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ABSTRACT

The universal asymptotic scaling laws proposed by Amari et al. 2,11 are studied
in large scale simulations using a CM5. Small stochastic feed-forward networks
trained with back-propagation and conjugate gradient descent are investigated.
In the range of a large number of training patterns t, the predicted asymptotic
1/t scaling is observed. For a medium range t a faster scaling in the number of
training patterns t than 1/t is observed. This effect is explained by using higher
order corrections of the likelihood expansion. For small t it is shown, that the
scaling law changes drastically, when the network undergoes a transition from
permutation symmetric to permutation symmetry broken phase. This effect is
related to previous theoretical work 15,3,17,16,8.

1. Introduction

Recently a growing interest in learning curves, i.e. scaling laws for the asymptotic

behaviour of the learning and generalization ability of neural networks has emerged
2,11,4,14,12,13. Clearly, as soon as learning is applied, we observe the characteristics and

the performance of the learning algorithms in terms of generalization and training
error. Therefore, it is important to study the bounds on how fast we can learn

in general. The large-scale simulations presented in this paper are addressing the
question of scaling laws for training and generalization errors in small feed-forward

networks with so far up to 256 parameters, trained on a finite number of training

samples of up to 32768 patterns.
A number of groups have used statistical mechanics and the replica trick in order

to find the scaling properties of the generalization ability, first for simple perceptron
systems, and recently for tree-like networks with hidden units 12,13,9,18,7. Several au-

thors have observed a phase transition, when training with small to medium sized
sample sets. For example, the generalization of the committee machine first scales as

N/t in a so-called permutation symmetric phase whereas for more patterns a phase
transition takes place and the system scales as NH/t in the permutation symmetry

broken phase 15,3,17,16,8. Here, parameter N denotes the number of inputs, while H
denotes the number of hidden units. If we assume a student network learning from a

teacher network by examples, then this student can – for small t – in the so called per-
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mutation symmetric phase find a large set of possible solutions. This large number of
solutions is due to the equality of all permutations of the teachers hidden units which

basically lead to the same result in terms of the objective function to be minimized.
But, from a certain number of patterns on a phase transition occurs, where the set of

possible solutions is getting smaller and every student hidden unit has to decide for a
teacher hidden unit. Thus, the permutation is fixed and the permutation symmetry

is broken. The transition which takes place in a non-asymptotic range of t is not

accessible to methods of statistical inference, which have been used to understand
the asymptotic learning behaviour of general stochastic machines. This statistical

approach is based on an asymptotic expansion of the likelihood of the estimating
machines, always assuming a maximum likelihood estimator 2,11.

A further approach for estimating asymptotic learning curves is the computational
one, where the VC dimension is used to measure the complexity of a given problem
4,14,6.

We will now state the major results of this paper. The first purpose of our

investigation was to study, whether the well-known universal asymptotic scaling laws
found by Amari et al. can be observed in a simulation with a finite continuous network

and a finite number of continuous training patterns. According to this theory the
scaling law

εg = H0 +
m

2t
, (1)

holds for general stochastic machines 2,11. The quantity εg denotes the averaged

likelihood (generalization ability), m is the number of parameters of the model (bias

+ weights) and t is the number of training examples presented to the network. The
second goal was to study whether the breaking of permutation symmetry also occurs

in continuous networks with continuous patterns. Our simulations are using standard
continuous feed-forward networks, backpropagation and a conjugate gradient descent

in the Kullback-Leibler divergence (see section 2). In the simulations (see sections 3
and 5) we distinguish between three ranges of t:

1. small t: in this range of t, we observe a phase transition from 1/t scaling (cf.
eq.(1)) towards a faster scaling for medium sized example sets (i.e. transition

from permutation symmetric to permutation symmetry broken phase).

2. medium t: so far, neither the statistical physics predictions nor statistical con-

siderations have addressed the scaling of learning curves in a medium range of
t. We propose necessary higher order corrections that have to be taken into

account here (section 4).

3. large t (asymptotic range): the asymptotics underlying eq.(1) are observed in
the range of a large number of patterns. Nevertheless this regime shrinks for

large networks, since only a maximum number of patterns (t = 32768) can be
simulated for technical reasons.



We would like to stress the fact, that in almost all practical situations a faster
scaling law than 1/t will be observed, i.e. the exponent of t is smaller than −1, and

higher order correction terms have to be taken into account to explain this effect. As
the asymptotic range is reached slowly, the higher order terms loose their importance

and the law stated in eq.(1) is approached.

2. The Model

We use standard feed-forward classifier networks with N inputs, H sigmoid hidden
units and M softmax outputs (classes). The output activity oi of the ith output unit

is calculated via the softmax squashing function oi = exp(hi)/
∑

k exp(hk), where
hi =

∑
j wO

ijsj − ϑO
i is the local field potential. The network parameters consist of

biases ϑ and weights ~w. ~s denotes the state of hidden neurons which is computed
using the Fermi function, i.e. si = [1+exp(−∑

j wH
ij xj − ϑH

i )]−1, where ~x is the input

to the network. The input layer is connected to the hidden layer, the hidden layer is
connected to the output layer, but no short-cut connections are present. Although the

network is completely deterministic, it is constructed to approximate class conditional

probabilities 5. In this sense it is considered a stochastic machine randomly generating
class labels for M different classes given the input. Therefore each randomly generated

teacher ~wT represents by construction a multinomial probability distribution q(Ci|~x)
over the classes Ci (i = 1 . . .M) given a random input ~xp. We use the same network

topology for teacher and student. Thus, we assume that the model is faithful, i.e. the
teacher distribution can be exactly represented by a student q(Ci|~x) = p(Ci|~x, ~wT ).

A training and test set of the form S = {(~xp, ~yp)|p = 1 . . . t} is generated ran-
domly, by drawing samples of ~x from a normal resp. uniform distribution and forward

propagating ~xp through the teacher network. Then, according to the teachers’ out-
puts q(Cp

i |~xp) one output unit is set to one stochastically and all others are set to zero

leading to the target vector ~yp = (0, . . . , 1, . . . , 0). For training the student network
~w we use a backpropagation algorithm with conjugate gradient descent to minimize

our objective function: the Kullback-Leibler difference

D(q, p(~w)) =
∫

d~x
M∑
i=1

q(~x)q(Ci|~x) ln
q(Ci|~x)

p(Ci|~x, ~w)
.

Here q(Ci|~x) denotes the class conditionals, respectively outputs of the teacher and

p(Ci|~x, ~w) are the class posteriors as approximated by the student network. The
Kullback-Leibler difference is the natural objective function to measure the degree

of coincidence of the teacher and student distributions q and p. To measure the
Kullback-Leibler difference one has to know the stochastic source underlying the

data-set which can be decomposed into the input generating part q(~x) and the output
probability distribution q(Ci|~x). In practical applications there is typically no such



knowledge. So only the empirical Kullback-Leibler difference

D(q∗, p(~w)) = −1

t

∑
p

ln p(cp|~xp, ~w) (2)

will be available, where q∗ denotes the empirical distribution and cp refers to the cor-

rect class associated to ~xp. The results found for this case have practical importance,
since as mentioned above in general practical problems only the empirical distribu-

tion is known. A better approximation to the KL difference is computationally more
intensive, but all necessary ingredients are known

D(q∗, p(~w)) = −1

t

∑
p

M∑
i=1

q(Ci|~xp) ln p(Ci|~xp, ~w). (3)

So given a random uniformly distributed input, we can use the a-posteriori probabil-
ities q(Ci|~xp), which are exactly the output values given by the teacher networks on

the presentation of an input vector ~xp. In our simulation both measures (3) and (2)
are studied.

3. The Simulation

The simulations were performed on a parallel computer (CM5). Every curve in

the figures takes about 3-5h of computing time on a 128 respectively 256 partition of
the CM5. This setting enabled us to do the statistics for a single teacher over 128-512

samples (different training set). The exact conditions under which our simulations

were performed are

1. A teacher network ~wT is chosen at random, where weights and biases are nor-

mally distributed with zero mean and variance 1.

2. Then a random training set of size t and test set with fixed size 100000 is
drawn and the output distribution q(Ci|~x) is generated by the previously chosen

teacher ~wT and the class target vectors ~y are generated stochastically.

3. The generalization ability is measured on the test set in two ways: On the

one hand we use the empirical Kullback-Leibler difference (2), so no informa-
tion from the teacher distribution is actually used, and on the other hand we

measure (3) since we assumed uniformly distributed inputs and the a-posteriori
probabilities are simply the output activities of the teacher network.

4. Conjugate gradient learning on the empirical Kullback-Leibler distance (2) is
applied starting from the teacher configuration ~wT or from some random initial

vector. Given we have reached a local minimum of that training error we assess
the generalization ability on the test set. This solution is assumed to be very

close to the maximum likelihood solution used in Amari’s Universal Scaling
Law.



As mentioned above we refer to the Kullback-Leibler divergence to measure the dis-
tance between q(C|~x, ~wT ) (teacher) and p(C|~x, ~w) (student). Since these are basically

the same parameterized distributions the Kullback-Leibler divergence can be equiv-
alently considered as measuring the distance between the parameter vectors ~wT and

~w with respect to p and q. In order to examine the relation between teacher ~wT

and student ~w in more detail, we introduce another measure of overlap that is sup-

posed to be independent of the probability distribution p. So, contrary to the overlap

Rij = 1/N ~wT i · ~wj as defined for a committee machine, we have to consider all per-
mutations σ of the hidden units in the multi layer perceptron case and make the

overlap independent of the actual permutation. Let ~wH
Ti• and ~wH

σ(i)• be the vectors
of all weights from the input layer into hidden unit i for teacher and student respec-

tively, and let ~wH
Ti• · ~wH

σ(i)• =
∑

j wH
Tijw

H
σ(i)j denote the inner product of the two vectors.

Based on this notation we define two measures for the correlation of the hidden units

as

rH = max
σ

1

H

H∑
i

~wH
Ti• · ~wH

σ(i)•
||~wH

Ti•||||~wH
σ(i)•||

and rHmax = max
σ

max
i

~wH
Ti• · ~wH

σ(i)•
||~wH

Ti•||||~wH
σ(i)•||

,

where maxσ is the maximum over all possible permutations σ of the hidden units. In

other words, we consider the overlap of the hidden units given a permutation such
that the hidden units are maximally correlated. In order to detect the transition of

the first pair of hidden units (teacher and student unit) into a correlated phase, we

have defined rHmax where the sum over all overlaps is replaced by a maximum over
all hidden units. Equivalently, we define the output units overlap independent of the

permutation as

rO = max
σ

1

H

H∑
i

~wO
T•i · ~wO

•σ(i)

||~wO
T•i||||~wO

•σ(i)||
,

where ~wO
T•i denotes the vector of weights from hidden unit i to all output units. This

overlap of the output units does not consider the correlation of the hidden units
involved. Therefore, the following overlap rHO combines the two perspectives of rH

and rO by calculation the maximum correlation of the products of hidden and output
overlaps, i.e.

rHO = max
σ

1

H

H∑
i

~wH
Ti• · ~wH

σ(i)•
||~wH

Ti•||||~wH
σ(i)•||

~wO
T•i · ~wO

•σ(i)

||~wO
T•i||||~wO

•σ(i)||
.

In order to interpret the quantitative behaviour of these overlap measures which are

all based on scalar products or equivalently on angles between teacher and student
vectors we have to consider the following. Since the surface area of n dimensional

hypersphere can be calculated by
∫ 2π

0
dθ1

∫ π

0
sin θ2dθ2 · · ·

∫ π

0
sinn−2 θn−1dθn−1

∫ α

0
sinn−1 θndθn.



we can get full measure of the complete hypersphere by setting α = π. The ratio of
correlated area can be calculated by

∫ α
0 sinn−1 θdθ∫ π
0 sinn−1 θdθ

.

In case of 8-8-* networks, we have n = 9. Here, the size of the area in which the angle

is less than π/3 (cos θ > 0.5) is about 0.06, if the angle is less than π/4 (0.71) the
size is 0.007 and in case the angle is less than 2π/5 (0.31) we have 0.17. Therefore,

even small numbers of overlap mean a reasonable high correlation between teacher
and student since the ratio of the correlated area tends to zero as the dimension n

goes to infinity.

4. Higher Order Corrections

To obtain the asymptotic theory for the learning curve of the student networks

~w we have to expand the likelihood function (KL difference) around the teacher ~wT

following 1,2,11,19. We now give the results for the higher order corrections to the

asymptotic expansion yielding a refined scaling law, not only consisting of eq.(1), but
of higher order terms, responsible for the deviations seen in the simulation.

εg = H0 +
m

2t
+

A

t2
+ higher order terms. (4)

The 1/t2 corrections have a prefactor A = O(m2), which is very complicated and

strongly model dependent. The first m/2t term is model independent. The variance
of the first order term in εg has the form σ = (m/2t2)−1/2. A complete discussion of

the variance and the correction term A goes beyond the scope of this contribution
(see 10 for details).

5. Results

5.1. Permutation Symmetry Breaking

Our numerical results show a picture of a transition from permutation symmetry to

broken permutation symmetry (see fig. 1a). Plotted is the Kullback-Leibler difference
found in the simulation for a 108 parameter network (8-8-4). Clearly, the slope 24 of

the interpolation for small t in the figure shows a change compared the slope 54, which
would be expected from m/2t. Since the interpolation is smooth and linear in 1/t,

the number of effective parameters m∗ in this range of t seems to involve only part
of the network. From the qualitative breakdown in figure 1(a) we would estimate the

transistion to happen close to t = 400, where the 1/t behaviour changes to a faster



scaling law. Measuring the overlap parameters we encounter a smoother picture. The
plot of the different overlap measures in figure 3 shows a change in the hidden-output

overlap rHO from 0.35 at t = 100 to 0.9 at t = 8000, where the student permutation
of the hidden units is found to be fixed with respect to the teacher. But considering

the change in our correlation measures and regarding the high dimensionality of the
space, this turns out to be a significant transition. For larger networks both Kullback

Leibler difference and correlation measures steepen up.

5.2. Medium range – many examples –

After a critical range close to t ∼ 400, we observe a change towards a faster

scaling than 1/t, while we enter the range of medium t. Yet, the exponent is slowly
decreasing towards t−1 as t is growing towards the large t regime. The higher order

corrections of eq.(4) can explain this effect. To have a better impression of the quality
of the t−1 and t−2 scaling, we subtracted 108/2t from the data points and clearly see

εg = H0 for t > 3000 while for t > 500 a t−2 fit can can be nicely applied. Note
that practical applications have usually access to a data size > 5m∗, where m∗ is the

number of effective parameters in the network. So both: a knee in the learning curve

and a faster scaling than 1/t should be observed in most practical situations.

5.3. Asymptotic Behaviour

All networks studied exhibit a m/2t scaling in their asymptotic rangea. In the
figures 2(a) and (b) we show the 8-8-4 results with an interpolated slope of 57 and the

16-10-4 net (212 parameters) with a slope 104 respectively. Clearly the interpolated
region of m/2t is reached at higher t (t > 5000) in the larger system. In even larger

networks (e.g. 16-12-4) the asymptotic region will shrink and will eventually not

be reached for the maximum number of patterns considered in our simulation. In
this case higher order corrections of the scaling law (4) always have to be taken into

account.

5.4. Initialization

Most of the figures report on the simulation scenario, where we trained the student
network starting from the teacher configuration ~wT . The idea was, that since we

consider a local neigbourhood of the maximum likelihood estimator in the asymptotic
case, the teacher would be a good starting condition for training. Figure 4(a) shows

the complete learning curve of a 8-8-4 network comparing this initialization of the

student to a random one. In the range of few examples both initializations yield the

aE.g. 16-4-4 slope: 47, 16-8-4, slope: 98, 16-10-4 slope: 104, 8-8-4 start from teacher slope: 57, 8-8-4
start from random initialization slope: 56.



same results. From this we conclude that no matter where we start in phase space,
the dynamics of learning is always attracted to a symmetric solution. This means,

the symmetric solution is a stable attractive region from which it is difficult to escape
until a certain number of patterns is reached.

The detailed picture of the asymptotic range is given in figure 4(b). Clearly, starting
from a random initial state makes the learning converge to a higher local minimum

in the generalization error only in the asymptotic range. Nevertheless, since the

asymptotic theory is valid in any local minima close to the teacher, we observe the
same asymptotic m/2t scaling for the random initialization as for a start from the

teacher (cf. fig.4b). Note however, that the learning speed is increased by 20% using
the teacher as initial starting point of learning.

6. Conclusion

In our numerical study we observed a rich structure in the learning curves of

continuous feed-forward networks. For a small number of patterns we find a symmetric
phase which is stable and learning converges - almost independent of initialization -

into a solution where the hidden units do not learn collectively. As the number of

patterns is increased we can escape from the symmetric phase, the symmetry is broken
and both the qualitative behaviour (fig.1a) seen in the Kullback-Leibler difference and

the quantitative behaviour seen in the correlation parameter (fig.3) indicate a phase
transition. From our results it seems important to reach the broken phase as fast as

possible to have the network use all free parameters in the learning process. The clear
bend of the learning curve is followed by a region of 1/t2 scaling when t is increased.

Assymptotically we confirm the m/2t behavior. More details on our study can be
found in 10.

We would like to emphasize that we always find a faster scaling than 1/t between the
symmetric phase (small t) and the asymptotic phase. For this reason model selection

criteria which are usually based on a certain overall assumption on the smoothness
of learning curves are likely to perform weakly, since they do neither capture the

transition encountered nor the faster scaling observed.
Further investigation will be focussed on the measurement of scaling laws in a real

practical application.
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(a) (b)

Figure 1: Plotted are the simulated generalization values over 1/t for an 8-8-4 network.
(a) Clearly near t ∼ 400 we see a drastic change in the scaling, explained by the
breaking of the permutation symmetry. The slope for small t is 24. (b) For large t
an exponent of the scaling law smaller than −1 is observed. Shown are the simulated
values subtracted from m/2t. Above t = 3000 we find the scaling predicted in eq.(1),
e.g. the points are on the line εg = H0. Below t = 3000 an quadratic interpolation is
applied, yielding the necessary higher order corrections of eq.(1).

(a) (b)

Figure 2: Plotted are the simulated generalization values in the asymptotic range
for (a) the 8-8-4 network (108 parameters) and (b) for the 16-10-4 network (212
parameters). In both cases a clear scaling as 1/t is seen.



(a)

(b)

Figure 3: Plotted are the different overlap measures for an 8-8-4 network for (a) the
start from the teacher wT and (b) random initialization (see section 5).



(a)

(b)

Figure 4: Plotted are the simulated generalization values over 1/t for an 8-8-4 network.
We compare the start from the teacher wT and a random initialization (a) for the
whole learning curve and (b) for the asymptotic area. Note that in the asymptotic
range we find for the random started simulation higher values for the KL divergence,
i.e. the simulation gets stuck earlier in local minima.


