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Abstract: The ”somatotopic map” of the body surface of animals and humans reflects an ordered, neigh-
borhood preserving connectivity between tactile skin receptors and cortical neurons. In a previous study
[1] we investigated a large scale neural network model containing 16,384 neurons and 800 receptors for the
formation and plasticity of a somatotopic map of the hand-surface, where we showed, that a somatotopic
map of a hand-shaped sensory surface emerged during a sequence of randomly applied local stimuli.

In this paper we discuss the properties of the model in the high-dimensional limit. We present results
from a Monte-Carlo-simulation indicating a facilitation of the map-ordering process if the dimensionality
of the input space is increased, and we provide a mathematical analysis of the development of localized
receptive fields via the input-selection mechanism. The analytical results are compared with data from large
scale simulations using a Connection-Machine CM-2 and very good agreement is found.

1. Introduction

Topographic representations of sensory surfaces are a widespread architectural feature of the brain of
higher animals. They can be found in the cerebellum (fractured maps), in thalamic nuclei and in several
areas of the sensory and motor regions of the cortex, e.g. the visual, auditive and somatosensory fields as
well as in the motor-cortex {2, 3, 4, 5, 6].

Several models have been designed to explain the formation and plasticity of such maps. One class of
models [7, 8] explains the formation of topographic maps by directional axon growth. Although this process
is crucial for the formation of a (at least) crudly, topographic spatial map between a sensory surface and the
corresponding areas in the brain, it cannot account for the observed representation of more abstract stimulus
features like frequency, doppler-shift and movement direction [9, 10].

A second class of models is primarily concerned with the emergence of feature-detectors and their struc-
tured distribution over the cortical surface [11, 12, 13, 14]. Within these models, feature-detectors typically
develop by input-selection, modifying the synaptic connection strengths between the sensory receptors and
the neurons in the network. A structured distribution of feature-detectors over the network is enforced by
suitable lateral interactions via intra-layer connections.

A particularly parsimonious neural network model for the formation and structured distribution of feature
detectors by input-selection was proposed by Kohonen (15, 16]. In previous work Kohonen’s algorithm has
been successfully applied to model the formation of maps in the auditive [17] and somatosensory [18] cortex
as well as the formation of maps of more abstract ”semantic” features pertaining to language [19].

So far these investigations have been restricted to situations with relatively low dimensional input pat-
terns and the dimensionality of the applied stimuli was of the same order as the number of relevant feature
variables. In biological systems the dimensionality of the input-patterns is much higher, while the number
of parameters used to describe the ”optimal” stimuli may still be small, so that the stimuli “occupy” a low
dimensional manifold embedded into a high-dimensional input space. It is unclear, how the properties of
the model-system changes , when the input-dimension is scaled up to a biological more realistic size.

In a previous study [1] we investigated a large scale version of Kohonen’s model, containing 16,384
neurons and 800 receptors for the formation and plasticity of a somatotopic map of the hand-surface. We
showed, that a somatotopic map of a hand-shaped sensory surface emerged during randomly applied local
stimuli and that the model readapts upon partial deprivation of sensory input much in the same way as is
found in experiments {20, 21].

In this paper we shall discuss the convergence properties of the model in the high-dimensional limit and
the development of the receptive fields by the input-selection mechanism.
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2. Model and Algorithm:

Our model consists of a square-shaped ”sensory surface”, representing e.g. a small patch of the skin, and
a two-dimensional 128 x 128-lattice of 16,384 formal neurons modelling the corresponding somatosensory area
within the cortex (Fig.1). The sensory surface comprises up to 800 randomly distributed tactile receptors,
each of which is connected to each neuron in the lattice, leading to a total of 13 million adaptive connections,
whose initial strengths are choosen at random and which are modified during the simulation. “Tactile stimuli”
were modelled by localized Gaussian excitation profiles, which describe the output r; of receptor i at position
Z; as a function of its distance from the center £, of the stimulus by:

ri = A + €Xp [—(fi - 53)2/‘73] (1)

The width o, and the ”intensity” A of the stimuli were held constant throughout the simulation. For each
adaptation step the stimulus center Z, was choosen at random within the sensory surface. Each neuron (£,1)
at position gk of the neuronal sheet computes a weighted sum:

on =) Wit (2
i

over all receptor outputs, where wy; denotes the connection
strength from receptor i to neuron (k,!). The input for
each neuron is, therefore, described by an 800-dimensional
vector ¥ = (r1,72...7300)7. We now make an important
notational convention: For the rest of this paper we will
reserve the index pair (r, s) for the neuron whose sum o cortical sheet receptor surface

is largest for the presented stimulus 7. Therefore, (r,s)
7. Following Kohonen, the Fig.1: Neuron layer (left) and sensory sur-

is a function of the stimulus 7.

output ox; of neuron (r, s) is replaced by a Gaussian output face (right) with randomly distributed re-
function h,,; centered at its position ¥, in the lattice: ceptors
hys;ui(t) = exp [~ (Frs — ﬁkl)z/ai(t)] (3)

The width o4(t) decreases during the simulation from an initial value o; to a final value o; to allow the
neurons to become specific for a certain part of the input space. The introduction of the output-function
hys.k1 is an algorithmic ”shortcut” to account for the effect of lateral connections between the neurons {22].
For each stimulus presentation, the connection strengths are changed according to a Hebb-type learning rule:

wii(t + 1) = (wri(t) + (@ hrs;ra(t) - Ti)/\/zi(wkli(t) + &) hrgikir) - 7i)? (4)

To accelerate the convergence of the simulation the learning step width ¢(t) starts from a relatively large
initial value €; and decreases linearly to a final value ¢;.

3. Convergence properties of the algorithm:

Fig. 2a shows a completely ordered map of the receptor surface obtained from an initially random
connectivity after 10,000 adaptive steps. The network is projected onto the receptor surface such, that each
mesh-point (k,1) coincides with the centroid 5k = Y, wyii&i/ ), wi of the receptive field of neuron (k).
The rate of convergence is surprisingly fast: after approx. 0.5 adaptive steps per neuron the algorithm has
not only detected the two-dimensional manifold within the 800-dimensional input-space, but has also mapped
it onto the two-dimensional neuronal sheet in a topology-preserving manner. In a previous simulation [18]
with a small network of 900 neurons and only two input-dimensions 20,000 adaptive steps were needed to
form a completely ordered map, giving a ratio of 22.0 adaptive steps per neuron. The improved convergence
in the large-scale system may stem partially from the fact, that the high-dimensional input-space facilitates
the ordering process and makes the formation of topological defects, such as shown Fig. 2b, less likely.
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Fig.2: (a) (left) completely ordered map, (b) (right) map showing a “topological defect”. The parameter of
the simulation were: o; = 55, 6y = 5, ¢ = 0.05, 5, = 0.15 and 10,000 steps.
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To investigate this effect we performed Monte-
Carlo-Simulations for six ensembles of 50 networks
with 16,384 neurons each, but with different di-
mensionalities (9, 25, 100, 225, 400 and 900) of
the input space. The parameters of the simula-
tion (o; = 80, oy = 0, € = 0.08,0, = 0.12, 5,000
steps) were the same for each of the 300 networks
except for the initial connection strengths and for
the sequence of applied stimuli, which both were
chosen at random. Fig. 3 shows the percent-
age of completely ordered maps obtained within
each ensemble. The increase of this percentage
for higher dimensionalities shows, that the scal-
ing of this neural network to larger numbers of
neurons and a high-dimensional input space does
not necessarily lead to a steep increase in learning
time,

Instead it indicates that the convergence properties of the algorithm, which uses cooperativity between
neurons, may be even facilitated in a larger system. This is a behavior that is very desirable for neural

network algorithms in general.

4. Development of localized receptive fields

An essential aspect of the map-formation process is the gradual formation of localized receptive fields
for each neuron. From the algorithm it is immediately clear, that each receptive field must correspond to
some small volume in the high-dimensional input-space, which for each neuron (k,!) is given by the set of
all inputs that are closer to the vector Wy = (wki1, ..., wria)T, d € [1,900] than to any other vector W
However, this does not make any statement as to whether these sets correspond to receptive fields, that are
also spatially localized in the iwo-dimensional receptor surface itself.

In the following, we will give an analytic derivation that this is indeed the case, and compare the results
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of this derivation with the data obtained from the simulation. First we will compute the shift of the centroid
of a receptive field under an adaptation step. Substituting (4) into the expression for the centroid 5%; given
in the previous section, expanding, and keeping only the leading order terms in the learning step size €, we
obtain 5

- — i Ti P -

Briea1) = Sui(t) + (D hp () == (&, ~ 5u(t)) + O(e?) ()

2o Whii(t)

Under the assumption of a homogeneous map, i.e. that ), wr; = const(y (which holds for maps without
topological defects), we can absorb Y, i/ Y ; wrii(t) into a redefinition of (), which yields

AF(t + 1) = €(t) Bragu(t)(Z, — 5ui(t)) (6)

if ¢ is sufficiently small that higher order terms again may be dropped. Therefore, as long as all stimuli have
the same shape, the evolution of the centroids 5% also follows a Kohonen-type learning rule.
For a further analysis of the development of the receptive fields, we now consider the mean square radius

Gu= Z(i". - S"u)2wui/z Wi (7

which is a measure of the spatial extent of the receptive field of neuron (k,l). The new value G;(t + 1) after
presentation of a tactile stimulus at a location £, can be computed by inserting (4) and (6) into (8). With
some calculation, the resulting expression can be simplified to

)Preser(t L. 2T
sz(t + 1) = le(t) -+ % 'Z(:L', — 5k1)2 (r,- - wk“(t)m) . (8)

If we introduce the definition 1
(L) = = Fi— T )r; 9
() = 5 ‘;( ) 9
we obtain from (8) for the change AGki(t) = Gu(t + 1) — Gu(?):

DT

E,‘ Wkii

The new quantity T'(Z,) can be interpreted as the mean square radius of the tactile stimulus at position
Z,. The expectation value of the change AGy in the receptive field radius is then given by the average of
(10) over the stimulus probability distribution:

AGy = —€hesin {Gri = T(&5) — (£ — 51)?} + O(?) (10)

E(AGH|Gr)(t) = / (AGu(0) P L5, (11)

where (...) denotes the average over all stimulus shapes and P(Z,) is the probability distribution of the
positions of the stimulus center. Inserting (10) into (11) we get:

B(AGHIGH) =~ [ hrn (G = (@) T )

—(Zr.-)(f, — §u)*} P(Z:)d*Es + O(”) (12)

The expectation value E(AG|Gi) vanishes (in the limit of small ¢), if the receptive field size assumes its
equlibrium value. In this case Gy is given by

Gy = fh”;k’(([r(is) + (%5 — glcl)z] ’Zi T{)P(J-:‘,)dzf,
[ hrsiu (32, i) P(2)d2 &,

(13)
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If the stimulus distribution varies sufficiently
smoothly over the receptor surface, and if each
o stimulus excites many receptors simultaneously,
we can neglect any variations of (3; r;), I'z, and
1000 Pz, within the integration range where h, .11 is
significant. Then we can simplify (13) to

fhrs;kl(i’s - 6—")cl)Zdi‘.s
fhrs;kldi'.s

1500

500 ] G = (I(&,)) + (14)

mean square radius

For a simple interpretation of this result, we as-

sume that the mapping from stimulus centroids
0 500 71000 1500 #, to neuron coordinates (r,s) is “smooth” and
conformal (i.e. angle-preserving). In this case
we can approximate the integral in equation (14),
Fig.4: Receptive field radii and we obtain

r.h.s. of equation (15)

Gu~T+ M_lo’,zl (15)

where

of = / Brsimn{(r —m)* + (s — n)z}dmdn//h”;nmdmdn (16)

denotes the mean square radius of the output-function and M is the local magnification factor of the mapping
from stimuli centroids &, to neuron coordinates (r,s). Equation (15) essentially shows, that the neurons
develop receptive fields whose area (which is proportional to Gy;) is the sum of two terms: the first term
is essentially the area of a typical stimulus (o T') and the second term is essentially the area (o o of
the adjustment zone in the neuron layer, but “projected back” (inverse magnification factor M ~1) onto
the receptor sheet. Therefore, for predominantly localized tactile stimuli, and a small adjustment zone the
neurons will develop localized receptive fields.

Fig.4 compares this theoretical result with data from a simulation (16,384 cells, 784 receptors, o, = 0.15,
6 x 10% steps), where o, was slowly varied between o = 100 and o5 = 5. The diagram shows the mean
square radius of the receptive field averaged over 2,300 neurons from the center of the neuronal sheet plotted
versus the r.h.s of equation (15). The dots represent the results of the simulation and the solid line gives the
theoretical relationship. The correspondence is very accurate, except for parameter values leading to large
receptive fields, for which edge effects become noticeable.

Fig. 5 illustrates the state of a typical receptive field at the beginning of another simulation (Fig. 5a),
after 3,000 iterations (Fig. 5b) and after 10,000 iterations (Fig. 5¢) (for this run oy = 50...5, 0, = 0.12

Fig.5: Development of a localized receptive field: (a) (left) initial connectivity, (b) (center) after 3000 and
(c) (right) after 10,000 iterations
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and ez = 10%). The dot locations mark the positions of the tactile receptors on the receptor surface, while
their brightness encodes the strength of their connection to the neuron under consideration. Initially, the
field is very diffuse (Fig.5a), but contracts rapidly (Fig.5b), until it finally is well localized (Fig.5¢).

5. Topological defects and cells with multiple receptive fields

The results of part 4 are no longer valid for maps with topological defects, where neurons with multiple
receptive fields evolve (Fig. 6). Fig. 7 shows the result of a simulation leading to an incompletely ordered
map with a multiple representation of parts of the sensory surface. For the sake of a better visualization
of the map, the sensory surface (Fig. 7a) was divided into 16 squares filled with different gray-shadings.
Fig. 7b shows a view onto the model-cortex. Each pixel represents a neuron (k,I) and its gray-value coin-
cides with the gray-value of the location 5 of the receptive field center in Fig. 7a. There are three areas
where the representation of the sensory surface is topographically
correct, separated by bands of discontinuous shifts. Within this
bands the position of the center §%; of the receptive field changes
rapidly. Fig. 7c shows the (brightness-coded) mean square ra-
dius of the receptive fields of the model neurons. Dark shaded
areas correspond to specific cells with their radius Gy given by
(7), while bright areas code for "unspecific” cells with large Gy,
i.e. with either large or multiple receptive fields. A comparison
between Fig. 7b and Fig. 7c shows, that the regions of rapid
position change coincide with the regions containing unspecific
neurons. Cells of this type allow to map distant locations on the
receptor surface onto neighboring locations of the cortical sheet
without introducing a discontinuity in the response properties of
the neuron.

Topological defects in maps and cells with multiple receptive fields have both been reported for the
somatosensory system [21]. However, we were unable to find reports about neurophysiological experiments
adressing the relation of ”unspecific’ cells to ”defects” within the somatotopic representation. Further
information about this issue would shed interesting light on the question to what extent a small set of
principles, such as those embodied in Kohonen’s algorithm, can accurately explain important features of
topographic maps within the central nervous system.

Fig. 6: Double receptive field

P

Fig. 7: a) Distribution of receptors over the sensory surface, b) distribution of (color-coded) centroids of
the neurons, c) color coded mean square radius of the receptive fields
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