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" ABSTRACT  Mosshauer spectra of 5’Fe in proteins fluctu-

ating between different conformational substates are evalvat-
ed by means of a two-sided Padée approximation, which can

frequency part of /(w) and covers solely freqiiencies between

reproduce the low and high frequency dependence of the spec-

tral line shape I(») to any desired accuracy. The dynamics of
the atom is modeled s Brownian motion in a multiminimum
potential and described by a Fokker—Planck equation. The

Mossbauer spectrum is expanded in terms of Lorentzian con-

tributions, which can be attributed separately to fluctuations

1 and =100 times the natural linewidth I'. The linewidth of
Fe is I = 7 x 10° s™'—i.e., the Méssbauer spectrum
probes the motion of this atom for times between about 1 ns
and 100 ns. On this time scale, the motion of a single atom in
a protein is actually part of a concerted motion involving a
larger protein fragment and, therefore, a-large effective
mass. One can safely consider this motion as classical, influ-

- enced by thermal noise and friction. In fact, onc can expect

* between conformational substates (potential minima) and to

relaxation within the substates. In the limit of closely spaced

substates, the Misshauer spectra can be accounted for by an

effective diffusion cocfficient with Arrhenius-type tempera-

" ture dependence. We demonstrate that the observed tempera- -

ture dependence of Maésshauer spectra of proteins [Parak, F.,

Knapp, E. W. & Kucheida, D. (1982) J. Mol. Biol. 161, 177- .

194] can be accounted for by stochastic motion in a multimini-
mum potential.

In recent years experimental and theoretical investigations
have focussed on the dynamic aspect of protein structure
and function. High resolution x-ray scattering data revealed
that proteins exhibit innate tempcrature-dependent confor-
mational distributions (1). These distributions may be related
1o the functional states of proteins as indicated by rate con-
stant measurements (2). The question arises which dynamic
processes produce the observed conformational distribu-
tions. This question cannot be answered by x-ray scattering,
which reveals only the static distribution of atoms. A valu-
able extension of these observations is provided by Méss-
bauer spectroscopy, which probes the motion of an excited
atomic nucleus during the lifetime of its excitation.

The information entailed in a Mossbauer spectrum can
best be characterized in the case of ¥'Fe, the most common
Mossbauer atom. Observation of this atom as a constituent

- of heme groups and iron-sulfur redox centers in proteins is of
: obvious interest. M3ssbauer spectral data over a broad tem-

i

)

perature range have been obtained for a aumber of proteins.
including myoglobin (3-7), hemoglobin (8), cytochrome (9),
and ferritin (10). o

In an analysis of Mdssbauer data, the observed spectral
line shape function /(w) is usually expanded in terms of Lor-
entzian lines : :

N-1

Hw) = (ool /2)Re{z° Sa/Ta + iw)}~

jy

that the motion is in the strong friction limit. By assuming
the magnitude of the thermal noise to increase linearly with
temperature (11),_ the fluctuation—dissipation theorem dic-
tates a diffusion cocfficient with a linear temperature depen-
dence D = DyT. Mdssbauer spectroscopy actually observes
only the Fourier component of the spatial motion that cor-
responds to the wavelength A = 0.86 A of the y-quantum
emitted by 3’Fe. Molecular dynamics simulations (12) show
that relaxation on this length scale occurs within less than 10
ps. Accordingly, the effective diffusion coefficient D of the
57Fe atom should assume values small compared to '\, and
only the slowest Brownian processes—e.g., barrier cross-
ings—should contribute to the observed Mossbauer spec-
trum. .

The discussion above suggests that a proper theory of
M@ossbauer line shapes must reproduce well the low-frequen-
cy part of /(w). In addition. onc wishes to describe correctly
the total intensity fdwl(w). We have introduced an algorithm
(13) involving a generalizatioh of the first-passage-time ap- -
proximation (14, 15), which can reproduce the total intensity
and the low-frequency behavior of /(w) to any desired accu-
racy. In ref. 13 the algorithm had been tested for Mossbauer
spectra of Brownian particles in a harmonic potential .and
applied to a double-minimum potential, a case for which re-
sults were not obtainable previously. In this paper we will
extend the application to realistic models of protein dynam-
ics. -

Th
served for proteins reveal with increasing temperature
sharp decrease of the Lamb-Mdssbauer factor—i.e., the
amplitude of the resonant line—and an accompanying broad
line with increasing linewidth. It is, of course, most desirable
to understand this observation in terms of the actual protein
dynamics. According to the investigations of Frauenfelder et
al. (1, 2), the dynamics of proteins involve transitions be-

tempcrature dependence of Mossbauer-spectra ob-

a

" tween many conformational substates. The most simplg rep-
© resentation of these substates is furnished by a one-dimen-

The quantities appearing in this expansion will be discussed -

further below. The quality of the observations usually justi-
fies only a fit of two or three Loreatzian lines. Furthermore,
the accuracy of the data is significant only in the central, low
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sional multiminimum potential. Hence, we will apply in this
paper the algorithm of ref. 13 to Brownian motion in such
potentials and study the temperature dependence of the re-
sulting Mdssbauer spectra. We also will consider the case of
closely spaced substates and show that, in this limit, the sub-

" states may be accounted for by an effective diffusion coeffi-

5719

cient with an Arrhenius-type temperature dependence.
nally, we will demonstrate that the observed teraperature de-
pendence of Mdssbauer spectra (5, 16) can be accounted for
by stochastic motion in 2 multiminimum potential.
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Mecthod

We briefly summarize the algorithm introduced in ref. 13.
The distribution function p(x. 1) of a Brownian pamcle with
diffusion coefficient D = DyT'in a potential U(x)is descnbed
by the Fokker-Phnck equation,

ap(x, 1) = LO)p(x, 1), : {2]

L(x) = 0,D3; + BU’(X)]' 3 - {31

together with appropriate boundary conditions that assure
pamcle -number conservation. The solution of Eq. 2 for long
times develops into the Boltzmann distribution po(x) ~
‘exp{—BU(x)]. The Massbauer lineshape function /(w) can be
expressed in terms of L(x) by means of the following equa-
tions:

I(w) = (oI’ /2)Re{o(w)}, (4]
o(w) = fdx exp(ikx)[iw — L(x) +-l‘/2}"exp(—ikX)po(X)- [5]

Spectral expansnon of the structure funcuon (r(w) ylelds
o(w) = Z lw"mﬂu» - M+ r/zr1 B (3

Here A, <0 d_cnotes the cigenvalues of L{x) assumed to be
discrete. and y,(k) denotes the corresponding Fourier-trans-
formed nonorthogonal eigenfunctions with normalization
fdxwiix)ps'(x) = 1. However. the spectral expansion (Eq.
6) does not provide a procedure for an evaluation of Mdss-
bauer spectra except for very simple potentials—e.g., for a
square well and a harmonic (13. 17) potential.

Observed lincshape functions are usually fitted by means
of Eq. 1 for a few Lorentzian lines. Accordingly, we also
seek for the theoretical description of the lineshape an ap-
proximate structure function s(w) = o(w) in terms of N Lor-
entzian contributions, : : :

N-1

" This approximate s(w) can be chosen to reproduce the N,
leading terms of the high-frequency expansion of o{w),

2] n=0 w

olw) ~ — Z ;L,,(—'.}')n., {8} '

and the N, leading terms of the low-frequcncy expansion,

’ o(w) o ’é Botnrp(—iw)”, 9 .

. where 2N = N, + N,. s(w) as defined in Eq. 7 can be viewed
as the partial-fraction expansion of a [N — 1, N] Padée ap-
proximant. Conditions 8 and 9 characterize then the algo-

rithm presented here as a two-sided Padée approximation-
(18, 19). The appropriate amplitudes f, and linewidths [, in

Eq. 7 must obey the conditions

. N=1

‘w0

This shows that for an N Lorentzian description. 2N condi-

- tions (Eq. 10) have to be met. The proposed algorithm de-
pends on a knowledge of the expansion cocfficients g, in
Egs. 8 and 9—the so-called gencralized moments:

#a = (=1)" [dx explikx){L(x) —

s(w) = Zo fliw+T). .1

2 fa = pem = =Ny =N+ L. Ny= 1 (0]

F/2)exp(~ikepyx).  [11]

Proc. Natl. Acad. Sci. USA 81 (1984)

The evaluation of u, for positive n is straightforward. For
negative n one can use a discretization scheme for the differ-
ential operator. resulting in a tridiagonal matrix for L and,
thereby, evaluate the u, numerically (see ref. 13). Hence,
the u, can be constructed to include any desired feature of
model potential surfuces. If the spectral expansion (Eq. 6) is
known, the moments can be cvaluated by means of

Z /2 - x,.)"lwm(k)l’ [12]

In this case the algorithm gives a good dcscrxptlon of the
spectrum in terms of a few lines, whereas a truncation of Eq.
6 after the first few terms may result in a bad approximation.
- We have demonstrated (13) that. in case of a double mini-
mum potential, a three-Lorentzian description with N = 1
and N, S yields an accurate lineshape function. This de-
scription reproduces only the leading term of the high-fre-
quency expansion (Eq. 8) that carries the total intensity of
Hw). The results showed that further terms in Eq. 8 can be
neglecied. For Brownian dynamics in potentials with more
than two minima, an accurate description of the lineshape
function should involve more Lorentzian lines. Since for N

- 2 3 the algebraic solution of Egs. 10 is cumbersome, we de-

termined f, and I", through an equivalent matrix representa-
tion (20).T .

Results for modcl potentials

We assume a situation where conformational subslates have
identical free energies. This situation is modeled by the po-
tential

U(x) = b exp{—sin*(nmx/2xo)], tl3]'

where b(e — 1)/e is the height of the bamcrs between adja-
cent substates. The stochastic motion of the *'Fe Mdssbauer -
atom governed by this potential will be confined to the inter-
val 0 < x < 2x,. The number of substates is then n.

* As an illustration for the typical temperature dependence
of the Mdssbauer spectrum we consider the case n = 4. Fig.
1 presents the linewidths and amplitudes resulting from an
application of the algorithm according to Eqs. 8-12 with N,
= 1 and N, = 9—j.c.. involving five Lorentzian contribu-
tions. Each Lorentzian line describes a certain relaxation
process. The linewidths in Fig. 1 Upper show that the relax-
ation processes can be grouped into four slow processes (Fo-
I'3) and one fast process (I').

The fast process can be attributed to relavmon within the-
mdlvldual wells. This supposition is proved by the appear-
ance of the same linewidth value for a single- wcll potcntlal
In fact. one can provide approximations {or the linowidth

. and amplitude of the fast relaxation process solely in terms

of single-well properti¢s (unpublished resuits):

b : x
a/y. = f dx{Dpo (0] L dy po(¥Mexpliky) = po (K.

-o'z, =1 — Kexp(ikx))[2. (14]

- Here a, denotes the approximate amplitude: v, the approxi-

mate linewidth: po(x). the Boltzmann distribution inside a -
single wall; and py (k). its Fourier transform. { ), denotes the
thermal average over a single well, and « and b stand for
integration limits around a well. The a,'and ¥y, determined
from Eqs. 14 are in very close numerical agreement with f
and Ty in Fig. 1. We like to point out, however, that the
Fokker-Planck equation may be inadequate to describe mo-

*There is a :ypographncal error in rcf "0 equation 20, where a

should be replaced by a”.



Biophysics: INadier and Schuiten

10% T T T
- - I
'03 - . P -
"-m
w
= .
£ 2}
k=]
3
@
£
-t
0 |-
§ 1 [}

-
. 00s 01 0.5 02

-inf,

O G Vi SR
005 o 01 02
Temperature {kgl/b) :

FiG. 1. Linewidths (Upper) and amplitudes (Lower) for a *"Fe
Brownian atom moving in the potential (Eq..13) with n = 4 in
the interval 0 < x < 2xy [x0 = 1.2 A, D = 10* (ko T/b) A%+s ™! result-
ing from a five Lorentzian representation reproducing the moments
fo 10 p_y: the amplitude fo(2) (Lower) has been obtained from a
‘two-Lorentzian representation reproducing pg to u ;.

tion in narrow potential wells with ensuing strong forces.
This limitation will not affect the following conclusions ex-
cept that the intrawell relaxation frequencies may assume
different values than predicted by Eq. 14. Since these fre-
quencies are likely to be outside the accessible frequency
window of Mossbauer spectra, the resulting error should be
of no consequence.

The slow rclaxation processes can be attributed to barrier
crossing between adjacent substates. To demonstrate this in-
terpretation, we note that a separation of time scales of fast
intrawell and slow interwell processes is tantamount to a
fractorization of the distribution function

"B, 0 = % pilDpx - xi D - s

where p(y, 1) describes motion in a single well assumed

identical for all wells, p;(¢) describes the distribution among
wells, x; denotes the position of the well minima. and the
index i labels the different wells. The factor p,(¥. 1) accounts
for the fast relaxation processes discussed above. The distri-
bution p;(r) results from the rate equation

api = ; Rijpjs - e

" "zl.l ‘let

roc. vall Acad. Sci. UdA 61 (iY549) /21

where the n X n matrix R is

-1 11
1-2 1 « « « + &
. 0 1-2

R=— . [17]

. -2 1
. 1.1

and 7 is the first passage time bctween wels (15),

7= j dx[Dpo ()] 7| f dy po( Y. (18]

%

The ampluudes and linewidths conncctcd wnh thc slow pro-
cesses can then be determined by means of the n eigenvalues
kjand n clﬁenvectors v; of R, where we use the normalization

=1piis the equlhbnum distribution among thé
wells. With g; = | exptikx)v;’, one derives for the
linewidths and amplitudes

y=T/2-k

a; = [(exp(ikx)){’g; ]
These quantities coincide numerically with the I'; and of, for j
=0, 1, 2, and 3 in Fig. 1, thereby proving our interpretation
of the slow relaxation processes.

The relaxation matrix R has always one vanishing eigen-
value «p = 0. One should expect, thercfore, that the natural
line would always contribute to the Mdssbauer spectrum
with the amplitude ay, However, for low temperatures at
which the rate constant ¥~ is significantly smaller than [/2,
the magnitudes of the eigenvalues of R are all less than [/2.
and the slow relaxation processes cannot be resolved from
the natural line. In this temperature range, the effective am-
plitude of the natural line. the Lamb-M0ssbauer factor, is f.,
+fi+ fa+ fy=ag+ a; + ar + a3 or, in general, is I,
lexp(ikx)),lg;. This quantity is equal to {(exptike))}’,
identity which is demonstrated in Fig. 1 Lower. At hrgher
temperatures, when the rate constant 7~' sufficiently ex-
ceeds /2, the three lines with «; < 0 will be resolved from
the naturatl line. and the Lamb-Maéssbauer factor reduces to
the Debye-Waller factor fo = ag = Kexp(ike))l® as shown in
Fig. 1 Lower. The temperature at which we declare the lines
0, 1,2, and 3 resolved in Fig. 1 Lower is chosen rutiwe: arbi-

-trarily. To conform to an experimental situation where the

resolution is more gradual, we present in Fig. 1 Lower also
the Lamb-M#éssbauer fuctor f,(2) resulting from a two-line-
fit algorithm using Ny = land N, = 3. fy(2) is shown to
approach |(exp(ikx)),|* at low temperatures. and the Debye-
Waller-factor [(exp(ikx))|* at hlgher temperatures.

Our description generalizes in an obvious way to an arbi-
trary number n of substates. In this case one expects n slow
interwell relaxation processes and faster intrawelil relax-
ation. Hence, a minimal description should include # + 1
lines. However, an experimental resolution of all slow pro-
cesses may be impossible, and one may want to resort to 2
theoretical description with a smaller number of lines.

In the limit of large numbers of closely spaced substates.
one can make a coarse-grained approximation—i.c elimi-
nate the fast intrawell relaxation and account for’ lhc. stow
interwell relaxation processes by an effective diffusion coef-
ficient. As is well known, Brownian motion in an envelope
potential with a superimposed periodic potential, it viewed
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on a length scale greater than the unit-cell length. can be
described by the effective diffusion coefficient (21),

Deg = D/(exp(BU)), {exp(—=BU)),. [20)

Here. ( ), denotes the arithmetic average over one period. In
the case of sufficiently high barriers between substates, as

considered here. the diffusion coefficient can be approxi- ,

mated well by an Arrhenius temperature dependence Deg =
D-exp(—BE) for some activation encrgy E. For a demonstra-

tion of this coarse-grained approximation, we considered the .

periodic potential (Eq. 13) superimposed over a square well
and over a harmonic potential as envelopes.

Fig. 2 compares the two-line-fit Lamb-Mdossbauer-factor
fof2) evaluated for the complete potential and for the square-
well envelope potential with effective diffusion coefficient.
The results demonstrate that for an increasing number of
substates n, the two descriptions converge. Fig. 3 compares
the two descriptions for a harmonic-oscillator envelope po-
tential and the periodic potential (Eq. 13) superimposed. The
Lamb-Mossbauer factors in.Fig. 3 Upper agree closely ex-
cept for the trivial difficulty that the coarse-grained descrip-
tions yicld two contributions to the natural line at low tem-
peratures, which cannot be resolved. The two contributions
add to 1—i.e.. the total amplitude of the natural lines agrees
with the resuli for the complete potential. However, setting a
resolution limit on the linewidihs would be arbitrary: there-.
fore, we have terminated the coarse-grained description be-
low Ap7/b = 0.08. Fig. 3 Lower compares the linewidths. At
higher-temperatures the linewidths obtained by the two de-
scriptions coincide. At lower temperatures the complete po-
tential description yiclds the natural linewidth I'/2 and a larg-
er iinewidth corresponding to intrawell relaxation. However,
the latter currics only a very small amplitude. The coarse-
grained description at low temperatures develops two
linewidths close to I'/2. Altogether this shows that the two
descriptions yield very similar Massbauer spectra except for
small deviations at intermediate tempcratures.

Comparison with experimental data

Fig. 4 shows a fit to the experimental ‘data fo. 1. and Ty of
refs. § and 16, modeling the stochastic dynamics of “Fe by a
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determined from a two-Lorentzian representation reproducing pqto
-3 for 2 ¥ Fe Browniun atom moviny in a harmonic envelope poten-
tial Ulx) = hix/xq)* with the potential (Eq. 13) superimposed (Xg = 1_
A, n = 6). The solid line results from the complete potential and D as

2. in Fig. 2. The dashed line results from the coarse-grained descrip-

tion, D and E as in Fig. 2. The dotted line (Upper) represents the
Debye-Waller factor Kexp(:ku)" of the harmonic cnvclopc poten-
tial.

coarse-grained description of diffusion in a harmonic enve-
lope potential accounting for conformational substates by a

- diffusion coefficient with -Arrhenius-type temperature de-.

pendence D = D-exp(—E/kyT). In order to account accu-
rately for the data, it has proven necessary to introduce at

‘least one additional substate ss* with the following dynami-

cal property: the rate constants to and from ss* are chosen

~-such that the equilibrium probability to be in the substate is

given by
Dsye = logoexp(AG/kgT)/ll + Lisoexp(AG/kyT)], (21]

()P is the mean width of the distribution in
the harmonic envelope potential and is in the range 0.2-0.3 A
within the temperature range considered: /,,» << k! is the
width of the substate, and AG = AE — AS-T denotes the free
energy change connected with the transition from substate to
" envelope potemml In our calculation the diffusion space is
“discretized,” and ss5* is represented by a single point at the
envclope potential minimum: rate constants (0 and-(fom ss*
are D/&° and (D/5°)-exp(—AG/kuT). respectively, where § .
is the discretization length. From a_comparison of predic-
tions and data, we obtained E = 0 16 eV: for the entropy
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Fi1G. 4. Comparison of predicted and observed (5. 16) Moss-

bauer line shapes at different temperatures. f,, denotes the Lamb~
Méssbauer fuctor (2, —); f; denotes the. amplitude (+, ---) and Iy
the width (A, —) of the broad line. As done in ref. 16, we subtracted
the amplitude for a superimposed harmonic mode. The curves result

from a three- Lorcmu.xn rcprcwnt.umn of the spectrum, reprodyc-

ing e 1o i < for u "Fe Brownian atom in a hurmonic polu.nn.ll Ut
= (1/2)x/xo)* and an additional substate at the potential minimum
(see text) with A:/ky = J900 K und {,.exp(~A8/4k,) = 1.61 x 1074
A. The shape of the harmonic potentiul has been chosen in accord-
ance with the high temperature x-ray data for (v°) in ref. 1 by sctting
kexd = 3.6 x 107* AY/K. The diffusion coetficient assumed is D) =
Deexpt~E/hgT) with D = 8.25 x 10° A%/s and E/k, = 1100 K. The

third line ip the theoretical spectrum was assumed to represent the

background and has been omitted. .

contribution we found /,,.exp(=AS/ksT) = 1.61 x 107* A.
This value, in comparison with /,, implies that ss* assumes
only a very small volume of phase space. This implication
has been suggested previously in refs. 16 and 22. The smali
phase space volume of ss* may contribute to the observed
flexibility of proteins, since the protein. once it has fluctuat-
ed out of the narrow substate ss*, nceds a long time to find
and fafl back into this substate.

The small magnitude of the phase space volume of ss* can

se readily understood if one considers the fact that the sto- -

~ chastic motion of ¥'Fe coupled 1o the many degrees of free-
- dom of the protein is taking place in a space of high dimen-
sion N. The ratio r of the extension of ss* to the extension of
- the thermal motion in any coordinate is certainly smaller
~ than one; the ratio of the volume of ss* to the volume of
~ thermal motion is r*—i.e.. must be a small number for large
~ N. This feature of the substates may pose problems for the
. determination of stable protein conformations by computer
~ simulation.
 Fig. 4 demonstrates that the resulting predictions agree
well with the observations. Inaccuracies are found only for
the amplitude f, of the broadencd line. The decrease of the
amplitude f; at higher temperatures. resuits from a shift of
the intensity to very broad lines, considered to represent the
background of the Mdssbauer spectrum. The differentiation
' between background and broad lines entails also a certain
degree of arbitrariness, which could explain the deviation of
predictions and data. The dltfusxon coetficient fitted to the
data has the value D = 8.25 x 10* A%/s, which is in the range
of valpes observed for the diffusion coefficients of lipid
probes in the liquid-crystalline phase of lipid membranes
(23). The activation energy for the diffusive motion is about
0.09 eV. In order to account for the Debyve—Waller factor as
observed by x- -ray, scattering at very low temperatures (i.e.,
a nonvanishing (r*) valuc), one needs to include more than
one substate ss* or one needs to assume randomly posi-

23. Vaz, W

4 AU, s Vil LU, Ol Uos g {tro+) died

tioned ss* substatcs in an ensemble of proteins (static disor-
der).

Qutlook

We believe that our method for the evaluation of the
structure factor a(w) provides a new basis for analyzing
Mossbauer spectra of proteins since it allows a model-inde-
pendent analysis—i.c., for arbitrary (one-dimensional) po-
tentials. We like to mc,nuon however, that a unique.. time-
invariant poteatial for the Mossbauer particle as used in this
paper may not’ represent fully the complex dynamics of a

.protein atom. One may rather consider a distribution of pu-

tential shapes (c.g.. barrier heights as suggested in refs.
and 2) leading to a distribution of Arrhenius-type d:ffusxon
coefficients and also study the effect of fluctuaung poten-
tials and high-dimensional motions.
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