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1 INTRODUCTION

Solvent interactions, especially solvent-mediated dielectric screening and Debye-
Hiickel screening, are thought to be essential determinants of the structure and
function of proteins and nucleic acids. These interactions guide the polypeptide chain
towards a protein’s native conformation [2, 3, 4], stabilize the B structure of DNA,
govern transitions to its A form [5] and play an important role in substrate binding
and enzymatic activity [6, 7, 8]. The proper description of solvent-mediated electrostatic
interactions of biopolymers have received increased attention and methods have been
developed to determine the electrostatic potential around biopolymers. Some of the
efforts have presented water external to biopolymers by discrete descriptions either
involving molecular dynamics models of water [9, 10, 11] or its representation by
Langevin dipoles [12]. Other efforts have described water by a continuum model
{13, 7, 14, 15].

Continuum models of water certainly lack the degree of realism of discrete models.
However, they appear to be unavoidable to account for the dielectric properties of the
bulk water. The necessity for continuum models derives from the long-range character
of Coulomb forces which induce solvent effects. The long-range character implies that
a very large number of water molecules contained in a volume with a diameter of
several Debye lengths need to be modelled. For physiological solvents with a Debye
length of about 8 A this implies typically several thousand atoms to be added to a
molecular dynamics simulation. The most promising avenue for a description of
solvent effects should be furnished by mixed models which involve discrete water near
the solute and a continuum at larger distances which accounts for the bulk water. In
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this paper we address the issue relevant both for continuum and for mixed discrete-
continuum solvent models, namely how a continuum representation of a solvent can
be linked to a molecular dynamics description of the discrete solute or a discrete
solute-water system. We consider as a solute the protein bovine pancreatic trypsin
inhibitor (BPTI) which has been the subject of many prototypical molecular dynamics
simulations [16, 17, 18, 19].

Most earlier 1nvest1gat10ns have con51dered the influence of solvents on the energetics
of biopolymers, i.e., they essentially addressed equilibrium properties like free energies
[20, 6, 21, 22] or pK-values [23]. In this paper we want to address the issue how a
solvent influences structure and dynamics of a protein, the prediction of protein
folding to the native structure constituting the ultimate goal.

At the present early stage of investigations of solvent effects on biopolymer dynamics
one needs to develop proper frameworks in which the forces acting on biopolymers
due to external solvents can be determined. The present paper focusses mainly on this
methodological issue; the authors consider the results on solvent effects on structure
and dynamics of BPTI, obtained by applying the suggested algorithms, only of
secondary importance.

The main concept which underlies the link between solvent and internal dynamics
of a biopolymer is the reaction field. One can define the reaction field as the field which
includes all forces due to the presence of the solvent. The reaction field can be
determined readily in case that solvent effects can be formally attributed to image
charges [24, 25]. However, also in more general situations, the reaction field can be
defined in ways which are both numerically tractable and physically transparent. The
simplest algorithm determines first the potentials for a biopolymer in the presence and
in the absence of the solvent, then takes the difference of these potentials, derives the
respective forces and adds these forces to a conventional molecular dynamics calcu-
lation. The potential can be evaluated by solving the Poisson-Boltzmann equation
numerically. Such avenue requires very efficient algorithms for the solution of this
partial differential equation since the solutions need to be furnished repeatedly during
a molecular dynamics simulation. However, due to the slow dielectric relaxation time
and due to the relatively low mobilities of ions in the solvent which mediate Debye-
Hiickel screening, one needs to update the reaction field only on time scales long
compared to integration time steps.

Rather than being only accessible through evaluating potentials with and without
solvents, the reaction force field can also be evaluated directly and, thereby, more
rapidly and accurately. This approach is well-known in the theory of electrodynamic
media [26]. The related potential is the solution of a Poisson-Boltzmann equation
with a charge distribution that involves a surface charge density at dielectric dis-
continuities and a volume charge density accounting for Debye-Hiickel screening.
Both for a direct and an indirect evaluation of the reaction field, the problem arises
to state values of the potential on the boundary of the volume in which numerical
integrations are carried out. Since the boundary is not at an infinite distance from the
solute, i.c., where the potentials can be assumed to vanish, approximations need to be
envoked. Beside solvent-mediated electrostatics, the dynamics of biopolymers can
also be influenced by neutralization of surface charges, either through binding of ions
or through protonation/deprotonation processes. In this paper we investigate in how
far forces resulting from such processes affect BPTI. Finally, we address briefly the
question in how far a cut-off for Coulomb forces, being dictated by numerical
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necessity and being justified through screening effects, affects the configuration of
BPTT within a molecular dynamics simulation.

The present paper addresses in Section 2 the methodological issue mentioned
above, in Section 3 it applies some of the methods to BPTI in a continuum solvent.
During several molecular dynamics simulations, each lasting 20 ps, we monitor the
radius of gyration and the solvent accessible surface. Section 4 discusses the various
methods and results as well as provides an outlook into future developments.

2 METHODS
- 2.1 Basic Concepts

To describe the dynamical behavior of large biopolymers one employs a semi-empirical
force field for the non-electrostatic interactions. Electrostatic and semi-empirical
force field together enable one to evaluate forces and integrate Newton’s equations of
motion (see [27, 28]).

To evaluate electrostatic interactions in biopolymers one needs to describe the
electrostatic properties both inside and around a polymer. The charge distribution
inside.a polymer is obtained by a knowledge of the locations of all atoms within the
polymer (which are usually derived from X-ray scattering data) and by assigning
partial charges to all atoms. This procedure is described, for example, in [27]. In order
to describe the motion of charged atoms and the effect of a solvent medium on this
motion one needs to separate the intramolecular Coulomb forces between atomic
partial charges of a polymer, which are accounted for by conventional molecular
dynamics programs, from forces, usually referred to as the reaction field, which are
due to effects of the solvent.

Thermodynamic equilibrium in a molecular dynamics simulation can be achieved
by keeping the temperature at a desired value. This can be done by replacing the
Newtonian equations by Langevin equations describing a heat bath (see [29, 3]) or by
rescaling atomic velocities according to the definition of temperature,

T = ﬁv;mxzﬁx. )

In this expression k denotes the Boltzmann constant, N the number of atoms in the
molecule, m; the mass of the ith atom and v, the absolute value of its velocity. By
averaging over a time interval ({},) fast term oscillations due to bond vibrations can
be eliminated.

The size of a biopolymer is described by the radius of gyration

R, = %(Z (r, — r(.)z)m, 2)

where r, is the center of geometry of the molecule, i.e., r, = (1/N)Z;r,. To estimate
the extent to which the molecule is exposed to the solvent we determine the solvent
accessible surface of the molecule by an algorithm developed by Lee and Richards
[31].
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2.2 Protein in Solution: A Macroscopic Electrostatic Model

2.2.1 The Poisson-Boltzmann equation
The electrostatic properties of biomolecules under physiological conditions are
governed by the Poisson-Boltzmann equation [32]

V{emVor)) — kZ(r)k—gsinh (f:?) = —4np(r) )

Here e denotes the elementary charge, k the Boltzmann constant and T temperature.
In the limit that the ionic strength of the solution is small, i.e., in case |e®(r)/
ks T~ < 1, Equation (3) can be approximated by the linearized Poisson-Boltsmann
equation

V{e@mVe(r)} — #*(n)®(x) = —4np(r). €))

This partial differential equation can be solved analytically only for problems with
spherical symmetry in &(r) and k(r). Such solutions have been derived by Tanford and
Kirkwood for a model dielectricum to explain protein titration curves [33, 34]. The
model assumed a spherical region with low dielectric constant and point charges
representing the charge distribution of the molecule. The peripheral region was
assumed to be a region with high dielectric constant representing water. This region
may contain solvated ions which implies a non-vanishing Debye-Hiickel parameter
x in Equation (4).

For arbitrarily shaped dielectric discontinuities, i.e., in case of discontinuities at the
boundary of a macromolecule, Equation (4) needs to be solved numerically. The
analytical solution of Tanford and Kirkwood for spherical molecules (cavities) [33, 34]
can be used to test the quality of any numerical algorithm developed for that purpose.
We provide the Tanford and Kirkwood solution in Appendix A along with the
corresponding Greens function [1]. The latter function allows one to determine
solutions for any continuous charge distribution inside as well as outside of a spheri-
cal dielectric cavity. To our knowledge this Greens function has not been stated
explicitly before.

2.2.2 Finite difference approach

A finite difference method is used to solve the linearized Poisson-Boltzmann Equation
(4) numerically. The method was suggested by Warwicker and Watson [13] and then
applied and modified by many others [35, 7, 36, 14]. An approach based on a distri-
bution of induced polarization charge at the dielectric interface was proposed by
Zauhar and Morgan [15]. The algorithm presented here is similar to the one used by
Klapper et al. [7]. In this algorithm, the continuous functions ®(r), &(r) and «(r) are
defined on a cubic grid. To improve the accuracy of the representation of the
dielectricum, we assign a separate value of the dielectric constant to the six faces of
a grid cell rather than to the centers of the cells. Therefore, three times more data (each
cell is shared by two adjacent cells) are required to represent the dielectric function
&(r) than to represent the potential ®(r) and the Debye-Hiickel parameter x(r). The
relationship between the Debye-Hiickel parameter and the ionic strength I of the
solvent is given by

K} = 8aN,1/1000ek, T ®)

where N, is Avogadro’s constant, e the elementary charge, ¢ the dielectric constant of
the solution.



MD OF PROTEIN BOVINE PANCREATIC TRYPSIN 365

To discretize Equation (3) on a cubid grid, we integrate over the volume ¥} of a grid
cell

[vevemar — [#@) ks Ginh ("q’(')) &Pro= —dn [ p@dr. ()
Vo Vo e Vo
The integral on the r.h.s. yields —4nQ,, where Q, is the total charge inside the grid
cell. The first term on the Lh.s. can be transformed to a surface integral using Gauss’
theorem. The finite difference representation of this integral can be written

6
f emVOE) nda = Y &(® — Bo)h, (7
$ i=1

where n denotes the normal vector of the surface S, of the central grid cell, @, the
potential at the center of a grid cell, and ®,(i = 1, 2, . .., 6) the potential at the
centers of the six neighboring grid cells. ¢; is the value of the dielectric constant
assigned to the cube face between the central grid cell and the cell with index i, and
h denotes the length of the edge of a grid cell. We simplify the second term on the Lh.s.
of Equation (6) as follows

o, ksT . sCD(r)) a3 kT . ed, |
%2(r) =2~ sinh ( = &2h =2~ sinh (—°> © (8
Jo L e k,T Kol g sin kyT ®)

Here %, represents the modified Debye-Hiickel parameter for the central grid cell
related to the Debye-Hiickel parameter «, by k, = &i*x,. Combining (6), (7), (8) the
relation

§ , kgT ed,
’_; &§(®;, — @) — —smh <k T) + 4nQy/h = 0 )
is obtained.

In case of low ionic strength, i.e., |®(r)/kyT| < 1, the sinh ( ) term in Equation (8)
can be linearized. Because x(r) assumes a constant value in the solvent region and
vanishes in the interior of the molecule, in the linearized form of Equation (8) &,
represents the average value of the potential in the central grid cell. The linearization
of Equation (8) replaces Equation (9) by the well-known equation

6
Z g®; + 4nQo/h
® = = , (10)
g + Kok’

Mo

l

referred to as the discrete linearized Poisson-Boltzmann equation (see [7]).

2.2.3 Boundary condition

Equation (10) can be solved iteratively by choosing appropriate initial values for &(r)
at all grid cell centres and evaluating the potential repeatedly by using Equation (10).
For this purpose, values need to be specified at the boundaries of the grid. The natural
boundary condition of the problem is that ®(r) vanishes on a boundary at very large
distances from the polymer. Such choice is computationally unfeasable. However, one
can also choose a boundary condition at a closer boundary if the values of ®(r) are
known there. Our strategy is to employ such a boundary and to choose approximate
values of ®(r) on this boundary (see [7]). The simplest approximation would be to
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assign vanishing potential values to all centres of cells at the boundary of the grid. A
better approximation is furnished by the potential values at the boundary which
would hold for a homogeneous Debye-Hiickel dielectricum, namely

o, = ZM (11)

ery

where r; is the distance of the ith boundary grid point to the jth partial atomic charge,
where ¢ is the dielectric constant and x the Debye-Hiickel parameter of the external
medium.

2.2.4 Multigrid method

The scheme of updating ® employed by us is the symmetric Gauss-Seidel iteration
[37]. To speed up convergence a multigrid method has been applied. The algorithm
starts on a coarse grid of 4 x 4 cells. On this level of resolution, the system of linear
equations corresponding to Equation (10) can be solved explicitly. Using interpolated
values from the coarse grid as initial guesses onan 8 x 8 x 8 grid, iteration steps are
performed until the potential changes by less than a certain fraction. We have chosen
the value 10~ for this fraction. The same procedure is repeated fora 16 x 16 x 16
grid. The grid is shown schematically in the left part of Figure 1. In the next step, the’
grid is refined by a factor of two only in the region containing the protein. The
corresponding grid is shown in the middle part of Figure 1. In the region external to
the polymer a coarse grid is employed. The iteration procedure is now applied to both
parts of the grid. At the boundary between the two parts of the grid linear interpolation
is used to link the potential values on the coarse grid to the potential values on the
fine grid and vice versa. After convergence is achieved (criterion see above) the inner
grid is refined again by a factor of two and a final relaxation procedure is carried out.
The corresponding grid is shown in the right part of Figure 1. The grid width is now
h = 1A on the inner grid.

2.2.5 Overrelaxation method

The algorithm can be made more efficient using the method of successive overrelaxation
(SOR, see [37]) provided that an optimal value for the overrelaxation parameter @ is
chosen. To evaluate the speed-up of the algorithm due to successive overrelaxation,
we solved the two problems described in Section 2.2.8 for a series of 20 different values
of the overrelaxation parameter (1 < @ < 2). In case of a point charge in vaccuum
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Figure 1 Schematic representation of three different stages of the heterogeneous discretization employed
by us according to Section 2.2.4 for evaluation of the potential 5®(R,; ). The protein surface is marked by
a thick line. The resolution of the discretization lattice with grid cell centers at Ry, is fine in a region
containing the protein and is coarse in the remaining space.
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(see Section 2.2.8 for details), the algorithm was faster by a factor of 1.9 using an
overrelaxation parameter of @ = 1.5. In case of a dipole in the center of a dielectric
sphere (see Section 2.2.8), the algorithm was accelerated by a factor of 5.6 for
o =12

2.2.6 Full multigrid method

An even faster algorithm should result from a full multigrid method (FMG) as
described in [38]. This method uses so-called multigrid cycles (MGC) on a series of
grids with gradually increasing resolution. A multigrid cycle can be described as
follows: at a certain resolution convergence is achieved by gradually proceeding to
coarser grids until the coarsest grid, i.e., the resolution the multigrid algorithm was
started with, is reached; on each grid, only a few iteration steps are performed. After
iterating on the coarsest grid, one gradually goes back to finer grids until the finest
grid, is reached again; the transition between grids of different resolution is managed
by employing linear interpolation. For details and for the theory of multigrid methods
see [39, 40]. The use of multigrid cycles instead of the usual relaxation method is likely
to increase the performance of the algorithm to solve the electrostatic field of proteins
by a large margin.

2.2.7 Modeling electrostatics of a protein

The charges Q, at the centers of the grid cells are obtained by distributing the partial
atomic charges g; of all atoms of a protein using a tri-linear weighting function as
suggested in [7). This procedure distributes partial atomic charges between several
grid cells in order to preserve the maximum number of moments of the charge
distribution of the protein. ’

A map of surface points of the molecule is determined by using the algorithm of
Connolly [41]. Grid cells containing any surface points and cells within the surface are
considered as part of the protein interior, all other grid cells are regarded as part of
the solvent. The dielectric constant is set to ¢ = 80 in the solvent and to ¢ = 2 in the
protein region. The Debye-Hiickel parameter is set to x = 0.125A~" in the solvent,
corresponding to a physiological ionic strength of 150mM, and to k¥ = 0 in the
protein interior. The orientation of the protein relative to the grid and the spacing of
the grid are chosen with respect to a minimum distance of 1.5 Debye lengths k"
(corresponding to about 12A at physiological ionic strength) between the surface of
the protein and the boundary of the grid.

2.2.8 Separating Coulomb and screening potential

To test the accuracy of our algorithm we compared the numerical results for two
simple problems with their analytical solutions. The first problem considered is the
case of a point charge in vacuum (¢ = 1, k = 0). The relative error between the exact
Coulomb potential and two different kinds of numerical solutions is shown in
Figure 2. The point charge is located in the center of a grid cell. A solution using a
homogeneous grid (64 x 64 x 64,h = 1A) and another using a heterogeneous grid
(lower resolution within a distance of 8 A from the grid boundary, i.e., beyond grid cell
with index 24) are compared there. In both cases, the error is larger than one percent
only within four grid cells around the point charge. Using a lower resolution of the
grid in the boundary region does not reduce accuracy considerably. However, near the
point charge, the error increases above 8 percent. If the location of the charge were
nearer to the edge of a grid cell, the error at this location would be even larger (up
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Figure2 Relative error between the numerical solution of the linearized Poisson-Boltzmann equation for
a point charge in vacuum and the exact Coulomb potential g/r. The algorithm and boundary conditions
assumed are explained in Section 2.2.2-2.2.4. The position of the point charge is in the center of a cell with
index j = 0. The thick line denotes the error in the case of the heterogeneous discretization (see Figure 1),
which implies a lower resolution beyond the cell withj > 24 i.e., 5 = 1A in the central regionand 4 = 4A
in the peripheral region. The thin line shows the error in the case of a grid with homogeneous resolution
(h = 1A). The space in which the potential was evaluated is a cube with edges of 64 A length. The cell with
index j = 0 is located in the center of the cube. The horizontal dashed line marks the 1% error limit.
e=1,x=0)

to 50 percent). Therefore, even in homogeneous media without dielectric interfaces,
the potential is represented poorly near singularities.

If one wishes to account in a molecular dynamics simulation for the effect of an
external solvent, an accurate representation of the forces in the interior of a macro-
molecule is needed. The method described above appears to be unsuitable in this
respect. The reason for the failure is the existence of singularities of the potential at
the position of partial atomic charges which are represented poorly. This deficiency
can be corrected, in one splits the potential ®(r) into two terms

= 49
@(r) ; PR + 6®(r) (12)
The first term represents the Coulomb potential in a homogeneous medium with
dielectric constant within the protein. This term contains all the singularities due to
the Coulomb potentials of the partial atomic charges g; at r;. 6®(r) represents the
modification of the Coulomb term due to screening by the aqueous environment. The
merit of the decomposition given by (12) lies in the fact that the screening contribution
@ to the potential @ actually can be evaluated numerically.
The screening potential and the corresponding force field Vé®(r) plays a crucial role
- for the motion of atoms in a continuous dielectric and Debye-Hiickel medium in that
it furnishes the so-called reaction field which describes the forces which the solvent
exerts on the atomic partial charges of a polymer. The separation in Equation (12) in
the context of a molecular dynamics simulation implies that intramolecular Coulomb
forces are evaluated through a conventional molecular dynamics algorithm whereas
the effect of the solvent is attributed to the reaction field Vo®.
The procedure developed in [1] to evaluate 6® will be described now. We consider
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the representation

O1) & T —E— + 0,(0) — Op() (13
T eulr — 1))
where @,(r) ¥ ®(r) and ®u(r) ~ Zq;/e,|[r — r;| are numerical approximations
obtained by applying the finite difference algorithm described in Section 2.2.2. ® ,(r)
and ®,(r) are evaluated as follows:

1. ®,(r) is determined by solving the linearized Poisson-Boltzmann equation
numerically for a heterogeneous problem with a low dielectric constant ,, and
partial atomic charges in the molecular region, a high dielectric constant ¢, and
a non-vanishing Debye-Hiickel parameter « in the peripheral region.

2. ®y(r) is obtained by solving the linearized Poisson-Boltzmann equation numeri-
cally for a homogeneous problem with partial atomic charges at the same
locations and of the same kind as above and for the same low dielectric constant
&n, however, assumed in the whole grid volume. The Debye-Hiickel parameter
vanishes everywhere.

3. By comparing Equation (13) with Equation (12) the screening contribution
o®(r) is approximated by

oB(r) = @,(r) — Dy(r). (14)

By evaluating the potential ®(r) using Equation (13) the error due to the inaccuracy
of the finite difference algorithm near partial atomic charges is reduced considerably
by cancellation of this error in ®, and ®,. An approach similar to that adopted here
and in [1] was used by Gibson and Honig [21] to determine the effect of an external
solvent on the total electrostatic energy of a protein.

To check the accuracy of the method suggested above we considered a dipole of two
point charges 1A apart and centered in a dielectric sphere (R = 20A) with low
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Figure 3 Relative error of the numerical solution of the linearized Poisson-Boltzmann equation for a
dipole consisting of two point charges 1 A apart. The dipole is centered inside a sphere with low dielectric
constant (g,, = 2) and radius R = 20A (indicated by vertical dashed line). The sphere is surrounded by
a medium with high dielectric constant (¢, = 80). The medium is a cube with edges of 64 A length. The
grid spacing is & = 1 A. The thin line shows the error resulting from the calculation described in Section
2.2.2-2.2.4, the thick line shows the error obtained when the superposition principle (see Section 2.2.8) is
employed. The horizontal dashed line marks the 5% error limit. (x; = x, = 0, i.e., no Debye-Hiickel
screening)
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dielectric constants (¢, = 2). The sphere is located in a cubic grid (size 64 A, h = 1A)
and is surrounded by a medium with high dielectric constant (¢, = 80). The medium
does not contain any ions (k = 0). The problem was solved by applying two different
kinds of numerical algorithms. Figure 3 shows that the ordinary finite difference
algorithm as described in Section 2.2.2 produces an error larger than 15 percent (as
in the case of Figure 2 the error would be larger if the point charges were located near
the edges of a grid cell), whereas the algorithm based on Equation (13) reproduces the
exact result near the point charges (at r = 0) with an accuracy better than 5 percent.
Near the dielectric boundary (indicated by the vertical dashed line) the algorithm
based on Equation (13) produces an error with a maximum value of less than 30
percent while the ordinary finite difference algorithm produces a maximum error of
about 35 percent.

2.2.9 Poisson-Boltzmann equation for screening potential

An alternative method to apply the decomposition (12) is to evaluate d®(r) directly.
A differential equation d®(r) is obtained by subtracting from the linearized Poisson
Boltzmann equation

V(EemV(Dcr) + 60(r)) — (I @c() + 6D(r) = —4np(r) (15)
the Poisson equation
Ve, VO(r) = —4dnp(r) (16)
to yield ‘
Ve(r)Vod(r) — ©*(r)od(r) = —4np(r). an

Equation (15) is the partial differential equation for the heterogeneous system, where
the potential ®(r) has been split according to Equation (12), which implies

o) = ¥ —L (18)

T et — 1

p(r) is an effective charge distribution defined by

o 1 . .
po) = - (VEDVO(r) — & (D)), (19
where
0 in the molecular region
&r) = &) —¢, = . . (20
&, — &, in the solvent region

Equation (17) is a linearized Poisson-Boltzmann equation for the potential 6@(r). It
can be discretized and solved numerically as described in Section 2.2.2.

To solve Equation (17) by discretization one has to determine the charges Q;
assigned to the cells of the lattice. When integrating the charge density j(r) over the
volume V¥, of a grid cell (see Equation (9)), one obtains

Q = — §EOVOL() - nda + j R2(D)®(r). 1)
So Y
The first term on the r.h.s. of (21) gives an important contribution confined to grid
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cells at the interface between the molecule and the solvent. The resulting charges Q,
are the polarization charges which describe the effect of the discontinuity of the
dielectric constant. For grid cells entirely inside the polymer region, Q, vanishes since
- both &(r) and #(r) vanish in this region. For grid cells entirely in the solvent region the
first term of (21) does not contribute since &(r) is constant there, and since the surface
integral over V@, vanishes according to Gauss’ theorem applied to Equation (16).
Appropriate boundary values can be obtained by superimposing the boundary
conditions for Equation (15) which are given by Equation (11) with the boundary
conditions for the Poisson Equation (16) to yield the boundary condition

o0, = Y I

7Ty

where r; is the distance between the ith boundary grid point and the jth partial atomic
charge in the original system.

Due to the fact that (r) vanishes inside the polymer, we expect a numerical solution
for 6@ to be very smooth in that region and, therefore, to be numerically accurate.
We currently implement the suggested algorithm for @ into our electrostatics pro-
gram to obtain a numerically improved description of electrostatic potentials inside
proteins. The results presented below, however, were obtained without this algorithm.

g,

(-1— exp (—kry) — sl)’ (22)

2.3 Positioning of Counter-Charges at the Protein Surface

Often biological macromolecules carry a net charge. The charge in case of a protein
is determined by the pK ,-values of amino acid side chains which often are modified
by local interactions and are not known. When modeling the electrostatic properties
of such a system it may be necessary to neutralize the system to render it stable in a
molecular dynamics simulation. An example is double-stranded DNA which requires
neutralization of charges on its phosphor groups by external ions [42, 43]. This
neutralization is due to either protonation or deprotonation or due to binding of
external ions to the molecular system.

To estimate the effect of neutralization of a molecule we place counter-charges in
the solvent near the surface of the molecule to achieve local electrostatic neutrality.
The counter-charges are placed at positions of minimal electrostatic energy. We want
to describe now how these positions have been determined by us. The procedure is
explained using the protein BPTI as an example.

In order to identify such positions on the surface of BPTI, which carries a net charge
of + 6, we used the following method:

1. In a first step the molecule is surrounded by a sphere which is centered at the
geometric center of the molecule and which encloses the molecule entirely, i.e.,
the sphere should not touch the molecule. We choose the closest distance
between this sphere and the molecule to be 4 A. In the case of BPTI, the radius
of the corresponding sphere is 25 A.

2. In a second step we select 2000 evenly distributed points on the sphere obtained
in step 1.

3. In a third step a test charge (negative sign in case of BPT| with a van der Waals
radius of 2.5 A is placed at each point of the set chosen in step 2 and an energy
minimization is carried out by allowing the test charge to move towards BPTI.
The atoms of BPTI are fixed during minimization, i.e., only the test charge
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moves. After the minimization procedure has converged the total energy (elec-
trostatic energy plus van der Waals energy) of the test charge at its new position
is evaluated. The large number of initial positions for the counter-charges on the
sphere leads to a much smaller number of optimal positions near the surface of
the polymer, i.e., test charge starting at different initial positions ends up in the
same minimum. In the case of BPTI, 2000 initial positions ended up in 80
minima. :

The electrostatic interaction energy between counter charge and protein is a measure
for the binding strength of that charge. Positions with considerably negative inter-
action energies favouring binding are referred to as Aot spots. Depending on the net
charge of the polymer and on the number of hot spots one can choose a certain
number of counter charges to be added to the system. In the case of BPTI, we wanted
to neutralize the molecule, hence, six positions for counter-charges had to be chose.

4. In a fourth step the following procedure was used to place six counter charges
at six of the 80 hot spots: The first charge was placed at the location with the
lowest total energy. The other charges were added to the system successively.
Each charge was placed at the one of the remaining hot spots which had the
lowest energy, taking into account the effect of the counter-charges already
present in the system.

2.4 Molecular Dynamics Simulation of BPTI

Molecular dynamics simulation methods have been extensively described and applied
by many authors [44, 16, 45, 46, 47, 17, 48, 49, 50]. In our investigations we used the
program X-PLOR [51] derived from CHARMM ([27]. Starting from the X-ray struc-
ture of BPTI by Deisenhofer and Steigemann [52], the BPTI molecule was prepared
for our molecular dynamics simulations by the following steps:

1. An energy minimization using the conjugate gradient method (see [28]) has been
carried out. We used for this purpose the Powell algorithm of X-PLOR [51].

2. The molecule has been heated to 300 K by gradually rescaling atomic velocities
to higher values while doing a molecular dynamics simulation.

The four simulations described in Section 3 were based on the structure resulting from
these steps. All four simulations lasted 20 ps and consisted of two periods, an
equilibration period lasting 10 ps and an analysis period also lasting 10 ps. The periods
are somewhat briefer than in conventional molecular dynamics calculations not
accounting for solvent screening effects, the reason being the very large computational
effort involved in solving repeatedly the Poisson-Boltzmann equation. During the
equilibration period of the simulations the atomic velocities were rescaled every 250 fs -
to maintain, according to Equation (1), a temperature of 300 K. During the analysis
period velocities were not rescaled, except in case of the one simulation which accounted
for the effect of solvent screening. The need for the latter rescaling is explained further
below. To eliminate fast oscillations due to hydrogen bond vibrations, hydrogen
bonds were kept at fixed length using the so-called SHAKE algorithm [17]. This
allowed us to use a time step of 1fs for the integration of Newton’s equations.

To incorporate the effect of solvent screening into molecular dynamics simulations
the screening potential 6®(r) defined in Equation (12) is used to obtain the contribu-
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tion to the atomic force field due to screening, i.e., the reaction field Vo®(r) is added
to the conventional (Charmm [27]) force field. This potential is non-singular and is
well-defined at the locations of the protein atoms. Therefore, the additional force
acting on an atom with partial charge g; due to screening by the solvent is

0
F = —qja—rjé(b(rj). (23)

The problem in applying (23) is that 6®(r) is represented in the numerical solution
only on a discrete lattice. We will now explain how a suitable continuum representation,
for which the gradient can be evaluated, is found. ,

Using the potential S®(R;;) on a grid with positions Ry, obtained by the numerical
method above for a certain configuration of the protein, a continuous potential 6®(r)
is constructed by linear interpolation. Since such é®(r) is not differentiable every-
where, it cannot be used to construct a force field according to Equation (23). The
following method is applied instead (see [1]):

1. Let 6@, be the screening potential at grid point (X, Yy, Z;;) where the indices
i, j and k correspond to the direction of the x-, y- or z-coordinates, respectively,
and where & is the distance between neighboring grid points. We then use

5 = (0@, — 0@y )/h as an approximation for the x-component of V(6D)
at position (X;3 + h/2, Yy, Zy). Fi and Fj; can be obtained and used in a
similar way.

2. The three force components are defined on grids which are shifted by a distance
of h/2 in the direction of the x, y- or z-coordinate with respect to the grid (Xj,
Yy, Zj). The force F,on atom j at position r; can be obtained by tri-linear inter-
polation on the latter grid. ‘

In our investigations the reaction field determined as described was used in a molecular
dynamics simulation of BPTI in addition to conventional intramolecular binding
forces, van der Waals forces and Coulomb forces. During the simulation the potential
d® was updated every 250 fs. A faster schedule of updating seemed unnecessary due to
the large time constant T = 10 ps[32] of orientational dielectric relaxation of water. This
long relaxation time implies that the solvent, compared with the rapidity of BPTI
motions, adapts only very slowly to charge rearrangements of the protein by altering
5®. In our simulation, we accepted every 250 fs abrupt changes of the new screening
potential 6®. ,,

The total energy of the system can be divided into the three contributions

Etolal = Eintcrnal + Escreening + Esolvem' o (24)

Here E,.... contains the energy contributions for all internal degrees of freedom as
defined in [27], Eiqeening describes the interaction of atomic partial charges with the
screening potential :

. )
Escreening = §;q15®(r;)a (25)

and E,., is the internal energy of the solvent. This latter energy has not been
evaluated by us.
The energy of the simulated protein defined as

Epmtein = Eintemal + Escroening (26)
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is not conserved, the change in E,., being transferred to Egjen- The exchange of
energy leads to a change of temperature of the protein. We have applied the rescaling
method mentiond in Section (2.1) to keep the temperature constant. This procedure
accounts: for the fact that dielectric heating and cooling of the solvent would be
followed by exchange of kinetic energy between protein and solvent.

2.5 Accounting for finite dielectric relaxation times and ion mobilities

The following approach allows one to account for a finite dielectric relaxation time
and finite ion mobilities of the solvent. We redefine the screening potential such that
only a fraction of the change of 5® as defined in (14) is accepted at each updating step.
The screening potential 5® is updated at times 6z, 25¢, 36¢, . . . , nét. Let d¢(t + 61)
be the difference between the old screening potential determined at time £ and the new
one determined at time ¢ + 6t

¢t + 8 = 60 + 1) — o0(2). @7

3¢(r + 6f) would be the change in the screening potential which would occur if the
solvent reacts instantaneously to rearrangements of the charges of the protein at time
¢ + ot. Because the time constant  for orientational dielectric reorientation is large
compared to the time step of 1fs used in our molecular dynamics simulation, the
solvent appears very inert in its configurational adjustment. This behaviour can be
described by a relaxation factor 1 — exp(—dt/r) which gives the fraction of
5¢(t +.61) that actually occurs in the time d¢ between two updates of the screening
potential. The modified screening potential 6®(r + 6¢) which takes into account the
inertia of the solvent is then calculated according to

S0(t + 81) = 0() + (1 — exp (—5tr)dP(r + ). (28)

We are currently implementing this scheme into our molecular dynamics description
of proteins in dielectric media.

One may alternatively update the charge density p(r) defined in Equation (19) by
a corresponding scheme. This approach would allow one to separately deal with the
contributions due to the dielectric response of the solvent, i.c., ¢,, and due to the
responsg of screening through ionic motion, i.e., &, which, in principle, are governed
by two different relaxation times.

3 RESULTS

The aim of our study has been to demonstrate that molecular dynamics simulations
accounting for electrostatic solvent effects are feasible. We also wanted to determine
to which extent a solvent affects structure and dynamics of a protein. For this purpose
we have carried out four different molecular dynamics simulations of BPTI, each
lasting a period of 20 ps. The relatively brief simulation periods are due to the fact that |
the necessary repeated solution of the Poisson-Boltzman equation are very time-
consuming.

As explained above, the four simulations each entail two periods, namely an
equilibration period lasting 10 ps and an analysis period also lasting 10 ps. (see Section
2.4). The four simulations will be referred to as simulations A, B, C and D. All four
simulations started from the same structure of BPTI at 300 K, which was obtained as
described in Section 2.4.
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Simulation A described in Section 3.1 takes into account all electrostatic interac-
tions within the protein, but neglects the influences of solvent screening or counter
charges. This simulation serves as a reference against which other simulations can be
compared. Simulation B, in addition to the forces accounted for by simulation A,
includes forces due to solvent screening, the latter being determined using the finite
difference algorithm presented in Sections 2.2.2, 2.4, and 3.2. In Simulation C we
investigate the effect of counter charges. Such charges arise due to protonation/
deprotonation controlled through the pK-values of surface amino acid side groups as
well as due to binding of ions. This simulation is described in Section 3.3. Finally,
Simulation D addresses the somewhat more methodological issue of the effect of a
cut-off of Coulomb interactions on structure and dynamics. The simulation, described
in Section 3.4, is the same as simulation A except that a cut-off range for the Coulomb
forces is assumend. The parameters which define the simulations A, B, C and D are
listed in Appendix B.

3.1 Molecular Dynamics Simulation of BPTI in Vaccuum

Simulation A was carried out in a homogeneous dielectric medium disregarding effects
due to dielectric and Debye-Hiickel screening by an external solvent. The effects due
to the polarizability of the protein atoms were accounted for by a dielectric constant
¢ = 2. All electrostatic interactions between protein atoms were taken into account
using algorithms provided by the molecular dynamics program. The time step of the
integration was 1 fs. This long time step was possible because fast oscillations due to
vibrations of hydrogen bonds were eliminated using the SHAKE algorithm [17] (see
Section 2.4). Four water molecules present in the BPTI structure were represented
using the ST2 water model which is implemented into CHARMM [27] and X-PLOR
[51]. To suppress fast oscillations of bonds and angles within these water molecules
the molecules were treated as rigid bodies, i.e., their internal degrees of freedom were
neglected. The results obtained from Simulation A are compared with the ones of
simulations B, C and D in the following sections and will not be discussed here
separately.

3.2 Molecular Dynamics Simulation of BPTI in Solution

Simulation B is identical in all respects to simulation A except that additional forces,
i.e., the reaction field, were accounted for which derive from the effect of an external
solvent. The dielectric constant was ¢ = 2 inside the protein (like for simulation A)
and ¢ = 80 in the solvent. The Debye-Hiickel parameter was k = 0.125A~'. The
discretization lattice used for the finite difference algorithm had an initial resolution
of 16Aina4 x 4 x 4 grid and a final resolution in the protein interior of 1 A. The
screening potential was updated every 250 fs without applying the relaxation mechan-
ism described in Equation (28). Accordingly, there were abrupt transitions between
successive potentials. Atomic velocities were rescaled every 250 fs not only during the
equilibration period, but also during the analysis period of the simulation to avoid
heating/cooling through the time-dependent solvent potential.

To demonstrate solvent effects we actually have carried out the first 5ps of the
simulation disregarding solvent effects, switching these effects on instantaneously at
t = Sps. This procedure allows one to visualize the deviations between observables
of ‘solvated’ and ‘unsolvated’ BPTI. A first observable considered is the absolute
value of the total force acting on any one atom j averaged over all N atoms
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FO = FLFO. @9

This quantity is compared with corresponding averages for various contributions to
the total force, namely the Coulomb force between atoms and the forces due to
dielectric and Debye-Hiickel screening (reaction field). The time development of the
quantities mentioned is shown in Figure 4 for the analysis period of simulation B. The
figure shows that the mean total force exceeds the mean electrostatic force by a factor
of 6 and the mean screening force (reaction field) by a factor of 30. In particular, the
standard deviation of the total force with respect to the set of all atoms is much larger
than the two electrostatic contributions. The large ratio between standard deviation
of all forces and mean electrostatic force is due to the fact that short range potentials
like harmonic and van der Waals potentials vary considerably more during vibrational
periods of protein atoms than the electrostatic and screening potentials do. Moreover,
the contributions due to Coulomb interactions and screening are underestimated to
some extent compared to the other contributions because the average was calculated
over all atoms, i.e., also neutral ones. Yet the ratio between the mean Coulomb force
and the mean screening force (reaction field), namely a factor of 5, is appropriate since
both averages include neutral atoms.

Figure 5 presents the time development of various contributions to the total energy
for the last 5 ps of the equilibration period of simulation B, starting from the time when
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Figure 4 Time development of mean forces acting between atoms of BPTI for the second phase of
molecular dynamics simulation B (see Section 3.2). The average is taken at every time step over the absolute
values of the forces acting on all atoms in the protein. The solid line at the top shows the total mean force,
the dashed line represents the standard deviation of the total force with respect to the set of all protein
atoms. The solid line below denotes the mean electrostatic force due to Coulomb interactions within the
protein. The line at the bottom of the diagram shows the contribution due to screening by the solvent.
(Parameters for simulation B are in section 3.2, the discretization scheme used for evaluation of é® is
defined in Section 2.2.4, parameters for the water continuum model are given in Section 2.2.7; see also
Appendix B.)
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Figure 5 Time dependence of various contributions to the total energy of BPTI resulting from molecular
dynamics simulation B as described in Section 3.2. The screening contribution is scaled by a factor of 2.
In the simulation the screening potential J®(R;; ) was updated and atomic velocities were rescaled (corre-
sponding to T = 300K) every 250 fs. Because of the coarse updating scheme the screening energy, defined
as E, = 1/2%,60(r,(1)) (see Equation (25) exhibits discontinuities. (Parameters for simulation B are

screening

in Section 3.2, the dlscretlzanon scheme used for evaluation of é® is defined in Section 2.2.4, parameters
for the water continuum model are given in Section 2.2.7; see also Appendix B.)

the screening potential has been switched on. During the first ps of the equilibration
the kinetic energy and the harmonic energy are increasing slightly as the protein
adapts to the solvent. The electrdstatic energy is decreasing by a small amount for the
same reason. The screening energy, scaled by a factor of 2 in our diagram, exhibits
a relaxation behaviour towards a lower level. This energy drops by about — 25 kcal/
mol and then rises again by about 12 kcal/mol to reach an average solvation energy
of about —250kcal/mol. We have ommitted in Figure 5 the energies during the
analysis period of simulation B since during this period the screening energy remained
at values around — 250 kcal/mol reflecting a stationary state.

One can readily notice in Figure 5 discontinuities of the screening energy which are
due to the sudden updates of the screening potential. Obviously, the slow time of

= 10 ps for orientational dielectric relaxation of water is inconsistent with the fast
changes of the screening potentials. To improve this deficiency one should update the
screening potential according to the potential given in Equation (28) which assumes

_an exponential relaxation process with a proper relaxation time. Such procedure
would eliminate the discontinuities discernable in Figure 5.

To estimate the influence of the screening forces (reaction field) on the overall shape
of the molecule, we considered two different properties of BPTI, namely the radius of
gyration, a measure for the size of the molecule (see Section 2.1), and the solvent
accessible surface, a measure for the “wrinkling” of the surface. The latter property
has been determined by the method of Lee and Richards [31].
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Figure 6 Time development of the radius of gyration of BPTI for molecular dynamics simulations A and
B. The radius of gyration is used as a measure for protein size. The thick line refers to simulation A (protein
in vacuum, full range electrostatic interactions are taken into account, parameters see Section 3.1), the thin
line refers to simulation B (protein in solution, parameters for simulation and discretisation see Section 3.2
and 2.2.4). Both simulations started with the same protein structure (see definition of simulations A and
B in Section 3.1 and 3.2). In simulation B, screening was switched on instantaneously at t = 5 ps.

Figure 6 presents the time-dependence of the radius of gyration R,,, resulting from
simulation A and from simulation B. The simulations were identical during the first
5ps, hence, R,,, of both simulations coincide. However, when the electrostatic forces
due to'the solvent are switched on in simulation B the radii deviate. Nevertheless, R,
for both simulations fluctuate about the same equilibrium value and one can conclude
that solvent effects due not unfold or compress BPTI.

Even if BPTI does not increase in size, its surface due to solvent interactions may
still change through corrugation. The time dependence of the accessible surface of
BPTI for simulations A, B is shown in Figure 7. One would expect that the solvent
accessible surface increases through interactions with a solvent, the reason being that
these .interactions favour atoms with partial charges at the surface. In fact, one
observes an increase of the solvent accessible surface after the common period of 5 ps
in which both simulations are identical. However, the solvent-induced increase
measures only about 70 A2, i.e., only about 2 percent of the total surface of BPTI. To
judge this increase we note that the solvent accessible surface of a tyrosine side group
is about 200 A2, This implies that the solvent, during the brief period of 15 ps, has only
a minor affect on the corrugation of the surface of BPTI, inducing about a third of
an amino acid side group the size of tyrosine to expose itself to the solvent. A more
realistic description of the influence of the solvent which takes into account the slow
relaxation behaviour of water as described in Section 2.4 is not likely to lead to larger
changes of the shape of BPTI. An important improvement of the simulation of solvent
effects may be obtained through an all-atom representation of water near the surface
of the protein combined with a continuum water model in the peripheral region.
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Figure 7 Time development of total solvent accessible surface of BPTI for molecular dynamics simu-
lations A and B. The definition of solvent accessible surface is given in Section 2.1. The thick line refers
to simulation A (protein in vacuum, full range electrostatic interactions are taken into account, paratheters
see Section 3.1), the thin line refers to simulation B (protein in solution, parameters for simulation and
discretisation see Section 3.2 and 2.2.4). Both simulations started with the same protein structure (see
definition of simulations A and B in Section 3.1 and 3.2). In simulation B, screening was switched on
instantaneously at z = 5ps.

3.3 Effect of Surface Counter Charges

A protein can interact with its environment also through charged chemical con-
stituents, either through ions which bind to the surface, e.g., metal ions, or through
protons which protonate or deprotonate surface-accessible amino acid side groups.
Because of the immediate contact of such counter charges which can neutralize
otherwise charged amino acid side groups, a stronger effect than that of a solvent can
be expected. The placement of counter charges depends on one side on the pK-values
of amino acids, on the other side on the affinities for ions. Both properties cannot be
characterized easily theoretically. To investigate the effect of counter ions we choose,
therefore, to place test charges through an energy optimization criterium on the
surface of BPTI and to monitor the resulting dynamics. The results shouid not be
interpreted as describing BPTI realistically, but rather to indicate in principle which
effects ion binding and pK effects exert on a protein’s structure.

BPTI carries a net charge of + 6. We have chosen, therefore, six negative counter-
charges at hot spots (see Section 2.3) to neutralize the protein. The simulation started
from the equilibrated structure of BPTI which had been obtained as described in
Section 2.4. We monitored during the corresponding simulation C the radius of
gyration R, as well as-the surface accessible surface.

The time development of R,,, and of the solvent accessible surface for a system with
(simulation C) and without (simulation A) counter ions are presented in Figure 8 and
Figure 9, respectively. Both properties are observed to decrease through interactions



-

380 C. NIEDERMEIER AND K. SCHULTEN

1 1 1
11.50 .
= 1126
g
R
®
11.00
B
Yt
[}
5 1075
o
o
I
10.50 I .
10.25 ' ' '
0. 5. 10. 15. 20.

time [ps]

Figure 8 Time development of the radius of gyration of BPTI for molecular dynamics simulations A and
C. The thick line corresponds to simulation A (protein in vacuum, see Section 3.1). The thin line
corresponds to simulation C (protein interacts with 6 negative counter charges, see Section 3.3). In the case
of simulation A, the protein has a net charge of +6, whereas in the case of simulation C, the protein-
counter charge system is neutral. Both simulations started from the same protein structure. (see Section 2.4)
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' Figure 9 Time development of total solvent accessible surface of BPTI for molecular dynamics simu-

lations A and C. The thick line corresponds to simulation A (protein in vacuum, see Section 3.1). The thin
line corresponds to simulation C (protein interacts with 6 negative counter charges, see Section 3.3). In the
case of simulation A, the protein has a net charge of + 6, whereas in the case of simulation C, the

protein-counter charge system is neutral. Both simulations started from the same protein structure. (see
Section 2.4) )
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with counter charges. The radius of gyration decreases by about 0.5A during the
simulation, the solvent accessible surface decreases by about 200 A?, which corre-
sponds to the surface of one tyrosine side group (see Section 3.2) being transferred
from the solvent to the interior of the protein. The results in Figure 8 and Figure 9
indicate that BPT! shrinks considerably in size through neutralization of its charged
amino acids. One can conclude that the charge states of amino acids at the surface of
a protein need to be considered carefully in simulations, e.g., by determining the pK,
values [23].

3.4 Effect of a Finite Cut-off of Coulomb Forces

We like to consider finally the effect of an approximation often employed for mol-
ecular dynamics, namely the cut-off of Coulomb forces beyond a certain distance [27].
Such approximation reduces the computational effort to determine pair interactions,
the computationally most demanding step in molecular dynamics simulations of large
polymers. The effect of this approximation can be understood well in the context of
our present discussion since a cut-off of Coulomb forces implies that charged surface
groups beyond the cut-off radius do not interact. One would expect that the cut-off
has an effect similar to that of counter charges in that the size of electrostatic
interactions between charged amino acid groups at the surface of the protein is
reduced in both cases. To estimate the effect of using a finite cut-off radius compared
to the effect of solvent screening as described by our model, we performed a simulation
referred to as simulation D in which we assumed a cut-off radius of 10.5A. This
simulation was started with the same protein configuration as simulations A and B (see
Section 3 and Appendix B). We consider again the time development of the radius of
gyration as well as the time development of the solvent accessible surface.
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Figure 10 Time development of the radius of gyration of BPTI for molecular dynamics simulations A and
D. The thick line corresponds to simulation A (protein in vacuum, all electrostatic interactions within the
protein are taken into account as described in Section 3.1). The thin line corresponds to simulation D
(protein in vacuum, only electrostatic interactions between atoms less than 10.5A apart are taken into
account, see Section 3.4). Both simulations started from the same protein structure. (see Section 2.4)
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Figure 11 Time development of the solvent accessible surface of BPTI for molecular dynamics simulations
A and D. The thick line corresponds to simulation A (protein in vacuum, all electrostatic interactions
within the protein are taken into account as described in Section 3.1). The thin line corresponds to
simulation D (protein in vaccum, only electrostatic interactions between atoms less than 10.5 A apart are

taken into account, see Section 3.4). Both simulations started from the same protein structure. (see Section
2.4)

results confirm the expectation that BPT| with a net positive charge experiences less
intramolecular repulsion in the case of a cut-off of Coulomb forces and, as a result,
decreases in size by about 0.5 A in the radius of gyration. The decrease is due to the
fact that some of the positive charges at the surface of BPTI are further apart than
10.5A and do not repel each other in simulation D. An analogous effect is found for
the solvent accessible surface of BPTI which is presented in Figure 11. In case of
simulation D the solvent accessible surface decreases by about 120 A relative to that
determined for simulation A. The decrease implies that a side group about half the size
of tyrosine becomes burried when the Coulomb forces are cut off. These results
suggest that molecular dynamics simulations which do not take electrostatic interac-
tions faithfully into account can predict wrong shapes of biopolymers.

4 DISCUSSION

We have demonstrated that molecular dynamics simulations which account for
solvent effects due to dielectric inhomogenities and Debye-Hiickel screening are
computationally feasible. We have discussed various computational approaches to
represent screening potentials and the corresponding forces. Application to BPTI has
‘revealed that in the case of this protein solvent effects, as judged by changes of radius
of gyration and accessible surface area, are small. Yet we have found that counter
charges which represent protonation/deprotonation processes or binding of ions,
have a considerable effect on the shape of a protein, judged by the same criteria. Since
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water and solvated ions in water can have a profound influence on pK,’s of surface
groups and ion binding we expect that proper descriptions of proteins require a
careful determination of pK , values to determine the right protonation state of amino
acids, for which purpose solvent effects need to be considered, and requires the
inclusion of possible ion binding and solvent effects to account for a proper protein
size and surface corrugation.

Presently, many efforts are being undertaken to improve technological approaches
towards large scale protein molecular dynamics and protein electrostatics calculations
[53, 21, 54]. The algorithms available today allow one to combine molecular dyamics
studies with more faithful descriptions of solvent environments, either by explicitly
simulating water around proteins [55], by involving continuum solvent models or a
combination of both. Computation times for large proteins, e.g., about 70 ps for a
protein of 12000 atoms on a Cray 2 single processor using the program CHARMM,
are about the same as needed for solving potential and force fields from integration
of the Poisson-Boltzmann equation. If one employs parallel computers the computa-
tional tasks can be shared between processors and including proper solvent dielectric
and Debye-Hiickel effects should not degrade computational performance if one adds
programs for molecular dynamics and for electrostatics.

We expect that future molecular dynamics studies will include solvent effects in a
manner suggested here, most likely, however, in a combined molecular and con-
tinuum approach for the solvent. For many important outstanding problems in
molecular dynamics, in particular, protein folding and protein modelling, improved
descriptions of biopolymer (proteins, DNA, RNA, etc.) - solvent interactions are
critical and algorithmic and conceptual developments for better descriptions of this
interactions will determine further progress.
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APPENDIX A ANALYTICAL SOLUTION

The linearized Poisson-Boltzmann Equation (4) can be solved analytically for prob-
lems with spherical geometry. Unlike Tanford and Kirkwood [34], we will give a
general solution for arbitrary charge distributions, i.e., also for continuous charge
distributions, in the form of a Greens function. The Greens function obtained can be
used to represent atomic charges by spherical charge clouds rather than by point
charges, which is a more accurate way to represent the charge distribution of a
molecule.

We consider a spherical region of radius R with dielectric constant ¢, and vanishing
Debye-Hiickel parameter which is surrounded by a medium with dielectric constant
¢, and a Debye-Hiickel parameter k. For this problem, the linearized Poisson-
Boltzmann equation reads

AD() = — t—np(r) ifr < R (30)

A - &HOr) = — t_n p() ifr > R

where K = rc/\/s_,. The Greens function for this problem is obtained by solving the
differential equations which result from (30) when p(r) is substituted by the delta
function 8(r-1r"). One obtains (for details see [1])

N mE L RO Y0 (L
G,(l',l') = g_slg()m;-l 2l+ 1 re r_Ij—l—W (31)
in the spherical region (r < R) and
N —Amik d L h{" (ikr)
Gp(l',l') - sp I=ZO m=2—l m(e :¢ )Ylm(03¢) h;l)(lkR)
x [ji(ikr Im(RR) — nyikr ), (iRR)] (32)

in the peripheral region (r > R). r,(r.) is the larger (smaller) of |r| and |r'|, the
Y,,(6,¢) are spherical harmonics and ji(x), n,(x) and HV(x) denote the spherical
Bessel, Neumann and Hankel functions of order /, respectively.
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The Greens function obtained can be applied to solve the spherical problem for an
arbitrary charge distribution p(r). By evaluating

o) = j PG r — -—§ O(r )aG(”)4de’ (33)

solutions for the spherical and the peripheral region can be obtained. The potential
on the surface S of the spherical region [r| < R, which has to be known to evaluate
the surface integral in (33), is formally expanded in terms of spherical harmonics,
namely

© !
Z _Z AImYIm(e/sqS/)' (34)

r=R m=—

()

The coefficients 4,, are determined (see [1]) by exploiting the continuity of D, at the
dielectric interface yielding the condition

od,
& 6r

oo
= g —L£
=R ? ar r=R

(3%)

where ®, and ®, are the solutions in the spherical and the peripheral region,
respectively.

For a charge distribution of N point charges g; at positions r; within the spherical
region and vanishing charge density in the peripheral region one obtains the solution
given by Kirkwood [33]

s I
o) = ) :Z,

=0 m=~1

3 2+ 1
{; Kpi(rr;) + 518—-:_—3—883 Mm( R) } Y. (6,0) (36)

Q@+ e, .. HO(iRr)

© !
q)p(r) = 1=20m§_1 ’118,; + 18, M/m h}l)(lkR) Y'[,,,(B,(p) (37)
where
Y’ (ikR) (38)
= T R RR)
and
4n g 1 r,
Klmj("s’j) = A+ lsj re <r1+l R21+1> m( d’j)’ (39
N 4
M, = > L (%) 16, 9. (40)

In Equation (39) r, (r <) denotes again the larger (smaller) of r and r.
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APPENDIX B  PARAMETER FOR THE SIMULATIONS

The following simulation parameters were used in simulations A, B, C and D:

Property Sim. A Sim. B Sim. C Sim. D
total charge [e, +6 +6 0 +6
cut-off radius {A}] 0 o 0 10.5
time step of integration [fs] 1 1 1 1
dielectric constant of protein 2 2 2 2
dielectric constant of water - 80 - -
Debye-Hiickel parameter [A~!] - 125 - -

The inclusion of solvent screening in simulation B is described in Section 2.4. In this
simulation, the dielectric constant &, = 80 and the Debye-Hiickel parameter
k = 0.125A-" for water were chosen. The linearized Poisson-Boltzmann equation
was solved using the finite difference algorithm as described in Section 2.2.2. The finest
resolution of the discretization lattice was 1A in the protein region, and 4 A in the
boundary region (see Section 2.2.4). The size of the solute volume in which the
electrostatic potential was determined is 64 x 64 x 64 A>. The screening potential
0@ was updated every 250fs. In simulation B, the atomic velocities were rescaled
throughout the whole simulation to keep the temperature stable.



