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SUMMARY Topographic maps begin to be recognized as
one of the major computational structures underlying neural
computation in the brain. They provide dimension-reducing
projections between feature spaces that seem to be established
and maintained under the participation of selforganizing,
adaptive processes. In this contribution, we investigate how well
the structure of such maps can be replicated by simple adaptive
processes of the kind proposed by Kohonen!®. We will particu-
larly address the important issue, how the dimensionality of the
input space affects the spatial organization of the resulting map.
key words: topographic map, self-organizing process, dimension-
reducing projection, feature space, retinotopic location

1. Introduction

It seems that topographic maps reflect important
information processing strategies realized in the brain
to.match abstract feature spaces onto the spatial struc-
ture of its “parallel hardware”®?, This makes it an
intriguing question, both from the viewpoint of neural
computation and from the viewpoint of basic neuro-
science, to consider to what extent such structures can
be understood in terms of simple pattern formation
processes within the underlying substrate, or, stated in
a more abstract way, can be understood in terms of
rules for elementary local adaptation steps. Conse-
quently, research on this question has formed an essen-
tial part of neural network theory from the past up to
-the present(see e.g. Refs.(38), (2), (1), (15), (8), (25),
(20), (36)).

The main characteristic of topographic maps is a
macroscopic, spatial pattern of the tuning properties of
(at least a subset of) the neurons within some cortical
region. It is generally accepted that for the most part
these patterns of tuning properties are not established
genetically, but instead evolve during ontogenesis in a
self-organizing process (see e.g. Refs.(3), (13)) and
show in many cases a considerable degree of adaptabil-
ity even in adult life®".

Frequently the spatial order of the tuning prop-
erties of neurons within a topographic map reflects just
the spatial origin of the afferent signals, such as e.g. the
location of a tactile stimulus on the skin. However,
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there are also maps where further stimulus properties,
such as orientation in the case of visual stimuli,
become expressed in a spatial pattern. Even then, the
spatial pattern can be characterized by a smooth varia-
tion of stimulus features at most points in the map.
Such distribution of stimulus-specificity represents a
dimension-reducing projection from a higher-
dimensional “feature space” of stimulus properties
onto the two-dimensional cortical sheet®”®- A
mathematical consequence of any such projection
would be either to suppress some of the additional
feature dimensions, or to exhibit. distortions which
appear as regions of elevated rate of change of tuning
properties in the topographic map.

In the visual cortex both alternatives seem to be
realized. Retinotopic location defines the “primary”
feature that is mapped smoothly across visual cortex.
The spatial variation of additional “secondary” fea-
tures, such as orientation and ocularity is smooth only
within small local domains, which are separated by
boundaries where rapid changes occur, In the case of
orientation, there are also “foci” where orientation
selectivity is zero, i.e. in these locations the stimulus
feature “orientation” is suppressed under the projec-
tion.- ' : v

In the following, we will consider a specific model
that is able to generate many of the features of these
maps on the basis of -a simple adaptive process, the
so-called “self-organizing feature map” algorithm
(Refs.(15), (16), “SFM” in the sequel). We will
discuss two different variants of this network model, a
low-dimensional “caricature” whose value lies in the
fact that it is possible to derive analytical results relat-
ing the structure of the map with statistical properties
of the stimuli, and a more faithful high-dimensional
variant, whose simulation, however, trequires the
resources of a parallel computer, in this case a Connec-
tion Machine CM-2 with 32000 processors. Comparing
maps generated with both models, we find that there is
a high degree of similarity, allowing the gratifying
conclusion that the simpler model is well justified in
many situations. :

2. The Low-Dimensional Model

The SFM algorithm can be considered as an
adaptive procedure for the formation of a topographic
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representation of a set of patterns(given as vectors in
some “input” or “feature”-space ¥’) on a discrete set, 4,
of points(“cells”) endowed with a topology. .

Figure 1 shows a schematic drawing of the model.
The cells 7E A are arranged on a two-dimensional
lattice (the network layer) to match the topology of the
cortical layer containing the feature map (the cells
should not be identified with single neurons, but rather
with groups of neurons or with small patches of tissue,
where neurons with common response properties are
located). Periodic boundary conditions were chosen
for the network layer as well as for the position coordi-
nates in feature space.

To describe the receptive field properties position
(x7, y»)of the receptive field centers in visual space,
preferred orientation ¢ and orientation specificity g~
for a cell 7 we follow(34)and use a 4-dimensional
feature vector

gr cos(2¢:), g»sin(2¢5)). (1)

The dependence of these feature. vectors on the cell
locations 7 describes the spatial distribution of selec-
tivity of cells over the cortical layer. The position of
the receptive field is given by the coordinates (x-, y»)

of its centroid, preferred orientation by the orientation
¢» of the receptive fields major axis and orientation
specificity by its elongation.

The input to the network layer consists of local-
ized and oriented stimuli. They are described by a
feature vector also, which is of the same type as W,
i.e. its components

¥=(z, y, g cos(29), g sin(2¢)) (2)

correspond to the stimulus properties position in the
visual field (x, y), orientation ¢ of its major principal
axis, and elongation g.

A set of stimuli(described by the stxmulus vectors
vE V), drives the model to adapt its feature vectors
W» by an iterative sequence of steps: At the beginning

WF= (x?'a Y7,

location of feature vector y,

neighborhood
function h(z,8)

.

- -

network layer A

feature space V

The “low-dimensional” network model. The model con-
sists of a set of cells which are arranged on a square
lattice (network layer). The receptive field properties of
each cell are described by a feature vector, which is an
element of a four-dimensional feature space. The neigh-
borhood function A( 7, ¥)implements a principle of
cooperativity between neighboring cells during map
formation (see Egs. (4), (5)).

Fig. 1
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of each step a feature vector ¥V is chosen at random
according to the probability distribution P( ¥). Using
a distance measure d(.;.) (in our simulations, d( 7V,
W)=|¥— #|?, the cell 5, whose feature vector #; is
closest to V, is determined :

F=mjnd(7, /) (3)

and the attached feature vectors are updated according
to the SFM updata rule®-19 :

wr(t+1)
=W, () +e(h(7, T, )(T—W-(2)).
(4)

The state of the network layer can be defined by the set
{#®+} of all feature vectors W,. An essential element of
this equation is the presence of the “kernel” A(7, ¥,

t)that correlates the changes of cells at neighboring
positions 7, 5 and is given by:

— (n—s5)* (rz 5)*®

#7, 3, 0=exp( ZACNERC) ) ()
Equations (3), (5) have been shown to lead under a
broad variety of conditions to spatial fields of feature
vectors W, that can be characterized by the following
two conditions: (i )the variation of w, with cell
position 7 is as continuous as possible, and (ii)the
resulting vectors W, span the range over which the
feature combinations vary in the set of input pat-
terns17"@®)»@) These are two complementary require-
ments: (i) favors “uniformity”, while (ii) demands
“diversity” for the feature vectors ws.

The quantities g»; and g2 parametrize the shape
of the kernel A and, therefore, determine the range over
which response properties of cells are kept correlated.
The time dependence of &(#) and the width g4 (#)and
ox2 () were adjusted to obtain good convergence speed.

Since little is known about the statistical prop-
erties of the afferent patterns driving map formation we
generated the input patterns from an unbiased, uniform
probability distribution P( 7)given by

\ _(No(@—gpar) x, yE[O, d]
RLT) -{0 else

(6)

This corresponds to a uniform distribution on the
3D-surface of a cylinder in the 4-dimensional feature
space of the variables x, y, ¢ cos(2¢)and ¢ sin(2¢).
The goal of the map formation process is to represent
this 3D-pattern manifold by the(discrete)cells of the
two-dimensional network layer, obeying. the con-
straint, that neighboring cells in the network represent
neighboring regions on the pattern manifold to the
extent possible(Fig. 2). For fixed number N XN of
cells in the network layer and for a fixed length d, it
has been shown®"28:(261(24) that the final map crucially
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input space V

1?

network - layer A

Fig. 2 Dimension reducing mapping of a cylindrical manifold
in four-dimensional feature space ¥ onto a two-
dimensional network layer 4. One “position”-and one
network dimension was suppressed in the diagram. The
location of the feature vectors wr in feature space is
indicated by small crosses for the regime gpa:< ginres (se€
text).

depends on the variancé f vE2,P(¥)dw,=q ps0f the

pattern distribution given by Eq. ( 6 ) along the feature
dimensions describing orientation. If gpe: is smaller
than a certain threshold gires, then for the uniform
pattern distribution defined above the feature vectors
of the network cells would in this case all be located
on the x, y-axis in the center of the cylindrical pattern
manifold. The resulting map is a topographic represen-
tation of visual space, but since (wr)s, (w;)s and
therefore g- are zero, the feature “orientation” is not
represented (“purely retinotopic” map).

In order to form orientation selective cells, i.e.
cells # for which the third and fourth component of
W, i.e. (w;)s and (w»), are different from zero, gpat
must exceed a threshold, ginres, above which the “pure-
ly retinotopic” map becomes unstable. This threshold
can be calculated following the approach of Ref. (27)
(details will be published elsewhere)and is given by

chres= \/:28.' ‘]ivah ( 7 )

where g,=min(ox1, 0»z)and e is the Euler constant.
Therefore the purely retinotopic map becomes unstable
if the range ¢, of the neighborhood function, projected
back to the feature space V, falls below gpa:, the
standard deviation of the set of patterns-along the
orientation feature dimension. Let #,=Wr— W»
denote the deviation of the feature map from its stable
state #,. These deviations result from the stochastic
nature of the adaptation process(3-5)and their size is
proportional to be learning step . At the threshold
Ginres @ set of modes
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Fe=t3ei® 7 (8)
N I

characterized by

Telk (9)
and » |

|i€|=2/0‘h if Gn1=0n2

ko=12/0m)

hl} if on1< On2 : (10)
k,=0

becomes unstable and for gpat> Ginres Orientation selec-
tive cells form.

Figure 3 shows the final distribution of orienta-
tion preference ¢-(color)and selectivity g¢-(satura-
tion) along the network layer for a map generated in
the regime above threshold with an isotropic neighbor-
hood function(¢x1=0xz2). The presence of only very
small black areas indicated that almost all cells have
become orientation specific. The cells form domains of
continuously changing orientation, in which iso-
orientation regions are organized as parallel slabs. The
slabs start and end at vortices containing orientational-
ly unspecific cells(dark spots). Orientation preference
changes by 180°.in a clockwise- or counterclockwise
fashion around these foci. Neighboring domains have
similar slab-orientations but, on a larger length scale,
the directions of the domains are distributed
isotropically. The multiple representations of a com-
plete cycle of preférred orientation indicate, that orien-
tation plays the role of a “secondary” feature.

Figure 4 illustrates the topographic representation
of visual space generated by the SFM-algorithm. The
diagram presents the locations (x», y-)of receptive
field centers in visual space for all cells in the network
layer. Receptive field centers of neighboring cells were
connected by lines. An ideal topographic projection of
visual space to the network layer would give rise to a
square lattice with equal mesh size in Fig. 4, since the
receptive field centroids of neighboring units are
equally spaced in this case. The overall preservation of
the lattice topology in Fig. 4 and the absence of any
major distortions demonstrate, that indeed “position”
varies in a topographic fashion across the cell layer on
a large length scale. On a lengh scale below the diame-
ter of a hypercolumn, however, numerous distortions
are visible. These distortions are the result of the
constraint to map a more than two-dimensional feature
space on a two-dimensional cortical surface, such that
the response properties of the cells vary smoothly over
the cortical surface. Since visubl space is mapped only
once along the network layer, “position” plays the role
of the primary stimulus variable.

Figure 5 shows the two-point autocorrelation
functions

Sij( §)=<(W7—3’)i(w r)j> (i,jE3, 4) (11)‘
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in the network layer. To good approximation, the
autocorrelation function depends only on the absolute
value | 57| if the kernel 4 is isotropic. Figure 5 presents
the correlation functions Sss, Si, and S as a function
of the absolute value | s | of cell distance averaged over
all directions. The correlation function has a Mexican
hat form : neighboring cells prefer correlated orienta-
tions, with the degree of correlation decreasing with
distance. At a separation of ¥ =A/2(half the radius of
a “hypercolumn”)the preferred orientation between
cells is anti-correlated, i.e. preferred orientations are
more likely to be orthogonal. If cells are separated by
a distance larger than A the preferred orientations are
uncorrelated, as one would expect from an isotropic
arrangement of hypercolumns over the cortical surface.
The crosscorrelation function S3( §) was found to be
very small.

What happens, if the probability distribution
P(7V)is biased towards a certain subset of patterns?
Such a situation is artificially created in “deprivation-
experiments”, where an animal is exposed predomi-
nantly to patterns of a single orientation.

Figure 6 shows the distribution of orientation
preference and selectivity for a map generated by a
biased probability distribution P( V), where 70% of all
patterns had orientations ¢ from the range [0, 7/4] and
the remaining 30% were uniformly distributed over the
remaining orientations. As can be seen, regions of cells
selective to the orientation of the predominant patterns
form a network, which contains “blobs” of cells with
other orientation preferences. The map still has a
hierarchical structure, but the number of foci in the
map is found to be smaller than in the “non-deprived”
case.

If stimulus patterns are restricted to two ortho-
gonal orientations only (i.e. only values ¢=0 and ¢=
7/2 occur)the final distribution of orientation prefer-
ence(Fig. 7)shows alternating “stripes” or “blobs”,
which are separated by cells unspecific for orientation
(dark bands). The width of the stripes depends on the
relative probabilities of occurence: the higher the
probability for a pattern, the larger is the correspond-
ing region on the map. The resulting maps very much
resemble the spatial structure of an ocular dominance
column system. This is not surprising, because restrict-
ing the stimulus distribution in feature space to two
orthogonal orientations is equivalent to reducing the
pattern manifold shown in Fig. 2 to the intersection of
the (hyper-) cylinder with any(hyper-)plane, which
includes the wyyz-(hyper-)axis hence reducing the
dimensionality of the feature space from four to three .
The new pattern manifold consists of two lines ' on
opposite sides of the ws, - (hyper-) axis. If the feature,
which is now coded by the distance between these
planes, is re-interpreted as the degree of correlation in
the activity between both eyes"'" (large values stand for
small correlation in activity), and the corresponding
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receptive field property as the amount a particular
neuron is driven by a particular eye, the same model
can describe the development of retinotopic maps and
ocular dominance. stripes®®@,

3. The High-Dimensional Model

From a modeling standpoint, the use of feature
vectors in models of development is not fully satisfac-
tory: coding and selection of features has to be “put in
by hand”, and the choice of the distance measure d
entails some degree of arbitrariness. These short-
comings motivate the investigation of a model whose
representation of input patterns is closer to the actual
activity patterns themselves. To this end, we now use
the activity values v, at certain points k (“input-cells”,
“receptors”) of an “input-layer” directly to form a
pattern vector V= (1, w, -, vs)as input to the net-
work. Of course, ¥, and consequently also each W, is
now from a space of a very high dimensionality d that
equals the number of receptors contacted in the input
layer. In this setting, the components(w;), can be
interpreted as weights or connection strengths of
afferents connecting input cells & with network cells
7.

The weight values are iteratively reflned using a
variant of the SFM algorithm described in the preceed-
ing section. For each step, a pattern vector ¥ is
selected at random from a given ensemble described by
P(¥)and the weights are updated according to:

(W) a(r+1)
B COROETIOLICA B
V2D D+, 7,02

(12)

where the index § denotes the network cell whose
input: ds= W+ ¥ is a global maximum. The neigh-
borhood function A( 7, §, t)is again given by Eq. (
5). For a more detailed interpretation of the terms in
a biological context we refer the reader to Ref. (25).
Again, we have to face the problem that very little
is known about the statistical properties of the activity
profile that drive the formation of feature maps in the
cortical layer. Therefore, we constructed sets of pat-
terns on the basis of three general assumptions, namely,
(1 )that pattern activity should be locally correlated,
(ii )that only features to be represented in the map are
encoded in the presented patterns, and (iii)that each
feature combination is generated with equal probabil-
ity(under “undeprived” conditions). A “minimal”
choice is a set of patterns with elliptic shape, defined

T The axis to the right in Fig. 2 represents two coordi-
nates.
1T Actually two planes, since the w,;-axis represents a
plane in the 4-dimensional feature space.
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Fig. 3 Spatial organization of the features orientation prefer-
ence and selectivity for a map formed with the “low-
dimensional”™ model above threshold after 107 iterations
using an isotropic neighborhood kernel 4. The network
layer contains 65,536 cells(arranged on a 256256
square lattice with periodic boundary conditions). The
parameters of the simulation were: gpa; =12, o,=5and e
=0.01. Each image pixel corresponds to one cell in the
network layer. Orientation preference is indicated by
color(light blue — green — orange — purple — blue
correspond to angles of 0°— 45°— 90°— 135°— 180°
relative to the vertical axis). The degree g of orientation
specificity is normalized to one and indicated by bright-
ness(black: zero, bright: one).

Fig. 4 “Position map” belonging to Fig. 3. The feature recep-
tive field position™(x,, yr)in visual space is indicated
by a dot for every second cell in the map of Fig. 3.
Points(xs, ys), (xr, y-)belonging to cells 7, 7 that
are nearest neighbors in the network layer V' are con-
nected by lines. x increases to the right, y to the top.

by the three random numbers x, y (stimulus center)
and ¢=[0. 180°](stimulus orientation)chosen from a
uniform distribution. Acoordingly, cell activities v, are
then defined by:

1.00
c
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)
s o
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Fig.5 Two-point correlation functions Sy, Sy, and Sy as a
function of the absolute value | 5| of cell distance for the
orientation map shown in Fig. 3. Since the correlation
functions are rotationally symmetric they were averaged
over all directions.

Fig. 6 “Deprivation map” for a biased pattern distribution (70%
bias to one orientation). Final feature map for the
“low-dimensional” model above threshold after 107 itera-
tions using an isotropic neighborhood kernel. The net-
work layer contains 16,384 cells(display of data as
described in Fig. 3).

| . ;
v;i:exp[f?lz( (xx—x)cos a— (yp—y)sin a)*

—JL%((.\';,—x)sin @+ (yx—y)cos a)z} (13)
where (x,, 1) denotes the spatial location of cell k¥ in
the input layer. Parameters ¢, and g, are fixed and
specify the length of the major and the minor axis of
the ellipsoidal intensity distribution.

Figure 8 shows the final distribution of orienta-
tion preference (color) and selectivity (saturation) along
the network layer for cels initially unspecific both to
stimulus orientation and position. Most of the cells
have developed elongated receptive fields, whose aspect
ratio approximately matches the aspect ratio of the
stimuli presented to the receptor surface. These cells
became selective for stimuli, whose orientation
matches the orientation of their receptive fields. The
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Fig. 7 “Deprivation map” for a pattern distribution restricted
to two equiprobable orthogonal orientations only. Final
feature map for the same network as used in Fig. 6.

high degree of orientation specificity is indicated by
the bright colors in Fig. 8. The spatial structure of
orientation preference is more irregular compared to
maps generated by the “low-dimensional” model (Fig.
3). While in some regions the slab-like structure domi-
nates, there are other regions displaying more patchy
domains.

A gradient filter applied to the orientation values
reveals (Fig.9), that vortices with high orientation
changes are often connected by bands of rapid orienta-
tion shifts, where the orientation gradient can become
very large (“fractures”). These areas with rapid orienta-
tion change are marked red in Figure 9. Cells that did
not become tuned to stimuli of a particular orientation
kept almost circular receptive fields and consequently,
respond equally well to stimuli of all orientations.
They are indicated by dark color in Fig. 9. The correla-
tion of red and dark regions in Fig. 9 thus shows that
cells still unspecific for orientation are primarily found
close to “fractures” where the orientation gradient is
high. Interestingly, this arrangement can be understood
as a direct consequence of the property of the SFM-
algorithm to generate maps, where receptive field
properties change smoothly along the network layer:
For almost circular receptive fields, small changes in
the shape of the receptive fields are sufficient to greatly
change the direction of their major principal axis.
Since even for such receptive fields, in the brain
intracortical mechanisms are likely to greatly enhance
the otherwise low orientation specificity of the as-
sociated cells®", regions containing this type of cells
may develop into the “fractures” between orientation
domains. Therefore, the SEM-model demonstrates that
“fractures” may result from rather smooth variations in
the underlying neural circuitry.

The final size and the shape of the receptive fields
depends on the size of the presented patterns as well as
on the final range 6 (frinm) of the neighborhood func-
tion A( 7. §. linm), Where fina is the maximum num-
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Fig. 8 Orientation map similar to Fig. 3, but obtained with the
“high-dimensional” model(above threshold, 30,000
adaptive steps). The network layer contains 65,536 cells
(arranged on a 256256 square lattice with periodic
boundary conditions), the input layer 900 randomly
distributed “receptor cells”. The initial connection
strengths were chosen randomly and normalized to
unity. Orientation preference of each cell is indicated by
color in the same way as described in Fig. 3. The degree
of orientation specificity of each cell was measured by
the ratio of the variances of the receptive field along its
major and minor principal axis. Its value is indicated by
brightness (dark : unspecific, bright : specific).

Ut

7R

Fig. 9 Correlation between “fractures” and regions containing
cells unspecific to orientation for the map shown in Fig.
8. Bright and dark regions indicate areas containing cells
specific and unspecific for orientation, respectively. The
regions of steepest orientation gradient are marked red.
Note the excellent correlation between “fractures” and
reigons containing cells unspecific for orientation.

ber of iterations. In the case of non-oriented patterns
(g1=ag»=0c)the size of the cell’s “optimal stimulus”
can be calculated analytically® % The result shows,
that the cells develop receptive fields whose area is the
sum of two terms: the first term is essentially the area
of a typical stimulus and the second term is essentially
the area oc b in the adjustment zone in the network
layer, but “projected back” by inverse magnification
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factor M ! onto the input sheet. The size of the cells’
receptive fields, therefore, reflect the size of the region
within which the response properties of the cells are
kept correlated.

4. Discussion

The model presented above describes the forma-
tion of cortical feature maps. Biologically plausible
developmental principles(activity-dependent synaptic
plasticity, correlated response properties of neighbor-
ing cells, and competition between afferents)are for-
mulated in a mathematically simple form to describe
an activity-based process. This process generates maps
from a given stimulus distribution, which is based on
similarity between stimuli and on the probability of
their occurence. The observed model dynamics does
not necessarily mirror the actual sequence of events in
the formation of cortical maps. The emphasis of this
model (and of similar models®)is on the role of basic
principles and on an analysis of their capacity to yield
the observed organization of cortical maps.

Typical features of observed maps in the primary
visual cortex of various species include (Refs. (5), (12),
(14), (19), (35), (37)): hierarchical mapping of posi-
‘tion (primary stimulus variable) and orientation (sec-
ondary variable), patch- or slab-like structure of iso-
orientation domains, vortices, “fractures”, topographic
order and a negative correlation between the magni-
tude of the orientation gradient and the orientation
specificity (as found e.g. in the correlation between the
cytochrome oxidase blobs, which contain orientation
unspecific cells and the vortices of the orientation map
in the area 17 of the macaque'®”). Maps exhibiting
these features can be generated by the SFM-algorithm
for a broad range of model parameters and indepen-
dently of the initial state. The model predicts some
constraints regarding the set of stimulus patterns. If the
formation of the visual map employs externally or
internally generated activity patterns driving a process
governed by Eqgs. (3)-(5) or (12), and if the
configuration space of the network is not confined by
some prestructuring, then the eccentricity of the pat-
terns would have to be within a certain range, large
enough to exceed the threshold required to express
orientation in the map, but still sufficiently small not
to destroy the observed feature hierarchy.

Since the probability distribution P(¥) is an
important determinant of the structure of the resulting
maps, it is important to compare the results of the
model for probability distributions that correspond to
“deprivation situations” that can be induced experi-
mentally. In such experiments the statistical properties
of the afferent activity pattern is changed by artificially
changing sensory input(e.g. by rearing in darkness) or
by chemically changing the firing pattern of cells in the
subcortical structures. In the SFM-model, the effect of
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sensory deprivation was imitated by an appropriate
inhomogeneous probability distribution P( ¥) of pat-
terns. For instance, restricting the patterns to a single
orientation led to the generation of maps where
deprived columns are no longer present, but if
“deprived” patterns are generated with some probabil-
ity, then a column system emerges, where regions
corresponding to the experienced orientation are larger
than the regions corresponding to “deprived” orienta-
tion. Both effects are in good qualitative agreement
with experimental observations®»“»#2),

It was mentioned in Sect. 2 that in case P(¥)is
restricted to two orientations, the SFM model can be
re-interpreted to apply to the formation of ocular
dominance columns. The stripe-width depends on the
correlation structure of the patterns and increases
moriotonically with decreasing correlation. With
proper interpretation the results shown in Fig. 6 are in
qualitative agreement with experimental results from
suture"’® and impulse blockade® experiments. In the
case of “artificial strabismus”-conditions™® (zero activ-
ity correlation between both eyes) the SFM-model
wrongly predicts a reversal of feature hierarchy®®,
ocular dominance now being the primary feature
instead of “position”. In order to explain the experi-
mental findings one has to assume a two-stage process,
where the first stage leads to a topographic prestructur-
ing for the second stage, the input driven process. If a
rough topographic prewiring is assumed, which con-
strains the configuration space of the network, a stripe-
like pattern emerges again.

The constraint of dimension reduction leads to a
trade-off between representation of orientation and the
degree of retinotopy. One consequence of this trade-off
is visible in the position map: the simultaneous repre-
sentation of orientation above threshold causes multi-
ple distortions in the position map. These distortions
are separated by A/2(half the radius of a hypercolumn,
see Fig. 6(b)) from each other on the average and are
linked to the spatial pattern of orientation patches. At
the orientation discontinuities between patches the rate
of change of retinotopic location with cortical distance
is, on the average, reduced compared to its change with
cortical distance within orientation patches. This cor-
responds to a certain anticorrelation in the resolution
of the cortical representation of the features retinotopic
location and orientation. The resulting “modulation”
of the position map should be experimentally detect-
able in a high resolution study of receptive field
centroids. :

Recently, we have complemented these more qual-
itative studies by a more quantitative comparison,
based on evaluation and comparison of spectra and
correlation functions for the SFM-maps and for experi-
mental data. In this paper, we have reported some
preliminary results in this respect. The two-
dimensional Fourier spectrum of the orientation val-
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ues for the isotropic neighborhood function exhibit
discrete modes located .on a ring around the origin in
‘the k-plane for the anisotropic neighborhood func-
tion(Fig. 8) it consists of two . localized groups of
modes, which differ in the sign of k. These findings are
in agreement with data from monkey®* and cat®®. The
spatial autocorrelation functions are short-ranged and
have mexican hat shape (Fig.9) similar to the
orientation-autocorrelation function found in experi-
mental data®"®9, Note, that there is almost no correla-
tion between the two orientation coordinates (w») 3 and
(wr) 4. The finite range of the spatial autocorrelation
functions reflects the finite length of the neighborhood
function at the threshold gpe: and is in accordance with
the observed random distribution of hypercol-
umns®@)_ Thus, -experimental maps of orientation
preference and simulation results are characterized by
local correlation .and  global disorder and a
phenomenological - description of these patterns in
terms of a filter process acting on spatial random
noise® capture essential features of the system.

Considering the complexity of  the- brain, our
models are still crude and we must suspect that we are
still far from a deeper understanding of many impor-
tant principles. However, research on models for the
formation of topographic maps, to. which the present
paper hopes to make a modest contribution, has now
matured to the point where we can begin to make
detailed comparisons with experimental data. In view
of the widespread occurrence of topographic structures
in the brain, this may provide us with valuable insights
which then, in the long term, may turn out fruitful also
for the technological realization of artificial neuro-
computing devices.
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