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Extensive configuration interaction (CI) is needed to achieve satisfactory descriptions of the optical spectra
and photochemical properties of the m-electron systems of polyenes. Although a basis of single and double
excitations with respect to the SCF ground state yields a qualitatively correct energy level scheme, such a
treatment introduces an imbalance in the ground state correlation (well described) relative to that of the
excited states (poorly described). The result is a divergence in the excitation energies with increasing size
of the r-electron system. A renormalized configuration interaction method is developed to account
correctly for the excited state correlation. The method is based on the finding that the main contribution -
to the correlation energy in the excited states is from the electrons not directly involved in the excitation,
so that the correlation correction closely resembles that in the ground state. A detailed analysis of the
excited state energy permits one to isolate the dominant ground-state correlation term and to determine
the smaller, but not negligible, rearrangement correction. The former does not contribute to the
excitation energy. The fact that the latter is approximately constant, independent of chain’ length,
provides an explanation for the success achieved by appropriately parametrized single excitation
calculations in the assignment of the optically allowed states of polyenes. To implement the renormalized
CI method a localized SCF orbital set is employed and the. basis functions used for the CI expansion are
expressed in terms of single and double excitations with respect to the correlated ground state. It is
demonstrated that for the 'BJ, ’B,*, and ’A,* states, which can be characterized in terms of
“‘elementary” single excitations, this approach gives excellent agreement with the results of more extended
CI calculations. Further, it is shown. that the correlation energy of the excited state can be estimated

using the results of a single-excitation calculation and the ground-state double excitation coefficients.

I. INTRODUCTION

For a satisfactory understanding of the optical spectra
and the photochemical reactions of polyenes, a detailed
knowledge of their electronic states is necessary. Stim-
ulated by recent experimentall and theoretical studies®
that have demonstrated the inadequacy of the independent
particle model, we have examined the magnitude of cor-
relation effects on the m-electron spectrum? a semi-
empirical Hamiltonian of Pariser-Parr-Pople type was
employed. For butadiene and hexatriene, a complete
configuration interaction calculation [C] was performed.
For longer polyenes, a more limited basis consisting
of single [S] and double [D] excitations was used. It was
found that configuration interaction with single excited
configurations does nhot yield the correct spectrum. Al-
though the “ionic” singlet states (e.g., B}, 'A,...)
and the triplet states (e.g., B}, A;,...)are reasonably
well described by such calculations, the “covalent” sin-
glet states (e.g., 'A;, 'B;,...) are not; in particular,
the lowest excited 1A' state, which is now known to be
near -degenerate w1th the lowest IB' state, is calculated
to be much too high in energy. Introduction of double
excitations provide qualitatively correct results in that
the manifolds of ionic and covalent states have approxi-
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mately correct relative positions. However, on a quan-
titative level the [S+D] calculation yields excitation en-
ergies that are significantly in error. More important,
the dependence of the excitation energy on chain length
is not correct for the longer polyenes due to the dif-
ference in the correlation error in an [S+D] calculation
for the ground and excited states; e.g., the calculated
excitation energy of the lowest !B, state does not de-
crease monotonically to a limiting asymptotic value,
The deficiencies of the [S+D] calculation could be over-
come by including higher order (triple, quadruple,...)
excitations in the CI treatment. However, the required
number of configurations becomes so large that the com-
putations are too time consuming.

It is the purpose of this paper to analyze the correla-
tion correction due to the higher order excitations and
to develop a simplified method for their estimation.

The ¢ electrons are assumed to be fixed and a Pariser—
Parr-Pople Hamiltonian is used to represent the 7 elec-
tron system. The advantages and limitations of a semi-
empirical treatment of this type have been discussed
previously by us® and will not be repeated here; some
recent related ab initio results are given in Ref, 4. A
localized SCF orbital basis® is used for the 7 electrons.
In this basis, the SCF orbitals are transformed to lo-
calize them as completely as possible in individual
ethylenic units. This makes it possible to utilize ef-
fectively the spatial decay of the Coulomb and exchange
interactions.® Due to the spatial separation of excita-
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tions in the localized orbital description, the higher or-
der excitations can be regarded approximately as a
product of lower order excitations; e.g.; a triple excita-
tion can be decomposed into a single and a double ex-
citation.” Making use of this decomposition, it is pos-
sible to show that the most important correlation con-
tributions to the excited states are the same as those
present in the ground state. Correction terms, which
are less important but not negligible, arise from the ef-
fects of the Pauli exclusion principle, the coupling be-
tween localized excitations and certain normalization
factors that have to be included.

A'configuration interaction method which has the same
matrix dimension as the standard [S] or [S+D]~CI cal-
culation but includes the higher order corrections in an
approximate manner is developed. In this method, ex-
citation configurations are generated relative to the cor-
related ground state rather than to the Hartree-Fock
ground state. Only single excitations relative to the
correlated ground state are included in the present work.
This makes possible an accurate treatment of the triplet
and the ionic singlet states, However, the covalent sing-
let states can not be calculated because they require
double excitations relative to the correlated ground
state.®® Hence only 1B, 1°4;, and 1B} states are
properly described, while the 2'A4; and 2'B; states re-

unire an extension of the method.

The application of localized orbitals to polyenes has a
long history. Contributions in this area have been made
by Longuet-Higgins and Murrell, ® Simpson,® Pople and
Walmsley, ° Heilbronner, ! and others.!? Most of this
work involved use of a simple excitonic model for ap-
proximating the lowest allowed states of polyenes and
did not take into account ground-state correlation.
Closest in spirit to the present study is the work of
Malrieu and co-workers, ** who used a completely lo-
calized ethylenic basis (i.e., non-SCF) to analyze the
effects of higher order excitations on excited state en-
ergies and to demonstrate the cancellation between the
correlation in the excited states and that in the ground
state. Also related are random phase approximation'-®
and Green’s function'®~? calculations for excited states.
In both of these approaches, the excitations are relative
to the exact ground state, in principle, though in practice
an approximate ground state (often the SCF function) is
used.

The Pariser-Parr-Pople Hamiltonian is described
briefly in Sec. II. In Sec. II, the localized orbitals
used for the ground and excited states are introduced.
Effects of higher order excitations on the ground-state
correlation energy are discussed. In Sec. IV we ex-
amined the correlation correction to the excited states
introduced by the higher order excitations. An approxi-
mate CI method is developed to include the ground-
state correlation in the excited states. The fundamental
assumptions of the method are analyzed. The results
obtained by the method are given in Sec. V. They dem-
onstrate the approximate constancy, independent of chain
length, of the correlation correction to the excitation
energy. Conclusions are presented in Sec. VI.
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Il. THE 7n-ELECTRON HAMILTONIAN

The Pariser—Parr-Pople (PPP) Hamiltonian for the
m-electron system of a conjugated hydrogarbon is (en-
ergies are given in eV and distances in A)

H=Z ZRZ).RxX'*'E (_Ix"' Z ZleA)nxa
k<X Ky O

Ak )
Y taCiCiuts 2o R
+ xa Cxg Crg t+ 9 Ao Mg’ 5
329 Kok

4 XY

where cj, and c,, are the fermion creation and annihila-
tion operators which create and annihilate, respectively,
an electron with spin ¢ in the mutually orthogonal atomic
7 orbitals p, ; the operator n,, =cj, c,, is the m-electron
number operator; R,, is the effective electron—electron
repulsion integral between an electron in orbital p, and
one in orbital p, ; ,, is the core integral between cen-
ters « and A; I, is the effective ionization potential of
orbital p,; and Z, is the net charge of the core at cen-
ter k(Z,=1). The first term in H represents the repul-
sion of the nuclear framework of the conjugated mole-
cule; for fixed geometries this term contributes a con-
stant to the energy of the 7 electrons. The second term
in 4 measures the energy of an electron placed in the
atomic orbital p,. The energy is partitioned into a con-
tribution arising from the ionization potential , of a

7 electron residing at the isolated atomic site k and a
contribution arising from the attractive Coulomb in-
teraction Z, R,, with the remaining atomic sites A, The
third term in Hdescribes the coupling between different
atomic orbitals due to the core integrals £, ; they are
assumed to vanish except for next neighbor orbitals p, , -
b, in which case they are evaluated from the empirical
formula

b =Bo+3.21(rn~1.397), (2)

where B is a constant and 7,, is the distance between the
nuclear sites k and A, The fourth term in H [the prime
on the sum indicates that it excludes all terms (x, o)
=(%, ¢')] describes the Coulomb repulsion of the 7 elec-
trons. Two standard electron-electron repulsion for-
mulas were used; they are the Ohno formula

14,397

R = 124,307/ Ry + R+ 75T (32)
and the Mataga—-Nishimoto formula,
14, 397
R,, (3b)

= 2(12.397)/(R,, + Rp) + 7,1

The Mataga~Nishimoto formula introduces more correla-
tion than the Ohno formula. *® In=addition to these, an
exponentially decaying repulsive potential of the form
Rkl =Rm: exp(- Yir /DO) (30)
was employed for testing the validity of the CI method
developed in the present work, Variation of the decay
constant Dy simulates in a simple way the transition
from the independent particle limit (D, large, long-range
potential) to the limit of strong electron correlation (D,
small, short-range potential)’; a range of values for D,
between 0.5 and 16 A was used. The values of the
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TABLE 1. Semiempirical parameters for
conjugated hydrocarbons.

I,= 11,16 eV
Z,:= 1.0

By= —2.43 eV
Ry=11.13 eV

7ws1= 1.35 A (double bonds)
1.46 A (single bonds)

empirical parameters [, , Z,, By, and R,, which enter
into the PPP Hamxltoman are presented in Table I.

Il. LOCALIZED ORBITAL DESCRIPTION

In this section, we introduce the localized orbital

basis (LO) and illustrate its form by applying it to buta-

diene and decapentaene. Restricting the CI calculation
to single and double excitations, we determine the length
dependence of the correlation error for the ground and
excited states. A simplified model is used to show
analytically how higher excitations contribute to the
ground-state correction correlation.

A. Localized orbitals

For polyenes with 2N 7 electrons a set of completely
localized orbitals corresponds tothe N occupied orbitals
¢; and N unoccupied orbitals e¢; of the ethylene units of
which the polyenes are composed; they have the form

ey =(1/V2) (paya +p2)
é; = (1/‘/7)(?24-1 "‘172{)

where the p; are the atomic 7 orbitals introduced in Sec.
II. The bar under the index ¢ denotes an unoccupied or-
bital; this notation will be used throughout the section.
Although the orbitals in Eq. (4) form a complete orthog-
onal set, it is convenient to replace them by localized
SCF orbitals.

As is well known, the SCF orbitals can be specified
by requiring that the Fock matrix has only zero ele-
ments between occupied and unoccupied orbitals; i.e.,
that'it is block diagonal. This condition does not, how-
ever, provide a unique definition of the SCF orbitals,
One applies customarily the more stringent condition
that the SCF orbitals must diagonalize the Hartree—
Fock matrix. If this restriction is relaxed, an infinite
number of orthonormal orbital sets (w;, w;; i=1, 2,...,
N) can be defined; the symbols w; stand foT the occupied
and w; for the unoccupied orbitals., These sets are con-
nected with the standard Fartree—Fock orbitals by the
unitary transformation U = (¢ ), where U and U are uni-
tary matrices acting on the occupied (¢;) and the unoc-
cupied (¢;) Hartree—Fock orbitals, respectively. Thus,

i=1,2,...,N, @

N
Wy =; Uyd,, (5)

N
wj_=lzl:yu¢i.

The corresponding transformations among the creation
and annihilation operators b,, bj and by, b; for the w

Ohmine, Karplus, and Schulten: Excited states of polyenes

and w orbitals and the operators a;, a;, and a;, 4] for
the SCF orbitals are

N
b‘=,Z; Uuai;

N
b= Z Ujyays
=1
N
EU“a, ) b¢=z Uya; .
i=t R ) § -
The ground state ¥, expressed in terms of the orbitals
w,; is

Yo=|w,@y ... wy By =(detU)|¢1%1... 5 x| ,

where the usual notation of a bar superscript on the or-
bitals indicates a spin of — 3. Correspondingly, the ex-

(6)

. cited electron configurations over the orbitals w,; and w,

are

bibﬂ’ﬁ; UnUnayaido,

"
bi bybyby o= Z UinUnUno Uy aga,aza,dy .
It is clear that the single excitations with respect to w
orbitals are linear combinations of the single excitations
over SCF orbitals, the double excitations with respect to
w orbitals are linear combinations of the double excita-
tions over SCF orbitals, etc. This shows that a com-
plete CI calculation with the w orbital basis of a given
type (i.e., all single excitations, all double excitations,
etc.) must give results for molecular properties iden-
tical to those obtained from a corresponding calculation
with SCF orbitals.

To obtain localized SCF orbitals, we wish to determine
orbitals w; and w; that have maximum overlap with the
ethylene orbitals 'e, and ¢; of Eq. (4). For this purpose
we define the projection operators P and Q onto the sub-
spaces V and V of the occupied and unoccupied SCF or-
bitals ¢, and ¢,,

P= |¢}><¢! ’

(8)

7[\’]: E[\’]z

<¢;|
P+Q=l, P%=p, Q%=q.
The set of projected orbitals

(P]e,) Z: |¢l)<¢l|el>)

and

N
(elerr =2 16)46,1ep)
=

form nonorthogonal basis sets in V and V, respectively.
The Ple,) and Qle;) are linearly independent for all i,
z so that the overla.p matrices with elements (S, S are

" Teal and symmetric)

Siy={ei|Ple,) , 9)
Sy=CeslQley)
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TABLE II.

Localized orbital coefficients B, for decapentanene.?

2301

A B C A B C

Occupied orbitals®

wy wa
M 0.707 0.698 0.696 0.0 -~0.105 =0.116
23 0.707 0.698 0.696 0.0 0.111 0.123
s 0.0 0.111 0.123 0.707 0.689 0.685
bpa 0.0 -0.105 -0.116 0.707 0.689 0.685
b5 0.0 -0.022 -0.028 0.0 0.116 0.130
e 0.0 0.038 0.046 0.0 -0.106 -0.115
e 0.0 0.007 0.010 0.0 -0.02¢4 ~0.031
bs 0.0 -0.016 -0.022 0.0 0.038 0.047
F 0.0 -0.003 -0.004 0.0 0.007 0.010
Do 0.0 0.007 0.011 0.0 -0.016 ~0.022
Unoccupied orbitals®
wy Wy .
P 0.707 0.698 0.696 0.0 -0.105 <0.116
2 0.707 ~-0.698 -—0.696 0.0 -0,111 -0.123
b3 0.0 0.111 0.123 0.707 0.689 0.685
Fn 0.0 0.105 0.116 -0.707 -0.689 -—0.685
Ps 0.0 -0.022 -0.028 0.0 0.116 0.130
Ps 0.0 ~0.038 ~0.046 0.0 0.106 0.115
D7 0.0 0.007 0.010 0.0 -0.024 -0,031
Ps 0.0 0.016 0.022 0.0 -0.038 -0.047
P 0.0 —-0.003. -0.004 0.0 0.007 0.010
P 0.0 —0.007 =—0,011 0.0 0.016  0.022

A B c
wg
0.0 0.038  0.046
0.0 —0.022 -0,028
0.0 —0.106 —0.115
0.0 0.116  0.130 .
0.707 0.688 0.683
0.707 0.688 0.683
0.0 0.116 0.130
0.0 -—0.106 —0.115
0.0 —0.022 —0,028
0.0 0.038 ° 0.046
w3
0.0 0.038  0.046
0.0 0.022 0.028
0.0 —0.106 —0.115
0.0 =0.116 —0,130
0.707 0.688  0.683
—0.707 -0.688 ~—0,683
0.0 0.116  0.130
0.0 0.106  0.115
0.0 ~-0.022 -0,028
0.0 —0.038 —0.046

‘A, ethylene orbitals; B, localized SCF orbitals (Ohno parametrization); C,

orbitals (Mataga—~Nishimoto parametrization).
by =2, Bixbi (0ccupied).
w;=3  Bjupx (unoccupied)

are positive definite. Using the Lowdin symmetric or-
thogonalization, 24 we obtain the orthonormal basis sets

Z S;i/2Ple,) , Z 52 Qle,) .

We now wish to show that these orbitals are the SCF or-
bitals that have maximum overlap with the e;, ¢, . Writ-
ing

o) =D VLS Pleny s lo =2, UySp*@ley) ,
(10)

where U’ and U’ are arbitrary unitary transformations,

we demonstrate that the distance between w; and ¢, and

that between w, and ¢,,
N

N
d2=?:: (0,-ei|wg-ep), Qa=zl: (W -e;lwg-eq)

{=.

an

take on minimum values for U’=U’'=1. The quantity 4 e
can be written

Z{(“’i""l) EUu l:/a(e¢|P|en>
- 2 (@lPle)syug;

+<e,|P|e,>+<e.|Qle,>} .

Since S is symmetric,

localized SCF

N
=§%MMFEUWW
- E stirug; +(e¢|P|et>+<el|Qle‘>}

N
=2 (e,|@e) + Tr{l+5-U 'S 2 _s1r2y»}
§=1 -

Evidently, d takes on its minimum value for U’=1 and,
correspondingly, d for U '=1, Thus, the orthonormal
SCF orbitals closest to the ethylene orbitals e¢; and ¢,
are given by Eq. (10) with U*=U’=1, The form of the
localized SCF orbtails obtained from Eq. (10) is il-
lustrated in Table II which compares the coefficients

for decapentaene from the Ohno (32) and Mataga-
Nishimoto (3b) formulas with the completely localized
ethylenic orbitals {Eq. (4)]; only three occupied and
three unoccupied orbitals are given since w, (w4) and

ws (w_r,) are related by symmetry to w, (wa) and @, (wx),
respectively. A localized orbital centered at a glven
ethylene unit is found to be 95% (Ohno) or 94% (Mataga-
Nishimoto) at the unit, 2.5% (Ohno) or 3% (Mataga—
Nishimoto) at the neighboring units, and negligibly small
further away. Table II also demonstrates that the lo-
calized orbitals are translationally invariant to a very
good approximation, Calculations on a variety of poly-
enes show that the localized orbitals are nearly indepen-
dent of chain length.
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TABLE III. Localized and delocalized SCF orbitals of butadiene.?
Localized orbitals Delocalized orbitals
Wy wy Wy wy 1 1 )
Orbital energies (eV)
-12.15" -12.15"*  0.96" 0.96°  -13.53  —-10.76  —0.43 2.34

Orbital coefficients-

1 0.699 ~0.105 0.699 0,105 0.420 0.569 0.569 0.420

F23 0.699 0.105 —-0.699 0.105 0.569 0.420 -0,420 ~-0.569

§ 0.105 0.699 0.105 =0.699 0.569 -0.420 -0.420 0.569

D -0.105 0.699 0.105 0.699 0.420° -0.569 0.569 ~0.420

%0hno parametrization [Eq. (3a)].

To compare the CI wavefunctions resulting from the
use of localized and delocalized SCF orbitals, wé con-
sider butadiene, which is small enough to allow presen-
tation of the complete results. The butadiene wave-
functions exhibit all the characteristic features of the
corresponding wavefunctions of longer polyenes. The
orbitals and their energies are listed in Table III. The
similarity of the localized orbitals of butadiene to those
of decapentaene is clearly evident,

In Table IV are given the coefficients of localized and
delocalized orbital configurations contributing to the
wavefunctions of the lowest singlet states of butadiene
(1'4;, 2'4;, 1'B;]) obtained using [S+D]~CIL.. The dia-
grams in the table (and the subsequent text) give a self-
explanatory pictorial representation of the orbital oc-
cupations in the different configurations (see Footnotes
b and ¢). Although the two CI calculations yield identical
results, the wavefunctions appear in very different
forms. The ground-state correlation of butadiene (1 1A;)
in the delocalized orbital representation is described
mainly through the configuration

in which two electrons are promoted from the second
orbital ¢, to the third orbital ¢,; a number of other
doubly excited configurations are seen to make small but
nonnegligible contributions. In the localized orbital
basis, the correlation is dominated by the two double
excitations

(%23
(e

in which two electrons are promoted within each ethylene
unit. Since the ground state of an isolated ethylene unit
can be written as (;7) +¢(X%), where « is the correlation
coefficient, the butadiene ground state is approximately

and

a superposition of ground-state correlated ethylene units,

This description applies also to longer polyenes, as il-
lustrated for decapentaene in Table V.

®Diagonal elements of Fock matrix.

The excited 2 'A4; state of butadiene has a ~50% con-
tribution from double-excited configurations as can be
seen from Table IV: In the delocalized orbital picture
the main double-excited components are

() (D) (ED)

In the localized orbital picture, the largest contribution
comes from the configuration

eXw =X~
T T

in which the ethylene units are each excited to a triplet
state, and the two triplets are coupled to give a singlet
spin state®3; it is this characterization of the 2!4] state
which leads to the result

AE(2'A;-1'A])~24E(1°B,~1'4;) .

The single excitation contributions to the 2 ‘A; state in
the localized description correspond to charge transfer
from one ethylene unit to the other,

Table V shows that in a longer polyene, the triplet—
triplet excitations still make the largest contributions to
the 2'A; state. It can be seen that nearest neighbor
excitations have large coefficients but that simul-
taneous excitations involving nonneighboring ethylene
units are also very important.

The optically allowed 1B state has only very small
contributions from double-excited configurations. In the
delocalized orbital picture, the state consists almost
exclusively of the promotion of one electron from the
highest occupied orbital ¢, to the lowest unoccupied or-
bital ¢,. In the localized orbital picture, the state is a
superposition of the ethylene singlet excitations (-5 75}
and {777%)) and the “charge transfer” excitations {23 ;%}
and {57} ; this is the classic exciton description of the
1!B; state.”™ The latter excitations describe the de-

X=X =X*
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TABLE 1V.  w-electron wavefunctions of butadiene.?

Localized SCF orbitals Delocalized SCF orbitals
cL® CI coefficients CI coefficients CcD®
14, 2'a, 1'B, 1B, 2'a, 1'a,
CI-Energy (eV)
-0.554  4.853  5.306 5.306  4.853  —0.554
-t 0.973 —0.087 0.0 0.0 0.087 0.973 777
X~X X=X —Xe—=X=
g Sofugat . Jot
-X= === 0.0 0.0 0.545 0.984 0.0 0.0 ST Xe--
-X= X=X - -
-x- coIXooo
T 0.0 0.0 0.545 0.0 0.466 0.008 T
X=X =-X- ~meXe——
. “X==eX~
e =X~ . : ZoIxZIZ
0.008" 0.466  0.440 0.0 —0.466  —0.008
-X- X-X ) X ——-X-
- -
P SICZXoCC
x -0.008 —0.466 —0.440 0.105 0.0 0.0
X-X -X- -X-==X=
_——x_—-
g =X~ : RooX:
S oX 0.063  0.644 0.0 0.0 -0.164 0.099
-X- -X- iuedugut Su
T T T T
X~ —%= TzIIX:
x -0.008  0.073 0.0 0.0 - 0.205 0.102
TX- o oX- o , bt 3o
s S s s
X=X =77  _0.148 -0.028 0.0 0.0 0.250 ~—0.0584 X" "X
m=- X-X cXIoox:
——— X-X
ow ool -0.148 =-0.028 0.0 0.0 0.250 ~ —0.054
ex- -%-
ex 0.038  0.178 —0.061 0.025 0.0 0.0
_Xe= . =X=
ox oo 0.038  0.178  0.061  —0.097 0.0 0.0
X=-x ===
- -0.038 -0.178 —0.061  —0.097 0.0 0.0
~—= X=X
e ke -0.038 -0.178  0.061 0.025 - 0.0 0.0
- x-x : cXoooXz
- —0.011 -—0.067  0.051 0.0 -0.093  —0.051
mm- XoX XICoXC
x=x == 0.011 -0.067  0.0051 0.0  =0.596 ~ ~-0.159 "X~
X-x TRoIR:
3Evaluated from PPP-Hamiltonian (1) with °CD: m-electron configurations -« =~«-~ ®2
Ohno parametrization. defined over delocalized ------- &
bCL: m-electron cofigurations wym=--=- wy orbitals,. = @ = 000 e—m———- &2
defined over localized wy------ wg ] adeeaaa &1
orbitals.
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TABLE V. [S+D]~CI coefficients in decapentaene.?

Ohmine, Karplus, and Schulten: Excited states of polyenes

(b) Triplet~triplet

(a) Major contributions excitations in the

(c) Charge transfer

_to the ground state 2'A, state excitations ‘B, state 3B, state':’A, state
N X T e X e X L e Ty
X-X X=X X=X X=X X~X X=X =X= X=X ~X= X=X -X= X=X X-X X=X X-X :
XmX wom meme cme aee B S —ee =X= mme =me —--
-0.132 : . . -0,
mwe X=X X=X X~X X-~X X=X X=X =X~ =X~ X=X 0.211 -X=- X=X X-X X-X X=X 0.188 0.156 0.236
mme cnm wme ee- X=X - eX= 2X" memm ——- mme memm 2Xem mme m—-—
~0.132 ; . . .
X-X X-X X-X X-X --= 0.13 X=X =X~ -X- X-X X-X 0.211 -X~ X-X X-X X~X X=X 0.148 0.110  0.087
“m X=X === mme mee —0.125 " "mT TXm o= =Xeo g qgp "7 mom === TXS -m= 0102 —0.067 -0.017
X=X === X~X X-X X=- X=X X=X =X~ X~X -X~- -X~ X=X X-X X~-X X-X
"""""" X=X =7= 00125 X7 muT vXooommmom g gsg TTT T mTo TTTOSXS 056 0.033 0,000
X=X X=X X=X ~== X~ =X~ X=X -X- X-X X=X ~X= X-X X-X x‘x X-X
""" X°X == ommT 00124 7T TR TTeomee oXe i3
X=X X=X ==~ X-X X~-X . X=X =X- X“X X=X ~X=-
~X- X-X X=X =X~ X~X 0.136
TS mmm T oo 2Xe G 075
=X= X=X X~X X=X -X~

%0Ohno parametrization.

localization of the excited electron in the 1!B; state, in
agreement with its valence-bond characterization as a
noncovalent state.® Long-range charge transfer excita-
tions contribute significantly to the 1B state of longer
polyenes as is evident from the results for 1!B; state of
decapentaene presented in Table V.

The lowest triplet state 1 3B also has only small con-
. tribution from double-excited configurations. In the de-
localized orbital picture, this state, which is the triplet
corresponding to the 1'B; state, is dominated by the
promotion of one electron from the highest occupied to
the lowest unoccupied orbital. However, there is some
difference between the 1'B; and 1 *B; state as is made
clear by the localized orbital description. It can be seen
in Table V that the 1°B; state, as well as the next triplet
state, 1°4;, are composed more of intraethylene triplet
excitations. The contribution from “charge transfer”
excitations is smaller than for the 1'B; state.

The difference between the “delocalized” singlet state,
1'B;, and the more “localized” triplet state, 1°B,
whlch is covalent in character, is illustrated in Fig. 1,
Defining the excitation

L3pmy = (1/VZ) by by F b3, b0,) %) (12)

we show in Fig. 1 the absolute magnitude squares of the
coefficients ¥ °hJ multiplying the term “*1$2) in the
1:3B;_state vector for the excitation from the fifth ethyl-
ene unit of the polyene. It is clear that the 1°B; state
is significantly more localized than the 1!B] state.

This can be compared with the behavior of the energy
expectation values of singlet and triplet single-excited
configurations, They are

A7) = Fyg = Fou - G| mm) (13a)
YoP|B|9]) =F gy~ Fyy = (i | mm) +2(im|im) ,  (13b)

where F,,, F,, are the diagonal elements of the Fock
matrix and H is the Hamiltonian defined'as H=H

~ (ol HIpg) for the SCF-ground state z/)o, the symbol
(37 | k1) represents the. mtegral

VERHIYD e

FIG. 1. Energy expectation values (left) and absolute amplitude
squared of the wave vector coefficients a]* (right) of the excited
configuration #3(y7*| #1Y7") in the linear polyene CygHy, (i=5,
m=1, 2,...,9). Energies: (=), 135} state; (~—), 1B}
state; (—+ —), 13B}, state in renormalized CI basis. Coeffi~
cients: (~-), 13B} state; (==), 11B, state; (-+) 13B} state
in the renormalized CI basis. (Ohno parametrization is used.)

J. Chem. Phys., Vol. 68, No. 5, 1 March 1978



Ohmine, Karplus, and Schulten: Excited states of polyenes

AE [ev]

I 1 1 3 i 1 1

2 3 4 5 6 7.8 N
FIG. 2. Excitation energies of 1°B,, 1%4%, 1!B}, and 214}
states in linear polyenes Cyy Hyy,s as evaluated from [S+ D]-CI
calculation with Ohno parametrization.

(1] Bl = (w, @, | R| w0, w,) (14)

where the operator R is the two-electron interaction part
(the last term) of the Hamiltonian [Eq. (1)]. In Fig. 1
the triplet energies, Eq. (13a), and the singlet energies,
Eq. (13b), are plotted for the polyene CyH,, for excita-
tions from the fifth ethylene unit (i =5). The excitation
energy for the triplet excitation m—¢ is smallest at m
=5, i.e., for the intraethylene excitation (m =i). The
singlet excitations also have their minimum at m =5 for
the intraethylene excitation (m =i=5), but the energy well
is more shallow. This is due to the fact that the ex-
change repulsion term 2(im|im), absent in the triplet
energy expression, takes on its maximum value at i =m.

B. Length dependence of correlation correction

In a previous paper® we have seen that a basis set re-
stricted to single and double excitations results for buta-
diene and hexatriene in excitation energies which are
somewhat too large compared with the energies arising
from complete calculations. The comparison with ex-
periments for the longer polyenes also showed that the
results obtained with this basis exceed the experimental
values and that the difference increases with the size of
polyene, C,yHyy.z. Although the excitation energies of
polyenes at first decrease in this approximation, for
N=5 they become a slowly increasing function of N,
whereas experimental data show clearly that they de-
crease monotonically with N. This is illustrated in Fig.
2, where we present the calculated excitation energies
for CoyH,y., polyenes (N=2-8). The source of this dis-
crepancy is that the [S+D] basis, which accounts for
most of the ground state correlation energy (but see be-
low), yields a smaller fraction of the correlation cor-
rection for the excited states. Figure 3 presents the
state energies in the [S] and [S +D] approximation. It is
clear that the excitation energy increases with chain
length due to the larger ground state correlation cor-
rection in the [S+D] approximation. We further observe
that the correlation energy of the ground state increases
nearly linearly with N; that is,
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TABLE VI. Ground state approximation.

Ground~state correlation energies

Complete CI D -Cci*

Butadiene ~0.566 eV ~0.466 eV
Hexatriene ~0.856 eV —0.645 ov OP°)
Butadiene -1.380 eV ~1,178 eV (Mataga~—
Hexatriene -2,013 eV —~1,590 eV Nishimoto)

2Evaluated by the expansion ¥ =2, d, Dy ¥, in Eq. (17).

Eg=Ne , (15)

where E; is the total correlation energy of the ground
state and € is that of a single ethylene unit. Higher
(triple, quadruple,...) excitations are needed to ac-
count for the missing correlation of the excited states.
However, the configuration interaction treatment then
becomes so large that the calculations are very time
consuming. To avoid this difficulty, we will develop in
Sec, IV a simplified method for estimating the correla-
tion correction due to higher excitations. In what fol-
lows, we show that even for the ground state, higher
than double excitations are needed in the larger polyenes
to obtain the exact N dependence [Eq. (15)] ofthe correla-
tion energy. In the localized orbital description, closed-
shell configurations composed of intraethylene double
excitations,

D, lﬁo=bi., bz-v bigbig¥o s (16)

~ where o, -0 represents the electron spin, make the

dominant contribution. Hence, the correlated ground-
state wavefunction can be expanded approximately in
terms of these excitations (D’~CI basis)

N
|‘1’o> =do|¢o>+z_; d.Dgl%)Eg d»lp»%) .

The ground-state correlation energies obtained with this
basis for butadiene and hexatriene are compared with
the complete CI values in Table VI, We see that the

amn

»m m
T

-2

FIG. 3. Energies for the 1147 (gn), 1%B}, 14}, 2'4;, and
11B; states in linear polyenes Cay Hay,, as evaluated from [S]-
CI (= —-), and [S+D]~CI (~——) calculations with Ohno pa-
rametrization. The SCF ground state energy is taken as the
zero of energy.
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basis yields more than 75% of the exact correlation en-
ergy.

For larger polyenes, higher order excitations (qua-
druple, hextuple, ...) become important. To determine
their contribution as a function of N, we carry out a
model calculation in which we neglect all open-shell con-
figurations and the closed-shell excitations which in-
volve the simultaneous transfer of two electrons from
one ethylene unit to another, The CI calculation involves
the basis

Do

Q%0 =Dy Do #5)

Nipooet,¥0=Dyye 0Dy g (iy#in# ... #4,) (18)

for double, quadruple, ... and n-tuple excitations. This
approximation leads to the problem of solving the secular
equation

Be 0 0O Jo
@ B,y O f,
By @y By ... £,
0 By ag ... =Ey| {4 » (19)

where fy is the CI coefficient of the SCF ground state

Yo, 1, is the vector of CI coefficients for the configura-
tions D, ¥y 6=1, 2,...,N), etc. The CI matrix in Eq.
(19) contains submatrices Bzs,2592 and @5, The matrices
Bzs,25+2 describe the coupling between the 2s and the 2s
+2-tuple excitations, and the @, are diagonal matrices

containing the transition energies of the 2s-tuple excita- -

tions;

} ("z)u =5u (l[)olD:ﬁD,lllJo) .
To simplify Eq. (19), we introduce the approximation
| (20)
i.e., we assume the transition energies for all 2s-tuple
excitations to be identical and equal to s times the energy

Kk of a double excitation., This approximation neglects
end-effects; for hexatriene, the values are

(Dy¥o| #| Dy o) =(Ds¢o|ﬁ|b3§bo)=11.02 ev,

(oz5)y=su ,

(Do | H| D, 9g) =11.170 eV

in the Ohno parametrization. Further, the approxima-
tion neglects exchange interactions between excitations
in neighboring ethylene units. For the case of quadruple
excitations, we Have

(Qus¥olHQs%0) =(DyPo|H| D, o) + (D, 0o| H| D, y) .
+ 4[| 77) + G2 | 37) - 6] jj) - (G| #9)]
- 2074 + 63 |%) - 3| 49) - (& 39)] -
' (21)
The Coulomb integrals in the third set of terms cancel.
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The fourth set of terms is composed-of the exchange in-
tegrals that are neglected in the approximation of Eq.
(20). To obtain an idea of the magnitude of the exchange
interactions collected in the last set of terms we quote
two examples for hexatriene: )

<le¢o|1.1|sz¢o>=<st¢oll.1|st‘/’o>
=11.02 eV+11.70 eV +0.367 eV,
(Qus¥o|H|Qy39) =11.02 eV +11.02 €V +0.034 eV .

This indicates that the neglected exchange contribution
is small compared to the transition energies for ad-
jacent ethylene units and decreases rapidly with increas-
ing distance between the simultaneous double excita-
tion.

The elements of the submatrices Bzs, 2442 aTE
o l A I Dy, ., Po)

if{iy,...i}={5,...5,}
0 otherwise .

<N{1...ls ¢0|H|N11...1,.1 o) =

' The matrix elements (z,bolfl D, y) are nearly independent

of &, as can be seen from hextriene, where
(’Po]élbﬂpo) =<¢’o|£’l03¢o> =1.62 eV )
WolH|D, 9oy =1.54 eV .
Consequently, we use the approximation
@olH|Dyto) =y fork=1,2,...,N . (22)

With the approximations in Eqs. (20) and (22), the
secular equation, Eq. (19), reduces to the one for a sys-
tem of N identical, noninteracting ethylene units. The
CI matrix for an isolated ethylene unit is

G2

In the case of butadiene we have

0 v Jo Jo
Y u 14 fi
Yy 0 p vy 13 =E°_ f3 @3)
0o v fa _ fa

in self-evident notation for the vector of CI coefficients,
Clearly, the CI matrix in Eq. (23) corresponds to two
ethylene units. The ground-state correlation energy for
a polyene consisting of N identical independent ethylene
units is

Eg=Ne , (24a)
where
e=3p - [Gp)+y¥Ji/2 (24p)

is the ground-state correlation energy of a single ethyl-
ene unit.

In order to obtain in a CI calculation the correct cor-
relation energy, it is necessary to include all possible
excitations. However, in common CI calculations only a
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limited number of excitations is usually included. We
now demonstrate that with the approximations of Egs.
(20) and (22) the CI problem (19) can be solved exactly
for double, quadruple, etc., excitations included.
Hence, we are able to examine the error introduced
through neglect of higher excitations.

Since the N ethylene units are equivalent, we can use
a (normalized) basis of collective excitations for the
ground state of the form

0 VNy 0 0
Ny n V2N =1y 0
0 VZN-1)» 21 V3N =2)y

Expanding the matrix equation, we obtain

E,Co=VNyC, (26")
and
B,1C,1+A,C,+B,C, =0 fornz1, (26'")
where ‘ ' '
B, =Vln+ )N - n)y
and
A,=(u - Eg)
The recursion relation, Eq. (26"'), can be written as
C(Z-l = ﬁ%‘é’:——m") fornz=1 (26'"")

Repeated substitution of Eq. (26'"') into Eq. (26') yields
the continued fraction solution for Ey,

- Ny?
Box— SN = I
bt . 3W-2)
K= Eo= 3#-E0_’"

To determine the solution of this equation we consider
the series of quadratic, cubic, etc., equations

z== Nv*/(u -2),

_ -N
Fe iz 2N -1/ Cu-2)

etc. The roots E{! [Eq. (272)], E®’ [Eq. (2T)], etec.,
are the ground-state correlation energies obtained with
double, double and quadruple, etc., excitations in-
cluded in the CI treatment. Figure 4 illustrates for N
=50 that these energies form a monotonically decreasing
series converging rapidly towards the limiting value

E{" =E,, the true ground-state correlation energy of the
system. The energies E{P can be evaluated starting
from i =1 [Eq. (27a)]; we have

(272)

(2™)

2307

w0,(1)" i, (5)7 L Db

where (§) is the binomial coefficient. In terms of this
basis, the ground-state wavefunction can be written

: ' N\-1/2 ) N\-1/2 )
\I"’:(C“*C‘(l) ‘?D"'Cz(z) ,Z,:D‘D””‘)"’“

(25)
where the coefficients C, obey the secular equation

Co Co
o) C
C C.
=E, (26)
r

EM =4y —[Gul+NyE2,

This solution of Eq. (27a) serves as a first guess for an
iterative solution of Eq. (27b). Once the iteration of this
equation has converged, the solution E{¥’ isused as a
first guess for the equation determining the ground-state
excitation energy E§¥, etc.

In Fig. 5 we plot the correlation energies E§!’ for
polyenes as a function of the chain length N. For small
polyenes (N<10) double excitations alone give a good
description of the ground state correlation of the model.
Since ¥ < 3u, we can expand E§" for small N and write

E{V=_(2/p)Ny?

so that the double excitations ground-state correlation
energy is seen to depend linearly on N, However, for
long polyenes (N y2> (3p1)%), the correlation energy ob-
tained from E{! varies as VN. This result is clearly in-
correct and requires the introduction of higher excita-
tions to restore the expected linear dependence on N.

7023456789
.80} N =50

y =1.62eV
90} € =1l16eV
-I00+ x\
~HO} X

\*~x—x—x—x—x-—x-

120
Eg’ [ev)

FIG. 4. Ground-state correlation energy of the model polyene
Cig0 Higz 25 @ function of the extent of configuration interaction,
i, i=1, [D]-CL i=2, [D+Q]-CL i=3, [D+Q+H]~CL ... [see
Egs. (27)]. }
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LU SR S B

N

Yy =l62ev
€=1l6eV

-00
O
-0+

LY

FIG. 5. Ground-state correlation energies of the model
polyenes C,y Hoy,s as evaluated from the various levels of CI
calculations; E{", [DI-CL, E{?, [D+Q]~CL E{, [D+Q+H]~
CL ....

As can be seen from Fig. 5, E&, E{, ... yields a
significant improvement in the correlatxon energy re-
sult.

IV. RENORMALIZED CONFIGURATION
INTERACTION METHOD

In this section, an approximate CI method is developed
to account in the excited states for the correlation ef-
fects not described by single and double excited config-
urations. The basis of the method is that-a large part
of the ground-state correlation energy is present in the
excited state. The validity of this assertion, which is
formulated most directly in a localized orbital basis,
is examined in detail. The results obtained with the

. CI method are presented and compared with more ex-
act calculations in Sec. V.

Excited state wavefunctions ¥ can be expressed in
terms of excitations in which one, two,... electrons are
promoted from the SCF ground state

\I7=(co+ D o+ crmE o 4. ) bo. (28)
trm :'1"

Here ¥, is the SCF ground state wavefunction, ioc, mo,
jo', no' are localized SCF orbitals with spin ¢ or ¢’ and
the 077, Om'. .. are composed of particle-hole excita-
tion operators; i.e.,

0% =bpbio »

O = Uppg bpor By by
The upper indices m, n stand for the particle states (we

have removed the underline bar of the superscripts for
simplicity) and the lower indices stand for the hole states
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in the localized basis. In each term that contributes to
Eq. (28), the electrons that do not participate in the par-
ticular elementary excitations (mo‘- io, momr —i0jc’)
are frozen in the SCF ground state. A more rapidly
convergent expansion for the excited state wavefunction
can be obtained by replacing the SCF function ¥, in Eq.
(28) by the exact ground state wavefunction ¥,. We will
refer to such expression as the renormalized CI ex-
pansion. Because of the spatial separation of the poly-
ene 7 electrons in localized orbitals, one expects that
the elementary excitations do not seriously disturb the
correlation of the electrons that are not excited.

To illustrate this point, we consider as an example the
one-electron excitation O]y. If the excitation is relative
to the SCF ground state [Eq. (28)], ¥J¥ =0} $o=bp.b,. Y0,
it can be represented graphically as in Fig. 6(a). The
electrons at the ethylene units k#17, m are expected to be
only slightly perturbed. If we employ the approximation
to the correlated ground state introduced in Sec. III,

Vo= (do+ i d, D,,) Yo , (4%))
¥l
the elementary excitation, which can be written
YN =00 Y, (29)

corresponds to the representation shown in Fig. 6(b).
Thus, the localized orbitals not involved in the excita-
tion have the same correlation as in the ground state;
for i =k and/or m =k, we have

O7D,=0 (i= . (30)

Although the excltatlons ¥ are orthogonal, they are not
normalized. To obtain the normalization constant we
make use of Eq. (30). Thus, we have

?:i‘l’;'y}') =6l(' amm Gva' (N(m)-z ’

where

korm E).

(1)

E ai<1

(h*l. m)

2=

|

4

3_‘|_‘+

o _,?_4?_

4
e

~—

FLL
SRR
TEIEY

£
EREIEIN]

~

£

+dN( ! T
Fig. 6. Pictorial representation of a localized single excita-
tion (m+1i); (a) in the standard [S]—CI basis; (b) in the re-
normalized [S]—CI basis. Localized orbitals are represented
by the corresponding ethylene orbitals.
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[note that the d, in Eq. (17) are normalized such that
3 ¥o1dy!1%=1]. Consequently, the normalized excitations
(for which we use the same symbol for simplicity) are

leEYy=NpOw|¥,) . (32)

Since the ground-state coefficients d,, d,,... are small,
in general, the normalization constants N7 are close to
unity. Double excitations from the correlated ground
state, which we do not treat in detail here, can be con-
structed similarity; since they yield a nonorthogonal set,
the calculations are more complicated (see below).

The correlation energy of the configuration corre-
sponding to the elementary excitation |¥{¥) is
Egpeom = |H|YE) - R |HE) . (33)
With the same simplifying assumptions as used in Sec.
I, E§d°°* reduces to

MOy COTT ~
E!u. - E €
ktiem

where €, is the ground state correlation energy of the
kth ethylene unit. For large polyenes this correlation
energy is comparable to the approximate ground state
correlation energy of the entire polyene, J¥,¢,. From
Egs. (17), (32), and (33) this part of the excited state
correlation evidently originates from triple excitations.
Consequently, it is not included in the [S + D] calcula-
tions.and is a major source of the error in the excitation
energies,

The above example indicates how to proceed to include
the ground-state correlation contribution in the excited
states. We replace the wavefunction expansion, Eq.
(28), by the renormalized expansion in terms of elemen-
tary excitations with respect to the correlated ground
state, ¥, ; that is,

oo+ Dem o L O v Y. (89)
i i
m m';:

0,0°

Inserting the rhs of Eq. (17) into this expansion (i.e.,
approximating ¥, by the function which includes intra-
ethylene closed shell double excitations), we obtain

= (codo+do Z i Ofs +Co Z d, D,
fom *

0! ona’ mo L]
+dy iz; iaje Olator +; ‘E ¢la dy Ofg Dy
"

men [
o
+Z Z ciore dyOfgre Dx+"') b . (35)
k 1Y}
men
[ X 4

It is clear that the function includes single, double,
triple, and quadruple,... excitations with respect to the
SCF ground state, By employing this expression, a

CI calculation with a larger basis

{4"01 OTG "’o: olﬂ' ‘l’o: dl"oDkwo’ vn’ Dn‘l’o: '“}
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is reduced to one in which the secular equation has the
dimension of the smaller basis

{%o, 07 %, Oy ¥,...}. (38)

To reduce the CI matrix, the calculations have been
done with a spin-symmetrized basis of singlet and triplet
configurations; for example, a single excitation has the
form

1,3 gm m1,3 NT [y

Sy =N POr W)= (O F O ), (3T)
where the upper sign (-) is for the singlet state and the
lower sign (+) is for the triplet state. In what follows
we assume that spin-symmetrized configurations are
being used, though we drop the singlet (triplet) super-
scripts unless they are required for clarity,

Given the basis in Eq. (37), the excited state wave-
function can be written

IW>=§ PR (38)
which is equivalent to
IW>=§; NPgr go) d,D, |47y , (39)

(r#i, m)
where " is given by Eq. (12) and the g7' are the expan-
sion coefficients; -they are normalized to

& et

(40)

The elements of the Hamiltonian matrix are

AR HE N:wz{dw. (2|9}

N
+ g; dydy (U | HD,+ Dy H|¥S)  (41)

N
> d.d.<wrln.1w.lw:>} :
Each one of these elements is seen to incorporate 1+2N
+ N%=(N+1)® matrix elements; that is one CI matrix
element between single excitations (i.e., the one cor-
responding to use of an SCF ground state), 2N matrix
elements between single and triple excitations, and N z
matrix elements between triple excitations; e.g., for
octatetraene (N=4), there are 25 elements.

A. Analysis of the method

The expansion of the excited-state wavefunctions in
terms of the renormalized configurations |¥7) is an ap-
proximation to a CI calculation which includes all single
and certain triple excitations; we write the [S+T']-CI
wavefunction in the form

=2 faloar, (42)
where
| D)= |97)  for k=0,

[Dy¥7)=[¥TR) for k20,
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and |9]'), Y7oy are spin-symmetrized single (m=1)
and triple (mkk - ikk) excitations. The single excitation
coefficients 7, (k=0) have N2 degrees of freedom and
the triple excitation coefficients f7}, (k+0) have N3 de-
grees of freedom. In the approximate CI method, the
triple excitation coefficients are assumed to be equal to
a product of single and double excitation coefﬁclents
[compare Eq. (39) with Eq. (42)]; that is,

fh=NPgldy (43)

so that the degrees of freedom are N%+ N (N? for g and
Nfor d,). We term Eq. (43) the “cluster approximation”
in analogy to the cluster expansion of Sinanoglu® for the
ground-state correlation problem. The equation implies
that the ratio of triple and single excitation coefficients
in Eq. (42) can be written

(fih: flo)=(dy:dy)

independent of i and m,

(44)

" An additional approximation is made by choosing the
d, to be the same as the correlated ground-state wave-

- function coefficients; that is, the electrons not directly
involved in the excitation are assumed to be unaffected
by it. The latter assumption brings the degrees of free-
dom down to N2, the same as in an ordinary [S]-CI ex-
pansion.

To examine the coupling between excitations, we ex-
pand the CI element for the function | D,¥*) as

_<D..¢:'lifln, Y=@T | B|9%) 8+ (Dy | H| Dy ) 64 8,y
+(D 7| V| D%y, (45)

where H is the CI Hamiltonian [Eq. (13)] and the two-
electron operator ¥ is defined in terms of its matrix
elements (the singlet (triplet) matrix elements go with
the upper (lower) signs)

LD, ¥7| V| Dy ¥5) ={2(kk| mn) - (kom | k) ~ 2(kk | man)
+(km | kn)} 6, 8,y +{2(kE| ) — (i | kj) — 2(kE | )
+ (R | R} Oy Or +{(R | 10) (R | 1) - (2 | 1)}
X 8y 8;1 84y 8yp (1 = Gyy)
for k+0 and 1#0,

(46a)

LD, p7| V| D, 93 ={(i |jn) + (i) in) = (in i)} 8,0
- (llljl) 5;4 Oy — (lﬁ’ 1) 6,4 6, (46b)

for k=0 and I+ 0 ( a corresponding expression in which
k, i, mareinterchanged with I, j, n, respectively, holds
for k#+0 and 7=0), and

YYDT| VD3 =0 (46¢)
for k=0 and I=0. The matrix V represents the re-
maining terms coupling the excitations, If this coupling
is much smaller than the other terms in Eq. (45), the
cluster approximation is valid. We consider this pomt
further in Sec. V.

To examine the partitioning of the energy contribu-
tion and the nature of the approximation in the re-
normalized CI treatment, we use Eqs. (42), (43), and
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(45) to write the excited state energy expressions in the
form (all quantities are assumed real for simplicity)

Epgec1 = E NP N gl gl dydy (D YT | B| Dy 9%

iomk
Jomd

=§{g?g?<¢rlﬂlw7> Zﬁm dﬁN?N?}
!:n ) *(’l:")
+§{<Nr)=<gr>= )3 <D.¢.,Iifln.¢o>d.d,}

(#i,m)

+Z Z: NTNjgTeiddi(Dy¥7 ‘V!Dl¢ )
i,m R(#,m)

Jin 1(#4,n) (47)

In the renormalized CI method, the excited state energy
and wavefunction are obtained from Eq. (47) by assum-
ing the d, to be known from the correlated ground state
and minimizing with respect to the coefficients gi'. We
justify this approximate procedure in what follows, If
we assume [see Eq. (31)]

2. dNTN3=1

4 fom

.(* don )
the first terms of Eq. (47) correspond to the energy ex-
pression in the {S]«—CI basis and has a minimal value
when the coefficients g7 are equal to the [S]-CI coef-
ficients A7,

V= Z kY OF %, .

(48)

A small difference between g and A} is expected due to
the normalization correction [first term of Eq. (47)],

the coupling with the ground state correlation [second
term of Eq. (47); see below] and the matrix ¥ [third
term of Eq. (47)] all of which are accounted for in the
renormalized [S]-CI calculation. The first term of (47)
is approximately equal to the [s]-CI energy expectation
value Eg_or. Its small deviation from Eg_c; will be
called the renormalization correction of Eg_¢cr, "Ag_cr1;
it is given by

TAg_cr= Z{g;"g}'(zp}"ll}ldl}') Z di(NrN';)}'Es-cx .
- a(esm :
' (49)
The second term in Eq. (47) may be separated into
two contributions,

Z{(Ni")z(gf‘)z ; (D.¢OII}ID,¢°)ﬁ.d,}

(#8,m)

(50)
? zc(i’ m, k) €y -

Z(N

=By D (NP -
. fom
ﬁrhere E, is the correlation energy of a ground-state

wavefunction of the form given in Eq. (17). It is given
by the expression

Ey= ?;d,d,<z>.¢.,|1’zlo,¢o> .

J. Chem. Phys., Vol. 68, No. 5, 1 March 1978



Ohmine, Karplus, and Schulten: Excited states of polyenes

Since
(ol H|45)=0
and
(Da‘l’olii,Dx ¢°)=6,,,(D.¢olf.llD.%)

for k#0 and I+0, we can write
N

E0=Z €y

k=l

(51)
where ¢,, the correlation energy of an ethylenic unit, is

€h={(¢olf1|Dnd’o>
+<Dk¢o’i1|‘/’o>}dodn+<Dn‘l’olf-I]D;%)di .

If we set 3, .(NTY(gT)¥ =1, the first term in Eq. (50) is
approximately equal to E,. Thus it is a reflection of the
ground-state correlation energy in the excited state.

The small deviation from E, will be called the renor-
malization correction to E,, TA,; it is given by

A= E, 2 (N?)z(gi")z-Eo . (52)

fem

The ground-state correlation energy of the ethylene
units that are involved in the excitation (m- i) are not
present in unaltered form in the excited state. The re-
quired correction to E, is given by the second term in
Eq. (50); it contains the factor G(i, m, k), which has the
form

) 1 for k=ior k=m
G(i; m, k) ={ : T e
0 otherwise

It introduces a correction corresponding to the correla-
tion energy of an ethylene unit, €,, for the one unit
(k=i=m) or for each of the two units (=7 and k=m)
involved in the excitation., To simplify the term, we
assume, as suggested in Sec. III. B, that €,=¢ (indepen-
dent of %) and write it in the form

Ep=—€ 3, (NPR(gPF LG, m), (53)
. iym
where
( \ L fori=m )
L(i, m)= 54
’ 12 for iz m ¢

This contribution is termed the “Pauli exclusion energy”
since it is the exclusion principle which forbids these
excitations, which would have contributed to the correla-
tion energy. The term is larger (E,= - 2¢) if the ex-
cited states consist mainly of the interethylene excita-
tions [i# m, L(i, m)=2], while it is smaller (Ep= —¢)
for the states consisting mainly of intraethylene unit
excitations [i=m, L(i, m)=1].

The last term in Eq. (47)
Eg= Z

f,m  A(Fiym)
Jyn W#i,m)

NP Ny gl gidyd (DT 7| DY) (55)

accounts for energy contributed by the coupling between
triple excited configurations [Eq. (46a)] and between
single and triple excited configurations [Eq. (46b)].
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From the development in the preceding paragraph,
the entire energy expression [Eq. (47)], which corre-
sponds to the energy with respect to the Hartree-Fock
ground state as zero, can be written

Epgec1™ Eg c1+N€+Ep+ Eg + Ag_c1+74y . (56)
Thefirsttwo terms, whicharedominant, are minimized by
the coefficients (47, d,). Use of (g7, d,) in the Egg.cy
corrects for the remaining terms in Eq. (56) under the
assumption that the d, can be employed for the excited
states, Corrections to the coefficients d, are accounted
for by the [S + T'}-CI calculation; that they are small is
demonstrated in Sec. V.

From Eq. (56) the excited state correlation energy ac-
counted for by a renormalized S—CI calculation is

Ros?(:; = N€ +4, ) (57)
where 4, the “rearrangement energy” is given by
A=Ep+Eg+"Ag_cr+"Ay . (58)

It corresponds to the difference between the ground-
state and the excited state correlation energy. In the
excitation energy, the ground-state correlation energy
(Ne) of the excited state cancels with the correlation en-
ergy of the ground state and we obtain a net excitation
energy

(59)

where Eg_c, is the energy (relative to the SCF ground
state zero) in the S~CI calculation, Since A>0 in
general, the excitation energies obtained from the re-
normalized [S]-CI calculations are larger than those
from the [S]~CI calculations.

AEps.c1=Es_c1+4,

B. Extensions of the method

Some straightforward extensions of the method are de-
scribed here,
1. Double excitations

To extend the renormalized CI method to include
“elementary” double excitations in the excited state,
we write

W7 = N7 OFF [ %) (60)
where the normalization factor N7} is defined by
N
WwErt= 2 di<t (61)
ka0
(k#, §omym)

and the operator Oy is the spin-symmetrized double-
excitation operator. Analogously to the [S+D]-CI ex-
pansion wavefunction

[9) = ko |90) + Zomlerye 2wl

v fomen

(62)

the wavefunction of the excited state is expanded in the
renormalized CI basis given by Eqs. (37) and (60). Ithas
the form

2 egmlemy,  (63)

1 Jymyn

IW>=golwo>+‘Zm)grlwr>+
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where the /’s and g’s are expansion coefficients. The
renormalized CI basis in Eq. (63) is not orthogonal;
restricting ¥, to closed-shell double excitations [Eq.
(17)], we have the nonzero overlap

(Folupry= Z.Zd.do<v.¢o|¢:'}">

=dydobyy O Oy . (64)

Neglecting the small overlap contributions to the matrix
elements, the energy expectation value (relative to the
Hartree~Fock ground state) in the renormalized [S+D]-
CI basis expansion can be written approximately as

Egsyp3-c1 = Espimct + NE+ Ep

+Ec+"Ag,pi-c1+ 4, (65)
where the Egg,pi.c1 i8 the energy (relative to the SCF
ground state as zero) obtained from the [S +D]~CI cal-
culation, The Pauli exclusion energy E, in Eq. (65) is
given by
Ep=c| & (NDHE LG, m)
sm
(66)

v 2 (NI MG, 5, m ),
iydymyn
where L(i, m) is defined in Eq. (54) and M(3, j, m, n) is
defined as

1 ifi=j=m=n
2 if three indices of i, §, m, n, are
equal or i=m, j=n, or i=n, j=m
3 if two indices of i, j, m, n are equal
4 if no indices of i, j, m, n, are equal ,
(67
The quantity E. in Eq. (65) is the analog of E, given in
Eq. (55) and describes the coupling among single through
quadruple excitation, The coupling matrix has a much
more complicated form than Eq. (46) and is not pre~
sented here, The renormalization energies "Ag,pioct
and "A, in Eq. (65) are the analog of those given in Egs.
(49) and (52).

For the calculation of -the excitation energy, the
ground-state correlation energy (Ne) of the excited state
cancels with the correlation energy of the ground state,
and there results the expression

M, j, m, n)=

AEgs.piec1 = Empi-c1+4 , (68)
where A is the rearrangement energy
A=Ep+E;+"Ap,prmc1+ 4g - (69)

The divergence difficulties of the excitation energies in
the [S+D]-CI basis (see Sec. III. B) are removed in the
renormalized R[S +D]-CI representation, because of
the cancellation of the correlation energy (Ne) between
the excited and ground states. If the rearrangement en-
ergy A is neglected, the excitation energy AE g, pj—cy iS
equal to the energy relative to the SCF ground-state en-
ergy as zero (Eg,pj-c1)- This approximation has been
employed previously. %

Ohmine, Karplus, and Schulten: Excited states of polyenes

2. De-excitation from ground state double excitations

In the correlated ground state [Eq. (17)], virtual or-
bitals are occupied due to the contribution of double ex-
citations., Hence, in analogy with the random phase ap-
proximation, 1*~18 “excitations” can be introduced which
“promote” electrons from the set of virtual to the set
of orbitals occupied in the Hartree—~Fock ground state.
The contributing terms have the form

O] | %) =6,,0l D, |4, (70)

where ¥, is the correlation ground state and Or is the
symmetrized de-excitation operator,

1'35?=(1/\[2—)(b;.b!._n*b35 bﬂl) . (71)

These excitations are identical to single excitations from
the SCF ground state 019,). This expansion (termed
R'S~-CI) introduces N degrees of freedom in addition to
the N? degrees of freedom of the RS—CI method. These
make the amplitudes of the single excitations O} ¢, inde-
pendent of the triple excitation amplitudes O! D,¥,; that
is,

(f:;iﬁo)*(dh3do) (72)

instead of Eq. (44).

If open shell excitations are included in the ground-
state configuration, the de-excitations involving two
ethylene units

5;" I'I’o) (i#m)

are also possible in the correlated ground state. The
total degrees of freedom are 2N? and the ratios of the
single and the triple excitation amplitudes all become
independent. This is equivalent to the CI expansion,

(73)

0= T aralvnye 2 Fr{ 3 4 lomn)

where d’s are fixed as the ground-state wavefunction co-
efficients. The g and g7 for single and triple excita-
tions, respectively, are determined by minimizing the
energy. The coefficients are independent in this case,
in contrast to the cluster approximation [Eq. (43)],
where they are identical; that is,

Er=27.
If the cluster approximation [Eq. (43)] is valid, the ef-
fect of these de-excitations [Eqs. (70) and (73)] is smalil.

V. RESULTS

In this section, we apply the renormalized CI method
to the 7-electron spectra of polyenes in order to test
the assumptions involved and to demonstrate its accuracy
for these systems, '

A. Test of assumptions

To test the validity of the renormalized CI method,
we consider the 1'B% and 1°Bj, state of octatetraene,
whose eight 7-electron system is sufficiently large to
yield significant results. As we have seen in Sec. 1V,
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TABLE VII. Comparison of {S+T’]~, R[S]-, and [S]—CI coefficients.®

3B, state !B, state

Excitations® [S+T]1® RIS [s] [s+T)°®  RIS) [8)
i~m ¥ ‘e K YT ‘e '
1-1 0.3041 0.3057 0.2968 0.2668 0.2676 0.2707
1-2 0.1941 0.1928 0.2000 0.2425 0.2421 0.2451
1-3 -0.1047 -0.1031 -0.1119 -0.1509 -0.1503 -0.1550
1—4 0.0481 0.0471 0.0531 0.0781 0.0777 0.0821
2—~1 —0.1941 -0.1828 ~—0.2000 ~0.2425 -—0.2421 ~-0.2451
2-0_2_ -~0.4971 -0,4988 —0.4891 —-0.4108 —0.4119 -0.4012
2——_§ 0.2466 0.2449 0.2546 0.3012 0.3006 0.3013

-0.1047  -~0.1031 -0.1119 -0.1510 ~0.1503 ~0.1550

2~1%

30hno parametrization.

PLocalized orbital basis, the absolute magnitudes of the wavefunction coefficients

for i— m and m —i are equal, i.e., |f§l=1f}1.

“The coefficients 1'% 7 are normalized as X;,,,| %7, 12=1 for comparison with

135" and "sh;".

there are two conditions on the excitation coefficients
involved in the renormalized CI calculation. The first
is that, if the R[S)-CI calculation is a good approxima-
tion to a single plus triple CI (S +T’']-CI) calculation,
the single excitation coefficients g [from R[S]-CI; Eq.
(38)] and f7 [from [S+T']-CI; Eq. (42)] should be simi-
lar to each other and close to the coefficients 27" from
an [S]-CI calculation, In Table VII we list these
coefficients and find good agreement among them for
both the 1B} and 1°B} states. . The other condition
on the validity of the R[S]-CI calculation is that the
triple excitation coefficients obey the cluster approxima-
tion [Eq. (43)]. This requires that f7/fTh=d,/d,;
that is, the ratio of triple to single excitation coef-
ficients must be independent of ¢ and m and depend only
on the ground-state excitation k., This relationship is
tested in Table VIII, which presents the ratios /7, /f ™
obtained from the [S+T'] calculation and d, /d, from the
ground state [Eq. (17)]. The agreement is found to be
excellent for the 1°B, state; the only exceptions are the
configurations in which the single excitation “crosses”

R’[S]-CI basis, which includes both the basis of Eq.
(37) and the de-excitations defined in Eq. (70). Only a
small improvement over the R[S]~CI results is found,
though the changes are somewhat larger for the singlet
than the triplet states. The inclusion of virtual to oc-
cupied SCF -orbital excitations has only an unimportant
effect on the excitation energies in the renormalized CI
method, This contrasts with the RPA calculations, 1418
in which de-excitations play an essential role by in-

- troducing the required self-consistency. . This difference

between the present method and the RPA method will be
discussed elsewhere,

B. Spectra of polyenes in the renormalized single Cl
basis

We have used the R[S]~CI basis to evaluate the 1°B?,
1343, and 1 1B} excitation energies for the polyenes

TABLE VHI. Test of the cluster approximation, Eq. (43).2

the double excitation as depicted in Fig. 7. For the Excitation® V1%
11BY, state theulagrlee;'nenl;1 ofdtheb{atiosi:tisignzifzicaznzﬂy i kk—mkk 3B, 1B, dy/d
worse, particularly for the double exc on 22«22,
» P y = 211-211 0.1275 0.1004
The energy levels an? excitation en.ergxes obtamgd 211-311 0.1300 0.1110
from R[S]}-CI and [S+T’]-CI calculations for butadiene,
hexatriene, and octatetraene are compared in Table 211411 0.1311 0.1156 0.1369
IX. The agreement is excellent for the 13B?, state and 311-311 0.1365 0.1268
s 1D+ H
only slightly worse for the 1'Bj3, state. Th_e discrep- 311—-411 0.1390 0.1296
ancies depend only weakly on polyene chain length. -0
Table IX also contains energy values obtained with the 411—411 0.1382 0.1336
122—~122 0.1169 0.0574
‘ 122—-322° 0.0537 0.0797
1 2 % 'L 3= i 4 122—-422° 0.0652 0.0848 0.1220
PP ) 322—322 0.1154 0.0752
l_t_es’/z o6 3 # | 4—H— 322—-422 0.1159 0.0825
: 422—~422 0.1213 0.1002
FIG. 7. “Cross over” excitation in octatetraene; the single
excitation (3 - 1) crosses over the double excitation (22~ 22) 20hno parametrization. °See Fig. 7.

in the triple excited configuration (322--122).

®Localized orbital basis.
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TABLE IX. Comparison of excitation energies (eV) from R[S]-
and [S+T"]-CI calculations.? .

Polyene R’[S]- {S+T']-

length (N) R[s}-CI® cCI™® cr (sl-c1 [Cl-c¢
3B, state

2 2.8059 2.8049  2.8049 2.5182  2.7161

3 2,3683 2.3675  2.3645 2,0759  2,2256

4 2.1376 2.1371  2.1321 1.8468 ces
1B, state

2 5.8926 5.8672  5.8672 5.4654  5.8022

3 5.1230 5.1026  5.0890 4.633¢  5.0254

4 4.6276 4.6125  4.5908 4.1118 oo

20Ohno parametrization.

YGround state energies are evaluated from the [D']—CI ex-
pansion, Eq. (17).

°R’{S]—CI calculation on the basis expansions Eqs. (37) and (70).
4CI calculation with the complete excitation basis.

ConHopuzs N=2,3,..., 9. These states were chosen be-
cause they are well known to be dominated by single ex-
citations from the Hartree-Fock ground state, The re-
sults from the S—CI and R[S]-CI calculations are com-~
pared in Fig. 8(a) [Ohno parametrization, Eq. (3a) and
in Fig. 8(b) (Mataga-Nishimoto parametrization, Eq.
(3b)]. These figures give evidence for the importance

of ground-state correlation in the excited states and for
the effectiveness of the renormalized CI method. In the
figures the exact ground and excited state energies ob-
tained for butadiene and hexatriene from complete CI
calculation are also given. The difference between the
complete CI and the R[S]-CI energies is due mainly (i)
to the missing open shell configurations in the correlated
ground-state wavefunction ¥, and (ii) to the neglect of
double excitations in the excited states.

Figures 8(a) and 8(b) also illustrate that the excited
state correlation energy increases linearly with the num-
ber of 7 electrons, in accord with Eq. (57) and the fact
that the rearrangement energy A is relatively indepen-
dent of chain length (see Sec. IV and below); for A equal
to a constant, Exi..; increases as Ne¢, where € is the
correlation energy of a single ethylene unit. Since ¢ is
larger in magnitude in the Mataga—-Nishimoto parame-
trization than in the Ohno parametrization, this is re-
flected in the correlation corrections of the excited
states in the two parametrization. Because of the can-
cellation expected between the ground and excited state
correlation energies, the difference between the cal-
culated excitation energy obtained from the R[{S]-CI and
[S]-CI methods is equal to the rearrangement energy A
[Eq. (59)]. In Figs. 9(a) and 9(b) we plot the R[S]-Cl
and [S]-CI excitation energies and confirm that A is
weakly dependent on polyene length. It can be seen that
the S—-CI and R[S]}-CI calculations behave similarly with
chain length but that the latter are much closer to the
correct excitation energy than the former,

The analysis of Sec. IV showed that the rearrangement
energy A consists of three terms, the Pauli exclusion
energy E,, the coupling energy E;, and the renormaliza-

Ohmine, Karplus, and Schulten: Excited states of polyenes -

tion correction, "A("A="Ag+"Ag_¢y). In the first column
of Table X under the heading R[S]-CI are listed the val-
ues of these three terms for butadiene, hexatriene, and
octatetraene (N=2, 3, 4). We can see that the Pauli ex-
clusion energy E, makes a larger contribution to A than
do E, and "A, and is larger for the 1!Bj state than for
the 13B} and 1°4% states. This difference is due to the
greater contribution of interethylene excitation to the
delocalized 1!B state. For an interethylene excita-
tion, the Pauli exclusion energy is —2¢ and for an in-
traethylene excitation the Pauli exclusion energy is —¢,
where, by definition € <0 (see Sec. IV). Since the ex~

(a)

3L
A1 J 1 1 1 i 1 1 N
2 3 4 5 6 7 8 ]
E levV]
(b)
T

2 3 4 5 6 7 8 9

FIG. 8. Energies for the 1'4; (gr), 1°B}, 14}, and 1!B} ex-
cited states in the linear polyenes C,y Hyy,, relative to the SCF
ground state as zero; {—--), [S]-CIL; ( ), R[S]—CI; (memme),
[C]=CI. (a) in the Ohno parametrization and (b) in the Mataga—
Nishimoto parametrization.
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TABLE X. Pauli exclusion energy Ep, coupling energy Ec, and renormalization
energy "A (eV).*

cf‘fength ' Ep/(~€)+Ec/(—€)+TA/(=¢€) Ep/t-e)
polyene(N) State R[S]-CI [S]-CI {S+D}-CI
2 ’B, 1.216-0.037+0,056 ° 1,236 —0,028+0.044 1.280
3 ’B, 1.302-0,011+0.100  1.330+ 0,008+ 0,080 1.416
4 ’B, 1.346+0.010+0.115  1.377+0,036+0.090 1.494
2 54, . 1.020+0.233-0.047  1.020+0.233-0.047 1,007
3 A, 1.140+0.119-90.019  1,152+0,122~0,025 1.209
4 ‘a4, 1.224+0,076+0.0011  1,244+0.085+ 0,002 1.333
2 'B, 1.365+0,422+0.047  1.386+0,417+0.039 1.407
3 ', 1.495+0.706+0.106  1,513+0,702+0.099 1.560
4 ', 1.557+0.876+0.138 1,572+ 0.873+0.132 1.644
2 14, . 1.983
3 ', 2.146
4 1a, 2.253

20Ohno parametrization; for definitions, see text. The single ethylene correla-
tion energy €=-—0.233 eV for butadiene, —0.215 eV for hexatriene and —0.204
eV for octatetraene. "A="Agcy+"Aq-

4E fev] (o) cited state is a superposition of inter- and intraethylene

excitations, the Pauli exclusion energy [Ep /(= €) has a
e ) B value between 1 and 2. It is closer to 2 for delocalized
states, like the 1!BY, state, and it is closer to 1 for
localized states, such as the 1°B} and 1°A} states.

The coupling energy [E. /(- €)] is always found to be
smaller than the Pauli exclusion term. Its contribution
is significantly larger for the 1!B, state than for the
triplet states. The term is made up of 77 couplings
[Eq. (46(a)] and S-T couplings [Eq. (46b)]. Table X1
lists the magnitudes of the individual contributions to the
coupling energy E. for hexatriene. It is clear that the
S=T coupling contributions are significant, while the T~
T couplings are negligible, Comparing the 13B? state
with the 11B?, state, we see that the S-7 terms make a
small contribution to the former primarily because of
cancellation. Elements of the T-T coupling term in Eq.
(46a) can be significant only when m=» and i=j, Then
the terms in the first two parentheses represent the
Coulomb and exchange interactions of the closed shell
double excitation (kk - kk) with the particle state m and

TABLE XI. Coupling and renormalization energy contribu-
tions for hexatriene (eV).*

T-T{Eq. (46a)] S~T [Eq. (46D)]
(1st+ 2nd) 1st
State +3rd term +(2nd+3rd) term  "Ag.cy A

aB,, 0.005~0.002 -0,052+0,046 0.036 ~0.014
’A, 0.003+ 0,000 0.009+0.013 0.009 -0.013
0 L L L 1 1 1 1 1 N ’B,, 0.005-0.004 0.092+0.058 0.039 —0.016

)
w
EN
3]
o
~
@
©
J

FIG. 9. Excitation energies corresponding to Fig. 8. *Ohno parametrization.
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with the hole state i. The total contribution from the
Coulomb terms cancels,

2(kk| mm) — 2(kk | mm) + 2(kk | i) - 2(kk| i) =0

and only small exchange terms remain, The third term
in Eq. (46a) is also small; thus the T-T coupling is
negligible,

The renormalization energy corrections, "A, and "A,
[Eas. (49) and (52), respectively], are also listed in
Table XI. We can see that these energies are of the
same magnitude as the S—-T coupling energy. Since "A,
and "A, have opposite signs, their total contribution is
less than half the value of the coupling energy E, (except
for 13B7, state for which the value of E, is very small),
In a subsequent paper we use this result to formulate a
simple approximation for the calculation of excited
states. 28

C. Estimate of the rearrangement energy

The rearrangement energy A is the entire correla-
tion correction to the excitation energies [Eq. (59)].
is, thus, a quantity of great interest. The calculations
described in the previous section have demonstrated
that the rearrangement energy is relatively constant,
independent of chain length. This is the fundamental
reason for the fact that appropriately parametrized
single-excitation methods work as well as they do for
polyenes. The results given here suggest a simple
approximate method for the direct evaluation of the re-
arrangement energy A, We have seen (Table VII) that .
the coefficients of the renormalized R[S]~CI expansion
g™ are close to the [S]—CI coefficients 2. This allows
a direct evaluation of the rearrangement energy A on the
basis of a [S]-CI calculation; that is, E,, E;, and TA
can be evaluated from Eqgs. (53), (55), and (46), (49),
and (52) by replacing the R[S]-CI coefficients g} in
these equations by the [S]-CI coefficients 2. The re-
sults obtained are given in Table X under the heading
[S]-=CI for butadiene, hexatriene, and octatetraene. The
agreement between the approximate and exact R[S]-CI
results is excellent, This illustrates that it is possible
to account for the effect of triple excited configurations
on the excitation energies solely on the basis of a knowl-
edge of the [S]-CI coefficients 2" of the excited states
and ]the [D ]-CI coefficients d, of the ground state [Eq.
amn).

In a calculation including single plus double excita-
tions, the wavefunction coefficients of the renormalized
[s+D]-CI expansion are expected to be about equal to
those of the [S+D]~CI expansion. This suggests an ex-
tension of the above ideas to the evaluation of Ep, Eg,

*Ags.pi-ct 2nd "A, from Egs. (66) and (69) by replacing
the R[S +D]-CI coefficients g and g ¥ by the [S+D]-CI
coefficients 27" and k]7, respectively. The Pauli ex-
clusion energy E, has been computed in this way, and
the results are listed in the last column of Table X. The
coupling energy E. has not been included because of the
difficulty in evaluating the complicated matrix elements
of V. The Z‘A' state is found to have a large Pauli ex-
clusion energy [EP /(- €)=2,0], since this state con-
sists mainly of double excitations involving two ethyl-

Ohmine, Karplus, and Schulten: Excited states of polyenes

ene units [M(4, j, m, n)=2,0 in Eq. (67)]; the dominant
contribution is from two ethylene units each excited to
a triplet state (see Sec. II.A). It can be seen from
Table X that for the 1383, 1°4%, and 1!B}, states
there is a very small difference between the [S]-CI and
[s +D]~CI values for Ep, since these states have very
small contributions from double-excited configurations.

D. Exponential potential

To test the renormalized CI method for different
values of the correlation interaction, the exponential
electron repulsion formula [Eq. (3c)] wasused.® There-
sults of [s]-C1, R[s]-cI, [s+T']-C1, [S+D]-CI, and
complete CI calculations on hexatrxene are nresented in
Table XII, for Dy=16, 4, 2, 0.5 A, At Dy=16 A (long
range potent1a1 SCF hmxt) the ground-state correlation
is small and the excitation energies for the 1B}, 13A’

1 13‘ states resulting from all methods are very SImllar.
For smaller Dy (Dy=2, 4 A, increased correlation), the
[S]-CT calculations predlct exmtatlon energies which are
too low, and the R[S]-CI and [S +T']-CI calculations
yield values which are in excellent agreement with each
other and quite close to the exact values. Finally, in

the limit of very strong correlation (Dy=0.5 A), higher
order contributions become important and the R[S]-CI
method and [S +T']-CI calculation yield too small a cor-
relation energy.

E. Transition moment and oscillator strength

The renormalized [S]—-CI method can also be applied
to an evaluation of the transition moment and the oscil-
lator strength of the transition between the ground state

TABLE XII. Hexatriene excitation energies (eV) for exponen-
tial repulsion.?

Dy/R  state [S]-CI R{S]-CI [S+T']-CI  [S+D]-CI exact
4, (gr)® 0.0  (~0.05)  (~0.05) (=0.10) (=0.10)
1 *B, 2.01 2.04 2.04 2,02 2.00
*a, 3.84 3.87 3.86 3.89 3.86
B, 3.08 3,12 3,11 3.10 3.09
t4, (gr)® 0.0  (~0.58) (~0.58) (=0.83)  (~0.87)
4 3B, 1.47 1.76 1.76 1.94 1.63
4, 3.00 3.27 3.26 3.60 3.25
‘B, 4.24 4.70 4.64 4.74 4,58
4, (gr)* 0.0  (~1,88) (~1.58) (-1,95) (~2.17)
2 3B, 0.72 1.35 1.34 2,51 1.34
4, 2,09 2.72 2.72 3.65. 2.75
!B, 4.64 5.72 5.69 6.06 5.78
4, (gr® 0.0 (~4.00) (-4.00) (~4.75) (~5.94)
B, -1,09 0.07 0.04 2.63 0.93
0.5 4, 0.46 1.87 1.86 411 1,98
‘B, 4.07 6.51 6.50 7.68 7.45

*Repulsion defined in Eq. (3c), for this calculation, we assumed
all bond lengths equal (1.397 A).

®Ground-state correlation energy; R[S]— and {S+ T’]~CI results
are obtained for the ground state expansion in Eq. (17).
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FIG. 10. Absolute square of the transition moments in the
linear polyenes C,y Hay,, with Obno parametrization. (—--),
{S]-CI1; ( ), R[S}=CI; (==}, [S+D]«CI; (=), [C]~CI.

and the lowest optically allowed 11B}, state, The transi-
tion moment is defined by
M=(¥('B))|r|¥) (74)
where r is the dipole moment operator (in R) and ¥, and
¥(*B,) are the wavefunctions of the ground and the 1'B?},
state, respectively. The transition moments for the
polyenes Cyy Hay,2 (N=2, 3,...9) evaluated in the [S]~CI
and the R[S]~CI basis are presented in Fig. 10. The
[S+D]~CI and complete-CI results for the small poly-
enes are also shown. One observes that the [S]-CI cal-
culation overestimates the transition moment, while
the [S+D]-CI calculation yields almost the exact results
at least for small polyenes. The R[S]-CI results are
between these two sets of values.

Both ground and excited state correlation effects are
important for the transition moment. Within the PPP
formulation, the valence-bond description of the optical-
ly allowed 1®B¢, state consists purely of ionic structures.
This means that orly the ionic components in the ground
state couple with this state through the dipole operator
r. Since the ionic components of the ground state are
overestimated in the [S]~CI calculation (i.e., in the
SCF ground state), the [S]-CI basis yields too large a
transition moment. The correlation effects inthe ground
state ¥, introduce more nonionic structures (covalent
structures) and thus decrease the transition moment.
The correlation effects in the 1!B? state also tend to
lower the transition moment. In the R[S]-CI basis, the
important correlation effects of the ground and 1 ‘B
states are included by certain double and triple excited
configurations (D" and T'), respectively; the [S+T']-CI
results are very close to those from the R[S]-CI cal-
culation, The R[S]-CI and [S+T']~CI basis provide a
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smaller transition moment than the [S]~CI basis, but
the results do not yet agree with the exact values. This
error of the R[S]-CI calculation for the transition-mo-
ment can be attributed to the neglect of (i) double excita-
tions in the excited state and (ii) the open-shell double
excitations in the ground state. By examining the [S
+DJ]—CI results, we found that these two types of cor-
rections are both important,

The oscillator strength is given by
f=0.869 AE|M|?, (715)

where AE is the excitation energy (in units eV) and | MI?
is the absolute square of the transition moment (in the
units %) defined in Eq. (74). In Fig. 11 we present the
oscillator strength corresponding to the transition-mo-
ment values shown in Fig, 10. As expected from the
results for the transition moment, the oscillator strengths
for small polyenes obtained from the R[S]~CI basis are
in better agreement with the exact values than those from
the [S]-CI basis. However, for larger polyenes (N=6)
the R[S]-CI values exceed the [S]~CI results. This is
due to the fact that the energy factor AE involved in the
oscillator strength [Eq. (75)] is larger in the R[S]-CI
basis than in the [S]-CI basis and the ratio

AEgs 1 /AEs ox

increases rapidly with N. For large polyenes, even the
[S+D]-CI calculations become unreliable, because the
transition energy AE,pi.cg iS too large (nearly diver-
gent as seen in Sec. III. B).

Vi. CONCLUSION

Although a single plus double excitation basis config-
uration interaction calculation ((S+D]-CI) yields a
qualitatively correct energy scheme for polyenes, quan-
titative results require the inclusion of higher excita-
tions. To examine their effect we have expressed the
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FIG. 11, Oscillator strengths corresponding to Fig. 10.
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required configurations in terms of a localized SCF -
orbital basis. The spatial separation of excitations in
the localized orbital description makes it possible to
approximate higher excitations as products of lower
excitations; for example, triple excitations can be
written as products of a small set of single and double
excitations. It is demonstrated by this type of approach
that the most important higher excitations introduce
corrections for ground-state type correlation in the ex-
cited states. To estimate the contribution of these cor-
rections to the excited state energy an approximate CI
method, termed renormalized CI (i.e., R[S]-CI), has
been developed. The essential element of the method in
lowest order is to assume that only singly and triply
excited configurations relative to the Hartree—Fock
ground state are required, to calculate the singly ex-
cited contributions, and to approximate the effect of
triple excitations by assuming that their contribution is
given by the produce of the appropriate single excita-
tion coefficient with the double excitation coefficient in
the correlated ground state. Use of this approach yields
valid polyene excitation energies and their correct de-
pendence on chain length,

An analysis of the renormalized CI method shows that
the correlation in excited states can be expressed as a
sum of the ground-state correlation energy, Ne¢ (where
€ is the correlation energy of one ethylene unit in an
N-unit polyene), and a rearrangement correction A,
Only the rearrangement energy contributes to the ex-
citation energy. Thus, the excitation energy obtained
from the R[S]-CI calculation is higher than the [S]-CI
energy (relative to the SCF ground-state energy) by the
amount of A, Each excited state has a different value of
A; for example, the 13B} and 1%4} states, which consist
mainly of intraethylene excitations, have small A [A
=0, 28 eV (Ohno) for hexatriene], while the 2'4; and
11B¢, states, which involve interethylene excitations,
have somewhat larger A [A=~0,47 eV (Ohno) for hexa-
triene], The fact that A is small and relatively indepen-
dent of chain length (e.g., for the 1!B} state, A=0.43
€V (Ohno) for butadiene and 0. 52 eV (Ohno) for octa-
tetraene) provides a partial justification for the use of
appropriately parametrized [S]-CI methods for poly-
enes,

The excitation energies resulting from the renor-
malized CI calculation are found to be in good agree-
ment with the complete-CI values for butadiene and hexa-
triene. Since the R[S]-CI treatment results in similar
equations of the same dimension as an [S]-CI calcula-
tion, the accurate results are obtained with less work
than in the usual CI approach.

An extension of the present method is possible includ-
ing (i) open shell double and some higher order excita-
tions in the ground state and (ii) “elementary” double
excitations in the excited states, Inclusion of the latter
is essential for the discussion of the relative level or-
dering of the excited 2'A4; and 1! B}, states. Even for the
1°B;, 1°A%, and 1!B; states it is of importance be-
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cause the doubly excited configurations make increasing-
ly significant contributions for larger polyenes.
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