namely, if we use

CM[
1

M (
i 51

M

Wi2
b

2

M

M21 F 1

M (
i 51

M

Wi
22S 1

M (
i 51

M

Wi D 2G
~19!

to estimate the second order cumulant expansion, the re
ing estimate is unbiased:

^CM&5^W&2
b

2
~^W2&2^W&2!. ~20!

The effect of this finite-sampling correction is shown
Fig. 6 for two different pulling speeds, 10 and 100 Å/n
Although not to a large degree, the finite-sampling correct
improves the resulting PMF. The unbiased estimate@Eq.
~19!# is hence recommended, especially when the numbe
trajectories at hand is small.

3. Work fluctuation and the accuracy
of the calculated free energy

The fluctuation of work is often used as a measure of
applicability of Jarzynski’s equality. Only when the fluctu
tion of work is comparable to the temperature, Jarzyns
equality is considered practically applicable.5,19,21Thus it is
worth comparing the fluctuation of work and the accuracy
the calculated free energy in the present example. Since
accuracy of the calculated free energy generally decre
with pulling distance, we report the standard deviation of
total work Wtotal and the accuracy of the estimated free e
ergy differenceDF total

est between the initial and the final con
figuration. Forv510 Å/ns, the standard deviation of th
total work, A^Wtotal

2 &2^Wtotal&
2, is about 1.9 kcal/mol

(3.1 kBT). The mean errorA^(DF total
est 2DF total)

2&block cal-
culated through a block average is about 1.6 kcal/mol, wh
corresponds to 7.6% of the actual value (DF total

521.4 kcal/mol). Forv5100 Å/ns, the standard deviatio
of the total work is 4.3 kcal/mol (7.1kBT) and the mean

FIG. 6. Finite-sampling correction. PMFs calculated through the biased
timate @Eq. ~18!# and the unbiased estimate@Eq. ~19!# are compared. The
solid lines show the exact free energy calculated from the reversible pul
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error is 6.7 kcal/mol, corresponding to 31%. These err
indicate the accuracy of the free energy calculated from
trajectories.

4. Choice of the force constant

The proper choice of the force constantk for the guiding
potential@Eq. ~4!# is important. The stiff-spring approxima
tion, i.e., Eq.~10!, is valid only if the force constant is suf
ficiently large that the reaction coordinate closely follows t
constraint position. As shown in the Appendix, the chos
force constant,k5500 pN/Å, is large enough to ensure th
validity of the stiff-spring approximation. But, following
Ref. 13 we ask if one can choose any arbitrarily large fo
constant. In order to address this question, we repeated
pulling simulation with significantly larger force constan
35 000 pN/Å, which is in the range of typical force constan
for covalent bonds. In Fig. 7, the resulting PMF is compar
to that obtained with the original force constant. Althou
there is no essential difference between the two results,
PMF calculated with the larger force constant shows lar
fluctuations, which is likely due to the large fluctuation of th
external force that scales asAkkBT.13 Therefore it is recom-
mended that the force constant be chosen large enoug
ensure small deviation of the reaction coordinate from
constraint position, but not much larger than that.

C. Comparison with umbrella sampling

Umbrella sampling3 is a traditional method of PMF cal
culation. In order to compare the efficiencies of the pres
nonequilibrium thermodynamic integration method and u
brella sampling, we performed a PMF calculation for o
system based on umbrella sampling. Ten harmonic bias
potentials, (A/2)(j2j0)2 with A570 pN/Å andj0513.4,

s-

g.

FIG. 7. PMF calculated by using two different force constants~500 and
35 000 pN/Å! for the same pulling speed~100 Å/ns!. The unbiased formula
for the second order cumulant expansion, Eq.~19!, was used.
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3565J. Chem. Phys., Vol. 119, No. 6, 8 August 2003 Steered molecular dynamics simulations
16.1, 18.5, 20.4, 22.5, 24.8, 26.4, 28.5, 30.5, and 33.0
were used to sample the end-to-end distancej. The histo-
grams obtained from simulations with biasing potentials
different locations were combined with the weighted his
gram analysis method.38

We compare the two methods based on an equal am
of simulation time. The result shown in Fig. 8~c! was ob-
tained with the same simulation time as in the pulling sim
lation at the speed of 10 Å/ns. Thus Fig. 8~c! can be directly
compared to Fig. 6~b!. Likewise, Fig. 8~d! can be directly
compared to Fig. 6~d!. As in the pulling simulations, aver
ages and fluctuations of PMF were calculated throug
block analysis of ten blocks. As can be seen from these
ures, it is rather hard to tell which method is better. T
fluctuation over blocks is smaller in the umbrella sampli
method, but the deviation from the exact PMF is more n
ticeable. Hummer22 also compared nonequilibrium thermo
dynamic integration and umbrella sampling in a calculat
of PMF for the separation of two methane molecules in w
ter, and concluded that the efficiencies of the two meth
are comparable.

In general, the analysis involved in the present metho
simpler than that involved in umbrella sampling in whic
one needs to solve coupled nonlinear equations for
weighted histogram analysis method.1 In addition, the
present method has the advantage of uniform sampling
reaction coordinate. Whereas in umbrella sampling a reac
coordinate is sampled nonuniformly proportional to the Bo
zmann weight, in the present method a reaction coordin
follows a guiding potential that moves with a constant velo
ity, and hence is sampled almost uniformly~computing time
is uniformly distributed over the given region of the reacti
coordinate!. This is particularly beneficial when a PMF con
tains narrow barrier regions as in Ref. 15. In such case

FIG. 8. PMF calculated from umbrella sampling simulations.~a! and~c!: 2
ns simulation for each histogram; ten histograms for each block; ten bl
in total. ~b! and~d!: 0.2 ns simulation for each histogram; ten histograms
each block; ten blocks in total.~a! and~b! show histograms in one block ou
of the ten blocks. In~c! and ~d!, the error bars indicate the standard dev
tion over the blocks, and the exact PMF is plotted as a solid line.
minimum at j515.2 Å was chosen as a reference point for calculat
block averages.
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successful application of umbrella sampling depends on
optimal choice of biasing potentials, whereas nonequilibri
thermodynamic integration seems more robust.1

IV. CONCLUSION

We have presented a method of free energy calcula
based on Jarzynski’s equality and the stiff-spring approxim
tion, and applied it to an SMD simulation of the helix-co
transition of deca-alanine in vacuum. We find that when o
a limited number~about ten! of trajectories of irreversible
processes~100–1000 times faster than the reversible regim!
are available, the second order cumulant expansion yields
most accurate estimate, which can be further improved
using the unbiased estimate. This conclusion only applie
the case of relatively small sampling sizes. As the samp
size grows, the exponential average will eventually beco
the most accurate.20 We have compared the present meth
and umbrella sampling and found that the efficiencies of
two methods are comparable.
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APPENDIX A: THE STIFF-SPRING APPROXIMATION

Here we systematically derive the stiff-spring appro
mation formula, Eq.~10!, including correction terms. As
shown in Eq.~9!, the exact relation between the free ener
F and the PMFF is

exp@2bF~l!#5E dj expF2
bk

2
~j2l!22bF~j!G .

~A1!

When k is large, most of the contribution to the integr
comes from the region aroundj5l. Thus a series expansio
aboutk5` can be obtained by taking the Taylor series
exp@2bF(j)# aboutl followed by respective integrations:

exp@2bF~l!#5E dj expF2
bk

2
~j2l!2G

3exp@2bF~l!#H 12bF8~l!~j2l!

2
b

2
@F9~l!2bF8~l!2#~j2l!21¯J

5exp@2bF~l!#A2p

bk

3H12
1

2k
@F9~l!2bF8~l!2#1O~1/k2!J .

~A2!

Upon taking the logarithm and dropping the terms indep
dent ofl, we find

ks
r

e
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F~l!5F~l!2
1

2k
F8~l!21

1

2bk
F9~l!1O~1/k2!.

~A3!

This series can be inverted to yield a formula forF~l!:

F~l!5F~l!1
1

2k
F8~l!22

1

2bk
F9~l!1O~1/k2!,

~A4!

which shows the first order correction to the stiff-spring a
proximation. If desired, higher order corrections can be
tained in a similar way.

The correction terms can be estimated fromF(l) ob-
tained from simulations. In the case of the present exam
~for k5500 pN/Å), themagnitude of the correction is les
than 0.5 kcal/mol which is indeed small compared to
overall scale of the PMF. The validity of the stiff-spring a
proximation is therefore verified.

1D. Frenkel and B. Smit,Understanding Molecular Simulation: From Al
gorithms to Applications, 2nd ed.~Academic, San Diego, 2002!.

2J. G. Kirkwood, J. Chem. Phys.3, 300 ~1935!.
3G. M. Torrie and J. P. Valleau, Chem. Phys. Lett.28, 578 ~1974!.
4T. Simonson, inComputational Biochemistry and Biophysics, edited by O.
M. Becker, A. D. MacKerell, Jr., B. Roux, and M. Watanabe~Marcel
Dekker, New York, 2001!, pp. 169–197.

5C. Jarzynski, Phys. Rev. Lett.78, 2690~1997!.
6B. Isralewitz, J. Baudry, J. Gullingsrud, D. Kosztin, and K. Schulten
Mol. Graphics Modell.19, 13 ~2001!.

7B. Isralewitz, M. Gao, and K. Schulten, Curr. Opin. Struct. Biol.11, 224
~2001!.

8A. Krammer, H. Lu, B. Isralewitz, K. Schulten, and V. Vogel, Proc. Na
Acad. Sci. U.S.A.96, 1351~1999!.

9M. Gao, M. Wilmanns, and K. Schulten, Biophys. J.83, 3435~2002!.
10M. Gao, D. Craig, V. Vogel, and K. Schulten, J. Mol. Biol.323, 939

~2002!.
11S. Izrailev, S. Stepaniants, M. Balsera, Y. Oono, and K. Schulten, Biop

J. 72, 1568~1997!.
12M. V. Bayas, K. Schulten, and D. Leckband, Biophys. J.84, 2223~2003!.
13M. Balsera, S. Stepaniants, S. Izrailev, Y. Oono, and K. Schulten, Biop

J. 73, 1281~1997!.
Downloaded 01 Sep 2003 to 130.126.120.80. Redistribution subject to A
-
-

le

e

.

s.

s.

14J. Gullingsrud, R. Braun, and K. Schulten, J. Comput. Phys.151, 190
~1999!.

15M. Ø. Jensen, S. Park, E. Tajkhorshid, and K. Schulten, Proc. Natl. A
Sci. U.S.A.99, 6731~2002!.

16R. Amaro, E. Tajkhorshid, and Z. Luthey-Schulten, Proc. Natl. Acad. S
U.S.A. 100, 7599~2003!.

17H. B. Callen,Thermodynamics and an Introduction to Thermostatisti,
2nd ed.~Wiley, New York, 1985!.

18C. Jarzynski, Phys. Rev. E56, 5018~1997!.
19J. Liphardt, S. Dumont, S. B. Smith, I. Tinoco, Jr., and C. Bustama

Science296, 1832~2002!.
20D. A. Hendrix and C. Jarzynski, J. Chem. Phys.114, 5974~2001!.
21G. Hummer and A. Szabo, Proc. Natl. Acad. Sci. U.S.A.98, 3658~2001!.
22G. Hummer, J. Chem. Phys.114, 7330~2001!.
23D. M. Zuckerman and T. B. Woolf, Chem. Phys. Lett.351, 445 ~2002!.
24D. M. Zuckerman and T. B. Woolf, Phys. Rev. Lett.89, 180602~2002!.
25S. Izrailev, S. Stepaniants, B. Isralewitz, D. Kosztin, H. Lu, F. Moln

W. Wriggers, and K. Schulten, inComputational Molecular Dynamics:
Challenges, Methods, Ideas, Vol. 4 of Lecture Notes in Computationa
Science and Engineering, edited by P. Deuflhard, J. Hermans, B
Leimkuhler, A. E. Mark, S. Reich, and R. D. Skeel~Springer-Verlag,
Berlin, 1998!, pp. 39–65.

26G. Binnig, C. F. Quate, and C. Gerber, Phys. Rev. Lett.56, 930 ~1986!.
27S. Nose´, J. Chem. Phys.81, 511 ~1984!.
28W. G. Hoover, Phys. Rev. A31, 1695~1985!.
29J. Marcinkiewicz, Math. Z.44, 612 ~1939!.
30R. H. Wood, W. C. F. Mu¨hlbauer, and P. T. Thompson, J. Phys. Chem.95,

6670 ~1991!.
31J. Hermans, J. Phys. Chem.95, 9029~1991!.
32Y. Levy, J. Jortner, and O. M. Becker, Proc. Natl. Acad. Sci. U.S.A.98,

2188 ~2001!.
33Rotation around thez axis was not removed. Since we are interested

relative free energies, the removal of irrelevant degrees of freedom
not affect the result. It merely makes the analysis of trajectories easi
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