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Abstract:

We demonstrate that important features in the spatial structure of retinotopic
maps, orientation- and ocular dominance columns in the primary visual cortex,
can be explained as the result of a mapping from a five-dimensional feature
space onto a two-dimensional cortical surface under the constraint that (i) the
mapped features vary smoothly along the cortical surface, and (ii) the mapping
is established by an activity-based self-organizing process. We generate our
model maps by using the self-organizing feature map algorithm [1,2], which is
known to implement the above mentioned principles in a biologically plausible
way. We characterize the spatial structure of the model maps by their Fourier
transform and correlation functions, and we study the interaction between both
(model-) column systems, and between them and the retinotopic map. Nu-
merical simulations are supplemented by a mathematical analysis. Results are
compared with experimental data obtained from area 17 of the macaque.

1. Introduction

It has been proposed that the spatial structure of cortical maps results from the requirement of
establishing an appropriate representation of relevant stimulus features along the two-dimensional
cortical surface [3,4]. In the case of feature maps found in the primary visual area(s), these spatial
representations seem to be topographic to some extent, such that neighboring patches of cortex
represent similar stimulus features (or feature combinations) [5-10). Since the number of relevant
features is higher than two, the reverse does not hold, and similar features are not necessarily always
mapped to adjacent regions in cortex. The spatial structure of these maps must be understood as
a compromise, preserving some neighborhood relations at the expense of others.

There are, however, many ways that this can be achieved. In a previous study [11], we investi-
gated the joint formation of a retinotopic projection and an orientation column system under two
additional constraints: (i) the response properties of the cells should vary over the cortical surface
as smoothly as possible (“principle of continuous mapping”), and (i) the spatial structure of maps
must be consistent with a — to some degree random - activity dependent, self-organizing process.

In this contribution we restrict ourselves to a »low-dimensional” version of this model. However,
we extend these investigations along three lines: (i) we include ocular dominance as an additional
feature and present results on the correlation in the spatial structure of both systems, (ii) we
characterize the model-maps by their Fourier spectra and correlation functions and compare the
results with an experimentally observed map from area 17 of the macaque, and (iif) we provide a
mathematical analysis of the model with respect to the origin of the observed feature hierarchy.
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The capability of this model to explain a variety of experimental findings with a small set of
simple rules indicates that, although there are several different mechanisms at work in biological
systems, their effects might be functionally similar, indicating functional redundancy.

Description of the model

In our model, the cortical surface is divided into N x N small patches designated by a position
vector 7, which are considered as units” of a two-dimensional lattice (network layer) with periodic
boundary conditions (to avoid edge effects).

The functional properties of all neurons that are located in a common patch 7 are characterized
by a feature vector Wy associated with each unit #. The components (i5z); are interpreted as
receptive field properties of these neurons. The feature vectors i as a function of unit locations r"’,
describe the spatial distribution of feature selectivity of cells over the cortical layer, i.e. the cortical
map.

In the sequel we will consider the following receptive field properties: position of the receptive
field centers in visual space (7, y), preferred orientation ($7), and two quantities which qualita-
tively can be interpreted as orientation specificity (g7) (see e.g. [12]) and ocular dominance (z7)
(see e.g. [13]). If gz is zero, then the units are unspecific for orientation, and the larger ¢ becomes,
the sharper the units are tuned to their preferred orientation. “Binocular” units are characterized
by z# = 0, “monocular” units by zz — oo. These properties are encoded by the 5-dimensional
feature vectors wy:

Wy = (27, Y greos(2¢7), grsin(2¢7), z7) 0
where the orientation coordinates are given in their cartesian forms (see [12]).

The input patterns presented to the network layer are described by a feature vector also, which
is of the same dimensionality as . Its components,

V= (z, y, gcos(2¢), ¢sin(2¢), z) ?

correspond to the stimulus properties “position in the visual field” (z, y), “orientation” 4, and to
two quantities ¢ and z qualitatively describing pattern elipticity, and the distribution of activity
between both eyes, respectively. Circular stimuli correspond to ¢ = 0, elongated patterns to ¢ > 0.
A “binocular” stimulus corresponds to z = 0, while purely “monocular” stimuli correspond to
z — Zoo.

To generate a representation of features across the network layer, we use the self-organizing
feature map algorithm [1,2]. This algorithm is an iterative procedure. At each step a feature vector
7 is chosen at random according to a probability distribution P(¥). Then the unit &, whose feature
vector Wy is closest to the input pattern #, is selected and the feature vectors in the network layer
are changed according to

Balt + 1) = Falt) + e(OR(F, 5,1)(7 - Felt)) 3
where h(7,5,t), the neighborhood function, is given by:

h(7, 5.1) = exp (=(r — 80)))/oha () = (r2 = 92)*/03a(®)) - @)

Since little is known about the statistical properties of the afferent patterns that drive the map

formation process, we decided to use an "unbiased” probability distribution P(¥) and drew the
patterns with homogeneous probability from the manifold

V={3|zvy‘[01d], ¢€[0,1|’], ¢ < qpat, 1] <zpul}y (5)

i.e. all stimuli characterized by ¢ and |z| smaller than a given value were chosen equally often.
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Fig. 1: (a) Left: Spatial rence Fig. 3: Correla between the
(isotropic neighborhood function). (b) Right: Contour plot of orientation specificity and ocu-
orientation preference (in 16” steps). The borders of the ocular lar dominance values (anisotro-
dominance stripes are indicated by white lines. pic neighborhood function).
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Fig. 2: (a) Left: Spatial distribution of orientation prefer-  Fig. 4: Correlation between the
ence (anisotropic neighborhood function). (b) Right: Corre-  “fractures”, the “yortices” and
lation between ocular dominance values (anisotropic neighbor-  the orientation specificity val-
hood function) and “vortices” and “fractures” of the orientation  ues.

map.

The model provides an intermediate-level desciption of map formation, based on a small set
of simple rules. Although these rules can be derived from developmental principles underlying
activity driven processes {14,15], no detailed assumptions about a "neural implementation” have to
be made. The results® are, therefore, valid for a whole class of mechanisms, which is an advantage in
a situation where there are not enough data available to determine the large number of parameters
a detailed model necessarily must have.

Spatial structure of model maps

Figure 1a shows the spatial distribution of “orientation preference” ¢z (white — black: 0° — 180°)
across the network layer for an artificial map generated with an isotropic neighborhood function.
Units with similar orientation preference form domains of continuously changing orientation, in
which iso-orientation regions are organized as elongated patches ("slabs”). This is even more
visible in Fig. 1b which shows a contour plot of the orientation values for an enlarged section of
Fig. la. In addition Fig. 1b shows the borders (white lines along which zz = 0) that separate

'as long as they are robust against. parameter variations.
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Fig. 5: Two-dimensional Fourier
transform of the orientation coor-
dinates for maps generated with an
isotropic (a) (left) and anisotropic
(b) (right) neighborhood function.

regions of opposite ocular dominance. The slabs start and end at vortices around which orientation
preference changes by 180° in a clockwise- or counterclockwise fashion, and which seem to be
preferably located in the center of the ocular dominance stripes. The slabs originating at these
vortices often cross the border of the ocular dominance stripes at a steep angle, connecting vortices
located in adjacent bands. Neighboring domains have similar slab-orientations, but on a larger
length scale the directions of the domains are distributed isotropically.

Figure 2 shows the spatial distribution of orientation preference ¢ (Fig. 2a) and ocular dom-
inance values z7 (zz < 0: dark, zz > 0: bright) (Fig. 2b) across the network layer for a map
generated with an anisotropic neighborhood function. The black lines in Fig. 2b indicate regions of
high magnitude of the gradient |V#¢#| (larger than 50 per patch diameter) of orientation preference
(“fractures” and “vortices”). Again vortices and fractures exhibit a tendency to lie in the center
of ocular dominance stripes. For maps generated using an anisotropic neighborhood function there
exists a preferred direction along which iso-orientation slabs as well as ocular dominance stripes are
aligned?. Anisotropic arrangement of slabs or bands has been observed, e.g. in the macaque (ocular
dominance [16]) or cat (both systems [9]), the degree of anisotropy, however, might be different
for the ocular dominance and orientation systems [6]. The model as formulated by egs. (3) - 4)
predicts an approximately equal degree of anisotropy for both systems. In order to account for
observed differences the model needs to be extended by introducing an additional parameter.

Figure 3 displays the spatial distribution of orientation specificity (gr = 0: black, g7 =max.
white) for the map shown in Fig. 2a. The borders of the ocular dominance stripes (zz = 0) are
marked by black lines. The network layer shows a tendency to segregate into “binocular” regions
with higher orientation specificity and “monocular” regions with lower orientation specificity. Evi-
dence for the occurence of such segregation in the macaque was recently found [17,18]. A comparison
between Figs. 2b and 3 already indicates a correlation between “fractures” and “vortices” with
regions containing units unspecific for orientation. This is more explicitly demonstrated in Fig. 4
where regions of high magnitude of the orientation gradient | V¢ (white lines), are superimposed
onto a map of orientation specifity g~ (Fig. 4 correponds to the map shown in Fig. 1).

Figure 5 shows the two-dimensional complex Fourier spectrum

Wy = E eii‘.?q;r(cos(2¢7) + isin(2¢7)) (6)
F

of the orientation coordinates ws and wy, for maps generated with an isotropic (Fig. 5a) and an
anisotropic (Fig. 5b) neighborhood function. The origin of the E-plane is marked by a dot. Each
pixel corresponds to a single mode k and its brightness indicates the mean square amplitude "z’EP
of the mode . For an isotropic neighborhood function the orientation map is characterized by wave
vectors from a ring shaped region in the Fourier domain (Fig. 5a), which becomes eccentric with
increasing oy /o, (Fig. 5b) until the ring dissolves into two separate groups of modes. Phases
are random. Further analysis shows that the feature coordinates wpy, wy and wps as a function of
unit coordinates 7 are all characterized by either a ring shaped or by a two group-Fourier spectrum.

2Hawever, if the iso-orientation slabs cross ocnlar dominance horders they still do it at steep angles
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This indicates that a random superposition
of long-crested waves (as proposed e.g. by
[19]) captures some essential aspects of the
spatial structure of model maps (as well as
of “real” maps, see Fig. 7 below).

Figure 6 shows the two-point correla-
tion functions S;;(5) = < w(r-mi W@H; >,
(i,7 € {3,4}) for the map shown in Fig.la
(isotropic neighborhood function). Since in
this case the correlation functions S;; seem
to depend only on the absolute value |5], Si;

1 has been averaged over all directions of &.

-0.05 0 2'0 4'0 y The arrow indicates the wavelength A asso-

60 80 ciated with the wave number |k| of modes

distance [arbitrary units] from the ring-shaped region in Fig. 5a. The
autocorrelation functions have a Mexican-

Fig. 6: Correlation functions of orientation values hat shape. At a separation of A/2 there is a
for a map generated with an isotropic neighbor- tendency for the preferred orientations ¢ to
hood function. be orthogonal. For an anisotropic neighbor-
hood function the autocorrelation functions
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correlation function

no longer have rotational symmetry. They essentially consist of a central “bar” of positive values
accompanied by two “lobes”. of negative values. The same type of spectra and correlation functions
are also obtained for the ocular dominance coordinate wgs.

There is experimental evidence for the type of power spectra and correlation functions displayed
in Figs. 5 and 6. Figure 7 shows power spectrum and correlation functions for an orientation map
obtained from area 17 of the macaque [6], an animal with an almost ”isotropic” orientation map.
The spectrum (Fig. 7a) is an anulus around the origin of the E-plane, phases seem to be random.
The autocorrelation functions (Fig. 7b) have "Mexican hat” shape, with a minimum at half the
wavelength of the modes located on the ring in Fig. 7a. There is also evidence from area 18 of
the cat, whose orientation column system is anisotropic. Swindale et al. showed [8] that the angle-
autocorrelation function® consists of a central bar of parallel preferred orientation accompanied by
two lobes of orthogonal orientation values.

3In their paper [8] they defined the correlation functions in a slightly different way.
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Fig. 7: 2d Fourier transform (a) (left) and correlation functions (b) (right) for an orientation map
from area 17 of the - macaque. Preferred orientation and orientation specificity were measured using
voltage sensitive dyes [6].
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Instability and phase transition

Although there is no general theory of the stationary states of the self-organizing feature map
algorithm for a dimension reduction scenario, the observed power spectra and correlation functions
can be qualitatively understood by a mathematical analysis for the case of small values of gpat and
Z’,,.t.

If gpat and zpat are smaller than a certain threshold gep,.s, then the stable stationary states of
(3) - (4) correspond to a perfect topographic representation of visual space, with orientation and
ocular dominance not represented in the map (i.e. g7 = 27 = 0). Let us consider an ensemble
of networks, each characterized by a set {5z} of feature vectors, and denote the time-dependent
distribution function of this ensemble by S({#},?). Following a method derived in [20], we can
describe the time-development of S({i7},) near the stationary state by the Fokker-Planck equation

1 - _ l/] - - € - S({ﬁ’?})t)
Eats({“?}:t) = i"nv_:i" 8i"ﬁ‘m Bpminuan({U?}, t) + 5’7"%" meqn aﬂimaaﬂ_" (7)

where the origin of 5(.,t) was shifted to the stationary state {7}, using now the new argument
variable #z = Wy — 7. The matrices B
and D depend only on the pattern distribu-

QD
'g 30 tion (5), i.e. on Ipat and zp, and on the
= 1 stationary state {wz} (for details see [20]).
= The eigenvalues of B determine the stability
E of the stationary state, while B and D to-
«® 20 th i d time devel t of
o gether govern size and time development o
5 fluctuations < umuz; >.
g_ Let’s define the Fourier modes up of
: 10, the equilibrium deviations @z by z:i,; =
s 1/N Z,,e“;"ﬁ’;. A mathematical analysis
g of (7) (details will be published elsewhere)
0 shows that for dpat OF Zpge larger than
0.00 0.05 0.10 0.15
: d
spatlal frequency Qthres = \/E TV— min(ahl ) ‘7’!2)
Fxg 8:. Power fpectrum of fluctuations of tfhe Zthres = ‘/ée imin(d’m,ﬂhz) (8)
orientation coordinates for a map generated with 4 N
Qpat < thres and an isotropic neighborhood func- 6 purely topographic stationary state be-

tion. Comparison of a Monte Carlo simulation comes unstable and an orientation- and/or
(dots) with the analytically obtained solution of ocular dominance column system emerges.

eq. (7) for three values of gpae. The threshold values given by egs. (8) can

Fig. 9: 2d Fourier spectrum of
the fluctuations in the orientation
coordinates for gpq¢ slightly be-
low gtares for a map generated us-
ing an isotropic (a) (left) and an
anisotropic (b) (right) neighbor-
hood function.
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be interpreted as essentially the distance in feature space which corresponds to the range of the
neighborhood function in the network layer. The Fourier modes, which become unstable first, are
characterized by #; L (z,y)-plane and

k| = 2/on if on = onz, l,:; - 0&2/6,“ } if o < On2 ®
i.e. either a ring of modes (for op1 = on2) or two modes with opposite sign of £ (for opy # on2)
become unstable. These modes do not couple, hence the phases of 1y defined by eq. (6) are
independent and random. The instability leads to large fluctuations in the amplitude of these
modes and of nearby modes close to the threshold (8). Figure 8 shows the mean square amplitude
(6) of fluctuations parallel to the orientation feature dimensions for an isotropic neighborhood
function. The results from Monte Carlo simulations (dots) are confirmed by the analytical solution
of eq. (7) (solid lines), and both are shown for three values of gpat (gthres = 8.23). The spectrum
depends on the wavenumber only and evolves to an annulus around the origin of the E—plane if gpae
approaches the threshold. This is demonstrated in Fig. 9a, which shows the mean square amplitude
(0: white, max.: black) as a function of k. Each pixel corresponds to one mode in the E-plane.

Figure 9b displays the power spectrum of fluctuations for an anisotropic neighborhood function
near threshold. Amplitudes are maximal in two groups of modes located around the two modes
given by eq. (9). The fact, that either a ring or two groups of modes become unstable at the
threshold, is reflected in the maps above threshold and gives rise to the observed Fourier spectrum
shown in Figs. 5 and 6.
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