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Methods
In the following sections we discuss our novel use of nonequilibrium
work relations to compare different transition paths, give a detailed
description of the reaction coordinates and collective variables used
to design our system-specific biasing protocols, provide all the MD
simulation details, and explain all the technical details regarding the
methods used to quantify the results.

Nonequilibrium Work Relations. “Nonequilibrium work relations” [1,
2, 3, 4] are powerful tools in extracting information about the equilib-
rium behavior (e.g., free energies) of a system from its nonequilibrium
counterpart,i.e., a “nonequilibrium driven system” that is driven away
from an equilibrium state by the variation of an external parameter [5].
Generally, the distribution of nonequilibrium trajectories can be con-
nected to that of the equilibrium trajectories via a statistical weight
calculated from the work performed on the system [3, 6, 4, 7, 5] (see
Connecting Nonequilibrium and Equilibrium Ensembles). In an MD
simulation, a time-dependent biasing potential defined in terms of a
collective variable can be used to drive the system from an initial to
a final state. Here the collective variable acts as a control parame-
ter, varied according to a protocol. This approach is employed most
prominently in methods such as steered [8] and targeted [9] MD in
which the biasing potential is a harmonic constraint with a center in
the collective variable space, moving linearly in time.

Nonequilibrium work relations have been used in many applica-
tions to numerically estimate the free energies based on the nonequilib-
rium work measurements [10, 11]; however, the use of these relations
is not limited to free energy calculations. In principle, nonequilibrium
work relations can be used to estimate any equilibrium macroscopic
quantity from nonequilibrium driven trajectories [2, 12]. Due to the
sampling limitations such generalizations are not necessarily practi-
cal but one may find certain quantities whose estimate converge faster
than free energy itself. Estimating these quantities could thus be com-
putationally less costly when compared to often prohibitively expen-
sive free energy calculations. As an example, one may estimate the
relative transition rates of competing pathways using nonequilibrium
work measurements [13]. The relative transition rates of different
paths can be used to estimate their relative importance without requir-
ing an accurate estimate of the whole free energy landscape.

In this study, we measure work along different transition path-
ways, not for a quantitative description of the energetics of the system,
but rather to compare the feasibility of different pathways obtained
from nonequilibrium simulations [14, 11, 15]. Suppose that there
are different hypothetical mechanisms for a transition that can be ex-
pressed as distinct transition tubes in a particular collective variable
space. If one designs biasing protocols that guide the system via these
transition tubes, nonequilibrium work measurements can be used to
estimate the relative importance of each tube [13]. Thus, by sampling
many different pathways one may establish a reliable understanding
of the overall trend of a transition and intermediate structures, without
the need for expensive calculation of accurate quantities, such as free
energies.

In principle, the probability of each transition tube (which is pro-
portional to its associated transition rate) can be measured accurately
given an adequate sampling. However, the presence of distinct work
trends between the actual transition tube (which is the dominant one
when the system is not biased) and other hypothetical transition tubes
(which are disfavored energetically) can simplify the calculations. In
order to explore the transition tubes, one may define a relevant set of
reaction coordinates to reduce the phase space to a reaction coordinate
space with a clear distinction between different states of the system
including initial, final, and different hypothetical intermediate states.
Let us assume we run several nonequilibrium simulations with dif-
ferent biasing protocols and measure the work values. The optimal
transition tube (within the tubes sampled) can be identified if there is
a clear difference in the trend of the work between different classes
of pathways.

Note that due to the nonequilibrium feature of the simulations,
these work profiles are associated with a dissipative term that is
stochastic in nature; thus, one cannot make reliable statements based
on single trajectories. However, the trend of the work (determined
by repeating the simulations) can be used to compare different tran-
sition paths/mechanisms. We also note that any parameter involved
in the biasing protocol (e.g., simulation time) can influence the trend
of the work. One can simplify the comparison by keeping some of
these parameters the same in different protocols associated with dif-
ferent paths. Ideally, the protocols should be designed in a way that
focuses on one “explanatory” variable to avoid complications in the
comparison. Here we consider the trend of the work as a “response”
variable; any parameter that is different in the biasing protocols could
be generally considered a candidate “explanatory” variable which ex-
plains the difference in the trends of the work resulted from different
protocols. For instance, if two protocols use two different collective
variables that are essentially different (e.g., a distance versus an an-
gle) the comparison will be nontrivial; the different work trends could
be due to the way the collective variables are defined (not due to the
difference of the paths taken). In order to simplify the problem, we
designed our protocols such that only the order of biasing stages is
varied in different protocols while everything else is kept the same.

More quantitative analyses such as free energy calculations or
accurate transition path optimizations can be generally performed,
once a practical biasing protocol is found that does not require a large
amount of work when used for inducing the transition. Thus, this
study not only sheds light on the mechanistic features of the IF-OF
transition of MsbA but also provides a good framework for more ex-
pensive/accurate calculations that can be carried out in future studies.

Reaction Coordinates. Here we introduce several reaction coordi-
nates that describe the global conformational features of the MsbA
transporter, and are used as intuitive metrics/measures to identify dif-
ferent states. These coordinates are mainly designed as analysis tools
to monitor the conformational changes but they are also closely related
to the collective variables used in the biasing protocols to impose a
certain conformational change by applying forces on the system (see
Collective Variables). We generally use the terms, reaction coordi-
nates and collective variables interchangeably in the paper.
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We define a three-dimensional space(α, β, γ) that describes the
conformation of MsbA in a reduced holonomic coordinate space.α
andβ are defined on the TMD helices whileγ is defined on the NBDs.
We define TMcis

i and TMtrans
i as the theith transmembrane helix

of the two monomers (labeledcis and trans, arbitrarily) and con-
sider four relatively rigid bundles, B1 (TMcis

1,2,TMtrans
4,5 helices), B2

(TMtrans
1,2 ,TMcis

4,5 helices), B3 (TMcis
3,6 helices), and B4 (TMtrans

3,6 he-
lices), colored in Fig. 1, blue, red, yellow, and green, respectively.α
describes the angle between two groups of bundles B1/B3 and B2/B4.
On the other handβ describes the angle between B1/B4 and B2/B3. In
both cases, theCα atoms of each group was used to find the principal
axes and the direction of the roll axis was used to measure the angle
between the two groups. Finally,γ was defined as the angle between
the roll axes of the two NBDs constructed using theCα atoms of each
NBD.α andβ as defined here intuitively describe the opening/closure
of the cytoplasmic and periplasmic sides, respectively.γ, on the other
hand, describes the relative orientation of the two NBDs.

While the(α, β, γ) space is the main focus of our analysis, more
conventional metrics including distance and RMSD were used along
with these angles.dNBD, the distance between theCα mass centers
of the two NBDs is an intuitive representative of the NBD dissocia-
tion/dimerization.RMSDOF ,RMSDIF−c, andRMSDIF−o are
Cα RMSDs from the crystal structures of OF, IF-c, and IF-o, respec-
tively.

Collective Variables. In order to induce a conformational transition,
it is often relevant to define a set of collective variables that describe
different states of the system, such that by applying appropriate forces
on the system, one can vary these collective variables and change the
conformation of the system. One particular collective variable that is
widely used in the context of structural transition of proteins is the
RMSD. Although using the RMSD from a target structure as a collec-
tive variable (e.g., in a targeted MD simulation) has proved useful, the
method has its own pitfalls and limitations. Targeted MD requires a
target structure whose quality is a determining factor in the reliability
of the results. This reduces the flexibility of the method to a great
extent. Ironically, RMSD is associated with both extreme degeneracy
and large entropy loss (for large and small values of RMSD). The tra-
jectory generated by targeted MD represents a pathway along which
the RMSD decreases almost monotonically and nearly linearly. Due
to such reasons, a targeted MD simulation typically requires a large
amount of work to induce a transition, thus making the interpretation
of its results difficult in the context of nonequilibrium work relations.

Other conventional collective variables such as distance and ra-
dius of gyration have their own limitations that make them impracti-
cal for inducing a global large-scale structural transition such as the
IF↔OF conformational change in ABC transporters. One particular
collective variable that seems to best reflect the nature of the confor-
mational changes of MsbA intuitively is angles suchα, β, andγ as
defined above. The simplest way to define a collective variable as-
sociated with one of these angles is to use the mass centers of three
groups of atoms. Unfortunately, this simple definition often results
in structural deformation of the protein. Another approach is to use
the principal axes as used in defining the measures above. However,
in order to define a practical set of collective variables to induce the
desired transitions associated with the global angles such asα, β, and
γ, here we use the “orientation quaternions” [16, 17, 18].

The orientation quaternion [17], often used for “optimal super-
position” in computational biology [16], is a tool to deal with the so-
called “absolute orientation” problem. Suppose for a set ofN atoms
(labeled1 ≤ k ≤ N ), we have two different sets of measurements:
{xk} and{yk}. To simplify the problem we assume both sets have
been already shifted to bring their barycenters to the origin (optimum
translation). To find the optimum rotation to superimpose{yk} on
{xk}, we introduce “pure quaternions”xk andyk whose vector parts
arexk andyk, respectively. A quaternion can be thought of as a vec-

tor with four components, as a composite of a scalar and an ordinary
vector, or as a complex number with three different imaginary parts.
A quaternion whose scalar part is zero is called pure (reminiscent of
pure imaginary numbers). The optimal rotation can be parametrized
by a unit quaternion,̂q that minimizeṡ ‖q̂xk q̂

∗−yk‖2
¸

in which
˙
.
¸

denotes an average overk, q∗ is the conjugate ofq, and‖q‖2 ≡ qq∗

(see Ref. [16] for more details). The optimal rotation unit quater-
nion (or orientation quaternion)̂q can be written as(cos θ

2
, sin θ

2
û)

in which θ and û (a unit vector) are the optimum angle and axis of
rotation, respectively.

As a collective variable, orientation quaternion can be used not
only to monitor the rotational changes but also to apply forces (that are
proportional to the derivatives of the orientation quaternions) on the
system in a practical way to induce the desired rotational changes.
Suppose that we are interested in inducing a particular rotation –
given by its axis of rotation (unit vector̂u) and its target angle of
rotationθtarget – on a particular segment of a biomolecule (e.g., part
of a helix, a helix, or a bundle of helices). One simple way is to
use a time-dependent harmonic potential (similar to steered MD in
spirit) [18]:

UB(qref ({xk}), t) =
1

2
kΩ2(qref ({xk}), Q(t)). [1 ]

Here qref ({xk}) is the optimum orientation quaternion to super-
impose{xk} on a reference set{xref

k }. The reference could be
the initial, target, or any other structure; Here to simplify the no-
tations we assume the reference is the same as the initial structure.
Q(t) ≡ (cos( θ(t)

2
), sin( θ(t)

2
)û) is a unit quaternion that is varied ex-

ternally, providing the center of our harmonic potential at timetduring
a simulation (0 ≤ t ≤ T ). If the reference is the same as the initial
structure,θ(0) andθ(T ) can be set to0 andθtarget, respectively. Now
that we haveQ(0) andQ(T ) we can use different interpolation meth-
ods to determineQ(t). A simple method is varyingθ(t) linearly that
is a special case of spherical linear interpolation (Slerp) method [19].
The particular method used here (i.e., NAMD implementation [18]),
is based on the linear interpolation of the quaternionQ(t) (based on
the current and final targets) followed by its normalization at each
timestep(see Nonequilibrium Work Measurements). FinallyΩ(p̂, q̂)
is the length of the geodesic between two points on the unit sphere,
transformed bŷp and q̂ from an arbitrary point on the unit sphere.
One can showcos(Ω(p̂, q̂)) = p̂ · q̂.

We use six orientation quaternions as collective variables
to describe the three-dimensional(α, β, γ) space including
(qcis

α , qtrans
α , qcis

β , qtrans
β , qcis

γ , qtrans
γ ). For each angle two collec-

tive variables are defined on the two sides of the angle.qcis
α and

qtrans
α are the orientations of the two groups of bundles B1/B3 and

B2/B4, respectively. Similarly,qcis
β andqtrans

β are the orientations of

B1/B4 and B2/B3, respectively, whileqcis/trans
γ is the orientation of

NBDcis/trans. For the quaternion-based collective variables, the har-
monic constant was set to 105 kcal/mol. Along with these collective
variables, we also usedRMSDIF−o (for targeted MD simulations)
anddNBD (see Reaction Coordinates) with a harmonic constant of
40 and 100 kcal

mol·Å2 , respectively.

System-Specific Biasing Protocols. We used different combinations
of collective variables associated withα, β, andγ reaction coordi-
nates to induce the OF→IF transition. In addition,dNBD was used
to dissociate NBDs in some cases. One can generate many distinct
biasing protocols by using these collective variables. Let us assume
that main changes inα, β, andγ occur in 3 discrete stages. Here the
presumptive explanatory variable is the order of events, resulting in
six possible classes of protocols:(α → β → γ), (α → γ → β),
(β → α → γ), (β → γ → α), (γ → α → β), and(γ → β → α).
One may adddNBD as an additional collective variable and an addi-
tional stage in the biasing protocol. We usedNBD only for an initial
dissociation of NBDs (going from about 30 to 40Å: dNBD associated
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with OF and IF-c states, respectively). Targeting a larger distance is
practically problematic since results in the deformation of the system
(unless accompanied by other biases). Our results show that varying
γ and/orα results in the NBD dissociation thus varyingdNBD for an
initial dissociation of NBDs was not used after the stages that involved
changingγ and/orα. One can show the total number of protocols sat-
isfying these criteria with four stages of varyingα, β, γ, anddNBD

in different orders is 8. Figures 3A and S5 show the work profiles
and the trajectories resulted from all the 14 protocols described above
including 6 three-stage and 8 four-stage(α, β, γ, dNBD) based pro-
tocols, each carried out for 160ns in total. In three- and four-stage
simulations, each stage was carried out for 40ns except for theγ-
based stages not preceded by pushingdNBD that were carried out for
80ns (since changingγ induces the change indNBD as well).

Connecting Nonequilibrium and Equilibrium Ensembles. Consider
a system governed in equilibrium by HamiltonianH(x) in which
x is a point in the phase space. Supposext is a trajectory of this
system driven out of equilibrium over a time interval[0, T ] using a
time-dependent biasing potentialU(xt, t) added to the Hamiltonian.
A common choice for biasing potential isU(xt, t) = U(ξt, t) =
Uξ(t)(ξ

t) in which ξ is a collective variable,ξt is the projection
of xt onto the ξ space, andξ(t) is a parameter controlled ex-
ternally. Although there is no particular restriction, but for sim-
plicity Uξ(t)(ξ

t) and ξ(t) are often chosen to be harmonic (e.g.,
k(ξt − ξ(t))2/2) and linear, respectively. A statistical ensemble of
trajectoriesxt

1,x
t
2, . . . is described by its time-dependent distribution

in phase spacefdr(x, t) =
˙
δ(x − xt)

¸dr
, in which

˙
.
¸dr

denotes
an ensemble average over the driven trajectories andfdr(x, t) gives
the probability of finding the system at microstatex at timet. If the
process starts from equilibrium state A, biased only byUξA(ξt) with
ξ(0) = ξA, one can show [3] the distribution of states associated
with ξ in equilibrium may be represented by the driven ensemble in
which each trajectoryxt carries a time-dependent statistical weight
exp(−βwt

d), i.e.,

peq
ξ (x) =

˙
δ(x− xt)

¸eq

ξ
=

˙
δ(x− xt) exp(−βwt

d)
¸dr

, [2 ]

in whichβ is the inverse temperature,wt
d = wt− (F(ξ)−F(ξA)) is

the dissipative work,wt =
R t

0
∂

∂t′U(ξt′ , t′) dt′ is the total nonequi-
librium (accumulative) work over[0, t] time interval,̇ .

¸eq

ξ
describes

an average over an ensemble of equilibrium trajectories governed by
H + Uξ, andF(ξ) is the free energy of theperturbedsystem. In
the stiff-spring limit (large force constant) [20] the potential of mean
force (PMF) of theunperturbedsystem,F (ξ), can be approximated
as the free energy of theperturbedsystem,F(ξ), but in a more general
case,F (ξ) can be reconstructed via [3, 6]:

F (ξ) = F (ξA)− β−1 log
˙
δ(ξ − ξt) exp(−β∆wt)

¸dr
, [3 ]

in which ∆wt = wt − U(ξt, t). More generally, theunperturbed
equilibrium distribution ofx can be connected to the nonequilibrium
driven trajectories via:

peq(x) ∝
˙
δ(x− xt) exp(−β∆wt)

¸dr
. [4 ]

Now if λ is a collective variable defined onx that may or may not be
the same asξ, one can write:

exp(−β∆F (λ)) =
˙
δ(λ− λt) exp(−β∆wt)

¸dr
. [5 ]

in which∆F (λ) = F (λ)− F (0).
Estimating the free energy for a particularλ requires sampling an

adequate number of trajectories that visitλ particularly those associ-
ated with a small amount of work that dominate the RHS of (5). This
is not always feasible, particularly when large-scale transitions are

targeted. Typically, work values in such simulations (e.g., a targeted
MD simulation on a membrane transporter) are on the order of hun-
dreds ofkcal/mol, much greater than the actual free energies. One
can try to use longer simulations to decrease the dissipation; however,
if the path taken is not close to the minimum free energy path, the
results will never converge to the relevant free energy values.

Although accurate free energy calculations are not always feasi-
ble due to the practical reasons, one may make qualitative statements
about the transition paths based on nonequilibrium work measure-
ments. The relation (5) describes how a particular driven ensemble
– with a particular biasing protocol – is related to the equilibrium
ensemble. Here for the main conclusions of the paper we have used
a rough comparison of the work values. Fortunately, there is a clear
difference in the trend of work between different classes of pathways
and the optimum transition tube can be identified.

Nonequilibrium Work Measurements. The accumulative work at
time t along a trajectory generated by the quaternion-based biasing
protocol (1) can be measured via,

wt =

Z t

0

∂

∂t′
UB(qref ({xk}), t′) dt′. [6 ]

One can collect the biasing potential (UB(qref , t)) and its partial time
derivative (∂UB(qref , t)/∂t) based on the instantaneousqref at time
t. For the particularqref schedule,Q(t) that comes from the linear
interpolation of the quaternion (Q′(t+∆t) = Q(t)+ Q(T )−Q(t)

T−t
∆t)

followed by its normalization (Q(t + ∆t) = Q′(t+∆t)
||Q′(t+∆t)|| ), one can

show:
∂

∂t
UB(qref , t) = kΩ(qref , Q(t))

∂

∂t
Ω(qref , Q(t)), [7 ]

∂

∂t
UB(qref , t) = − Ω

sin(Ω)
(q −Q(t) cos(Ω)) · Q(T )−Q(t)

T − t
.

[8 ]
We collected∂UB/∂t every0.2 picosecond and estimated the accu-
mulative work at each timet from the relation (6). The work profiles
plotted against time show∆wt − UB(0) = wt − (UB(t)− UB(0))
whose physical meaning was discussed above. This is the so-called
transferable work [3]. The work profiles reported in terms of the re-
action coordinates is also the transferable work associated with a bin
in the reaction coordinate space averaged over all the observations
in which the bin has been visited using the generalized implementa-
tion of the weighted histogram method described in the reference [3].
Note that this algorithm is designed to reconstruct the free energies
but what we obtain includes a dissipative term.

Free Energy Calculations. For free energy calculations, we em-
ployed umbrella sampling (US) [21] in conjunction with a replica-
exchange scheme [22, 23], termed here bias-exchange umbrella sam-
pling (BEUS) (also known as window-exchange or replica-exchange
umbrella sampling [23, 24, 25]), to efficiently sample a continuous
portion of the phase space along a reaction coordinate.

US [21] combined with the weighted histogram analysis method
(WHAM) [26] is a standard free energy calculation scheme for re-
constructing the PMF along a given reaction coordinate. By biasing
the system using a known potential (e.g., harmonic), one may sample
high-energy states, allowing for an accurate reconstruction of free en-
ergy landscape of the unbiased system when used along a reweighting
scheme such as WHAM. Employing the method to large-scale tran-
sitions is often challenging and simple biasing protocols (e.g., using
RMSD from a target structure as the reaction coordinate) usually pro-
duce unreliable estimates for free energies. By using system-specific
reaction coordinates and sampling around relatively reliable transi-
tion pathways (obtained using methods discussed above), one may
significantly improve the sampling of the regions of the phase space
relevant to a transition of interest. Replica-exchange MD [22, 23]
is a Monte Carlo algorithm that couples multiple MD simulations in
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order to enhance the sampling. Each replica is associated with a dif-
ferent value of a given property whose periodic exchange between
the replicas based on an “exchange rule” accelerates the exploration
of the phase space. Temperature is the most typical property to ex-
change between the replicas which accelerates the sampling of all
degrees of freedom somewhat blindly. An alternative is to exchange
(time-dependent [27] or time-independent [24]) biasing potentials in
a “bias-exchange” scheme to specifically accelerate the sampling of
the degrees of freedom most relevant to a transition of interest.

Integrating US into the replica-exchange scheme results in an ex-
ceptionally practical enhanced sampling approach that allows for an
accurate reconstruction of rugged free energy landscapes [23, 25].
The mixing of the replicas in the bias-exchange method guarantees
the continuity of the conformational space sampled, yielding a more
reliable free energy estimate. Note that due to the presence of a large
number of degrees of freedom in a large protein system such as mem-
brane transporters, it is virtually impossible to sample a continuous
conformational space if the simulations were to run independently as
in a conventional US scheme.

The efficiency of the BEUS simulations (in terms of sampling)
relies on the definition of collective variables and the distribution of
the replicas in the collective variable space. The choice of the col-
lective variable can be improved in the procedure discussed in detail
above (i.e., using nonequilibrium simulations and fine-tuning the bi-
asing protocol to lower the amount of nonequilibrium work). In order
to optimize the sampling, the distribution of the replicas in the col-
lective variable space can be adjusted iteratively using short runs to
result in a roughly similar rate of exchange between all neighboring
replicas.

Molecular Dynamics Simulation Details. The initial model used for
all the MD simulations is based on the crystal structure of the
salmonella typhimuriumMsbA in its OF conformation (PDB entry:
3B60) [28]. The unresolved N- and C-terminal residues (M1-T9 and
Q582) were not modeled, and the nucleotides were removed to gen-
erate a nucleotide-freeapostate.

All MD simulations were performed using NAMD 2.8 and
NAMD 2.9 [29]. The CHARMM27 force field [30, 31, 32], including
theφ/ψ cross-term map (CMAP) correction for the proteins [30] was
used for all the simulations. Water molecules were described with the
TIP3P model [33]. The protein was energy-minimizedin vacuofor
3000 steps using conjugate gradient algorithm [34].

Simulations were carried out using a 2 fs timestep at 310K con-
stant temperature using Langevin dynamics with a damping coeffi-
cientγ of 0.5ps−1. The pressure along the membrane normal (the
z-axis of the simulation system) was maintained at 1atm using the
Nosé-Hoover Langevin piston method [35, 36], with a constant cross-
sectional area imposed on thexy-plane unless specified otherwise.
The smoothed cutoff distance for non-bonded interactions was set
to 10−12Å, and long-range electrostatic interactions were computed
with the particle mesh Ewald (PME) method [37].

The protein was embedded in a lipid bilayer consisting of
470 POPC molecules (237 and 233 lipids in the periplasmic and
the cytoplasmic leaflets, respectively), and solvated in a periodic
TIP3P [33] water box with 100mM of NaCl, resulting in a simu-
lation system of∼250,000 atoms, with approximate dimensions of
140×140×150Å3 before equilibration.

The relaxation of the system started with the acyl chains of the
lipid molecules under constant volume conditions for 0.5ns, with all
other atoms fixed. The system was then further equilibrated with
all protein atoms, all protein heavy atoms, and all protein Cα atoms
restrained (k=5kcal/mol·Å2) in 0.5, 1.5, and 3ns runs, respectively,
followed by a 5 ns unrestrained simulation, all in the constant-pressure
(NPT) conditions, in order to allow the lipid molecules to pack against
the protein surface, and for the area of the lipid bilayer to adjust ac-
cordingly. Once the system area stabilized, a 5ns relaxation run was
performed (Table S1: Simulation 0) under constant area and normal
pressure conditions (1atm; NPnAT ensemble). All the production

runs including the unbiased and biased simulations used the NPnAT
conditions.

First we performed a 150-ns unbiased equilibrium simulation (Ta-
ble S1: Simulations 1 and 2). We used three structures from t=0, 75,
and 150ns of this equilibrium trajectory (Table S1: Conformations 0,
1, and 2, respectively), to initiate several nonequilibrium driven MD
simulations that were carried out using different time-dependent bi-
asing protocols in which the system was driven away from the initial
OF state toward an IF state. These protocols include conventional
steered and targeted MD simulations (Table S2: Simulations 33-37
and 183-187, respectively) as well as non-conventional protocols (see
Tables S2-S6) that use different combinations of collective variables
(see Reaction Coordinates and Collective Variables).

Select number of these nonequilibrium simulations were followed
by restrained MD (RMD) simulations in which the system is subject
to a time-independent biasing potential centered at the final target (Ta-
ble S3: Simulations 188, 190, and 192; Table S4: Simulations 193,
195, 197, and 199; and Table S6: Simulations 234-238 and 242-246).
Select number of the conformations resulted from the biased simula-
tions were further equilibrated with no bias (Table S1: Simulations
247-251). We also performed BEUS MD simulations (Table S7) to
quantify the free energies associated with different IF conformations
(see Sampling Protocol for Free Energy Calculations). Collectively,
we have performed more than 5µs of unbiased and biased simula-
tions (0.545 and 4.803µs, respectively). For a complete list of these
simulations, see Tables S1-S6.

Sampling Protocol for Free Energy Calculations. Prior to produc-
tion runs for BEUS MD simulations we used the following protocol
to prepare the initial conformations and umbrella potentials:

1. 22 initial conformations were taken from the last stage of the opti-
mized pathway in which the system is pushed alongα (i.e., Table
S4: Simulation 198).

2. Based on each conformationi (selected above), two quaternion-
based collective variablesqcis

α,i andqtrans
α,i were defined (conforma-

tioniused as the reference structure; for the definition ofq
cis/trans
α

see Collective Variables). For each umbrellai = 1, . . . , 22, a bi-
asing potential (or umbrella potential) was designed with two har-
monic terms restrainingqcis

α,i andqtrans
α,i around the unity quater-

nion 1 ≡ (1, 0, 0, 0) with harmonic constantki (see Collective
Variables). The biasing potential for umbrellai can be simpli-

fied to: Ui = ki
2

((
θcis

i
2

)2 + (
θtrans

i
2

)2) in which θcis/trans
i ≡

2 cos−1(q
cis/trans
α,i .1) is the angular deviation from the reference

i in cis/trans wing ofα.
3. BEUS MD simulations were performed for 10-100 ps (for each

replica) starting with the initial conformations and using the um-
brella potentials obtained from (1) and (2), respectively. An ex-
change between any two neighboring replicas was attempted every
1 ps.

4. The steps (1) to (3) were iterated with different initial conforma-
tions and harmonic constants (identified by trial and error) until
(i) the exchange rate between any two neighboring replicas was
estimated to be in the 20-40% range, and (ii) theα space (in a
given continuous range) was expected to be sampled without any
gap.

Production runs: The initial conformations and umbrella poten-
tials satisfying the criteria above were used to perform 24 ns of BEUS
MD simulations (total simulation time22× 24 = 528ns).

The conformations used for the production runs are associated
with theα’s ranging roughly from 13◦ to 49◦ (shown in Fig. S12B,C).
See Table S7 for the centers and force constants and average exchange
rates based on the entire simulations. Figure S12A,B shows how each
replica has covered a large portion of theα space. Note that Fig. S12A
show select trajectories in(θcis

1 , θtrans
1 ) space in whichθcis/trans

1
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represents the angular deviation ofα angle in its cis/trans wing from
the initial conformation of replica1 (with α ≈ 13◦).

Reweighting Scheme for Free Energy Reconstructions. The 22 tra-
jectories of BEUS MD simulations were collected every 4ps. The first
4ns of each trajectory was discarded (as equilibration phase) and the
rest were used to generate an ensemble of11 × 104 (22 replicas×
20ns / 4ps) configurations{Xt

i} grouped according to the umbrella
potential based on which the system was biased (i = 1, . . . , 22) and
indexed arbitrarily within its umbrella group (t = 1, . . . , Ni and
Ni = 5000 for all i). The reweighting scheme used is a method
originally proposed in Ref. [38] which can be considered to be a gen-
eralization of weighted histogram analysis method [26] (with bin size
→ 0). This scheme is closely related to multistate Bennet acceptance
ratio method (MBAR) [39]. The weight of each configurationXt

i, p
t
i

is determined by self-consistently solving the equations [38]:
1/pt

i =
P

j Njfj exp(−βUj(X
t
i)),

1/fj =
P

i

PNi
t=1 p

t
i exp(−βUj(X

t
i)).

[9 ]

in whichUi(X) is the biasing potential for configurationX according
to umbrellai.

The samples were reweighted according to normalizedpt
i values

to reconstruct the PMF in terms of a given reaction coordinateζ (in-
cludingα, RMSDIF−c, andRMSDIFo ). The kernel density esti-
mation [40] method was used to reconstruct the unbiased probabilities
p(ζ) based on which the PMF (i.e.,−β−1 log(p(ζ))) was estimated.
A Gaussian kernel was used with a bandwidth selected according to
the least-squares cross validation criterion [41]. The bandwidth se-
lection was independently repeated for each reaction coordinate.

A Bayesian bootstrapping technique was used to estimate the sta-
tistical error associated with the PMFs [42]. Each trajectory was

partitioned into five 4-ns pieces formingM = 22 × 5 = 110
groups of samples. These groups were assumed to be independent
and identically distributed (i.i.d) data points with assigned weights
wl = ξl − ξl−1 (l = 1, . . . ,M and{ξl} is a set of low-to-high or-
dered random numbers on[0, 1] with ξ0 = 0 andξM = 1). Each
configurationXt

i takes a weightωt
i = wlM (l is determined byi and

t) prior to be plugged in the equations (9). This can be done implicitly
by modifying the first equation in (9):

ωt
i/p

t
i =

X
j

N ′
jfj exp(−βUj(X

t
i)). [10 ]

in whichN ′
j =

PNj

t=1 ω
t
j .

The normalized probabilities{pt
i} can be used to estimate the

PMFs as discussed above. The procedure was repeated 100 times
with different random values{ξl} to generate a set of PMFs in terms
of ζ whose average and standard deviation at eachζ was used as
an estimate of free energy and the associated error. Figures 5 and
S13A,B show the average PMFs and their associated errors in terms
of α, RMSDIF−c, andRMSDIFo reaction coordinates, respec-
tively, while 100 bootstrapped PMFs in terms ofα are shown in Fig.
S12.

Analysis and Plotting. The trajectories were analyzed using the
VMD [43] and the ProDy packages [44]. All the projected trajec-
tories (excluding Figs. 2B and 10, and Figs. S2 and S4) and work
profiles are smoothed using a rational Bezier curve [45] while the time
series in Figs. S9C-D and S10, and S2, are smoothed using a running
average. The PMFs in Figs. 5, S12, and S13 are generated using
a kernel density estimation method as discussed above. The protein
structures were plotted using VMD [43] v. 1.9.
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Figure S1. A Projection of∼250 biased and unbiased MD trajectories onto the (α, β, γ) space along with their projections onto the two-dimensional spaces (α, β),
(α, γ), and (β, γ). B OF (cube), IF-c (sphere), and IF-o (pyramid) crystal structures are also shown in the (α, β, γ) space whose two-dimensional projections are
given by square, circle, and triangle, respectively. The arrows illustrate the OF→IF-o transition (the main subject of this study) projected in these 3D (black) and 2D
(grey) spaces. Also see Fig. 2.
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Figure S2. Unbiased equilibrium simulation of OF conformation: A The RMSD of a 155-ns trajectory (Table S1: Simulations 0-2, combined) from the OF crystal
structure calculated based on the heavy atoms of the entire protein (black), NBDs (red), TMDs (blue), NBDcis (yellow), and NBDtrans (green). The aposystem stays
close to the nucleotide-bound OF crystal structure during the simulations. B Projection of the 150-ns equilibrium trajectory of OF structure (Table S1: Simulations 1
and 2) onto its first and second principal components PC1 and PC2 (constructed based on the Cα atoms of the protein). The Projection of the same trajectory onto
the (RMSDIF−o, RMSDIF−c), (α, β), (β, γ), and (α, γ) spaces are given in B-inset, C, D, and E, respectively. Square, circle, and triangle represent OF,
IF-c and IF-o crystal structures. The structure firmly stays close to the known OF state throughout the simulations.
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TM, EL, and ICL stand for transmembrane helix, extracellular loop, and intracellular coupling loop, respectively. The NBD-TMD interaction regions IR1 (404-418) and
IR2 (440-445) are also marked. In both monomers, the largest RMSF in TMDs belongs to the extracellular loops, particularly EL3 and EL1 while the lowest fluctuation
in TMDs belongs to the intracellular coupling loop ICL2. In the NBDs, the NBD-TMD interaction region IR2 and the A loop fluctuate more than the other loops although
these fluctuations are asymmetric. From these short simulations, it is not clear whether or not this asymmetric behavior is mechanistically relevant.
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the β and/or γ variables have already changed supports this assumption to a great extent. To further examine this assumption, we performed two sets of simulations
exploring the (α, β) and (α, γ) spaces. If the system is steered along different paths in the (α, β) space (A and B), the discrete β → α protocol (involving the
closure of the periplasmic side prior to the opening of the cytoplasmic side) is found to require the least amount of work. To make the comparison easier, the NBDs are
dissociated and twisted (using γ) prior to these simulations. The results further support our assumption on breaking down the TMD conformational changes into two
α- and β-based stages. Similarly, if the system is steered along different paths in the (α, γ) space (C and D), the discrete γ → α protocol (involving the closure of
the NBD twist prior to the TMD cytoplasmic opening) requires the least amount of work. The NBDs are dissociated by pushing dNBD prior to these simulations. The
results are in agreement with our conclusions (based on discrete simulations) that the γ-related conformational changes must occur prior to any significant α-related
conformational change. Although (α, β) and (α, γ) spaces can be used to identify the OF→IF transition pathway of MsbA in a relatively simple manner, the exact
transition pathway in (β, γ) or (γ, dNBD) spaces is not clear and requires more accurate methods such as free energy calculation techniques to derive a reliable
conclusion.
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Figure S9. Water accessibility along the pore: A The (linear) water density along the pore, ρwater as estimated from the equilibrium trajectory of OF conformation.
B ρwater associated with different conformations of MsbA as shown in C and D. C Time-series of ρwater at the cytoplasmic (blue) and periplasmic (red) gates
along the equilibrium trajectory of OF conformation. D Cyto- and periplasmic ρwater along the OF→IF-c trajectory generated according to the optimum protocol with
interstage RMD simulations (see Table S4).
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Figure S11. RMSF of Cα atoms of the two MsbA monomers (termed cisand trans) as obtained from the the last 75 ns of an unbiased equilibrium trajectory of IF-c
(A and B) and IF-o (C and D) structures (Table S1: Simulations 249 and 247, respectively). See Fig. S3 for definitions.
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Figure S12. Sampling of the α space using BEUS MD simulations. A Trajectories of select replicas (5 out of 22) projected onto the (θcis
1 , θtrans

1 ) space. B
Distribution of α as sampled by the replicas shown in A. C PMF along α as estimated using 100 sets of samples generated using a bootstrapping algorithm. The
average PMF and error bars in Fig. 5 are based on the statistics shown here. Note that the centers of all 22 umbrella potentials (projected onto the α space) are
marked on the upper x-axis of panels B and C (see Table S7) while the values of α associated with the IF-c (circle) and IF-o (triangle) crystal structures are marked on
the lower x-axis of the same panels. It is also important to note that, although α turns out to be a good reaction coordinate to sample the configuration space of MsbA
in the IF conformation, it is not to be confused with an ideal reaction coordinate (i.e., the committor function [46]), thus the presence of an approximately 2-kcal/mol
barrier around α ≈ 20◦ is not necessarily a good representative of the actual transition barrier. Nonetheless, the estimated free energies reveal a great conformational
flexibility in the resting state of apoMsbA.
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and IF-o crystal structures representing an IF conformation less open than IF-o and more open that IF-c.
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Figure S14. NBD-NBD interface: A The positively and negatively charged residues on the dimeric interface (highlighted as blue and red, respectively). Histidines
are also shown (green) alongside. B The surface charge distribution of NBD on the NBD-NBD interface as obtained from a snapshot of the MsbA structure in the
OF conformation (Table S1: Conformation 0). Blue/red represents positive/negative charges. C The interaction energy (in kcal/mol) between the two NBDs in the
(dNBD, γ) space along with the simulation trajectories previously shown in Fig. S7A. We used all the unbiased and biased simulations performed (see Tables S1-S6)
(without any reweighting) to reconstruct the energy landscape. This energy landscape approximates the NBD-NBD interaction without considering the environment or
entropic effects. One can identify a region around the IF-c crystal structure (associated with a twisted NBD conformation) that is surrounded by several regions with
positive (repulsive) interaction energies. These repulsive interactions are due to the proximity of several positively-charged subdomains (e.g., P-loop and H-loop) from
the cis- and trans-NBDs in the absence of enough attractive interaction between the other subdomains.

S20



Table S1. List of the unbiased simulations.

index∗ state† initial conformation runtime (ns)
0 OF crystal structure‡ 5
1 OF 0 75
2 OF 1 75

247 IF-o 178 150
248 IF-o 183 50
249 IF-c 173 150
250 IF-c 192 20
251 IF-c 197 20

∗The index by which the resulting trajectory/conformation will be referred to (e.g., as
an “initial conformation” for another simulation).
†The state associated with the initial conformation. The system can be generally
considered to be in this state throughout the simulation.
‡See Molecular Dynamics Simulation Details.
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Table S2. List of the nonequilibrium driven simulations involved in the OF →IF-o transition, induced using different biasing protocols. The work
profiles associated with these simulations are shown in Fig. S6.

index∗ initial conformation protocol † runtime (ns) stage work (kcal/mol)§ total work (kcal/mol) ‡

3,4,5,6,7 2,2,0,1,2 α→ 47◦ 40,20,5,5,5 342,392,497,467,467 342,392,497,467,467
8,9,10,11,12 3,4,5,6,7 γ → 75◦, αat47◦ 80,40,10,10,10 101,262,665,607,645 444,656,1164,1075,1113

13,14,15,16,17 8,9,10,11,12 β → 9◦, γat75◦, αat47◦ 40,20,5,5,5 81,186,482,374,397 526,843,1648,1452,1513
18,19,20,21,22 2,2,0,1,2 γ → 75◦ 80,40,10,10,10 185,238,320,308,317 185,238,320,308,317
23,24,25,26,27 18,19,20,21,22 α→ 47◦, γat75◦ 40,20,5,5,5 236,294,439,503,445 422,533,760,813,763
28,29,30,31,32 23,24,25,26,27 β → 9◦, αat47◦, γat75◦ 40,20,5,5,5 88,185,476,404,394 510,719,1239,1219,1159

33,34,35,36,37 2,2,0,1,2 dNBD → 41Å 40,20,5,5,5 24,32,36,34,33 24,32,36,34,33
38,39,40,41,42 33,34,35,36,37 α→ 47◦ 40,20,5,5,5 273,324,399,402,417 298,357,436,437,451
43,44,45,46,47 38,39,40,41,42 γ → 75◦, αat47◦ 40,20,5,5,5 105,173,414,401,382 405,532,852,840,835
48,49,50,51,52 43,44,45,46,47 β → 9◦, γat75◦, αat47◦ 40,20,5,5,5 85,178,448,387,400 491,711,1302,1229,1237
53,54,55,56,57 3,4,5,6,7 β → 9◦, αat47◦ 40,20,5,5,5 67,146,370,305,354 418,549,878,782,832
58,59,60,61,62 53,54,55,56,57 γ → 75◦, βat9◦, αat47◦ 80,40,10,10,10 35,224,706,605,621 454,774,1587,1389,1455

63,64,65,66,67 33,34,35,36,37 γ → 75◦, dNBDat41Å 40,20,5,5,5 114,136,158,161,161 128,159,183,184,188
68,69,70,71,72 63,64,65,66,67 α→ 47◦, γat75◦ 40,20,5,5,5 236,284,459,461,411 366,444,644,647,601
73,74,75,76,77 68,69,70,71,72 β → 9◦, αat47◦, γat75◦ 40,20,5,5,5 72,157,402,347,338 439,602,1047,996,941
78,79,80,81,82 38,39,40,41,42 β → 9◦, αat47◦ 40,20,5,5,5 76,156,388,373,354 383,507,835,820,816
83,84,85,86,87 78,79,80,81,82 γ → 75◦, βat9◦, αat47◦ 40,20,5,5,5 35,140,370,316,326 419,648,1207,1138,1144
88,89,90,91,92 2,2,0,1,2 β → 9◦ 40,20,5,5,5 90,104,126,119,120 90,104,126,119,120

93,94,95,96,97 88,89,90,91,92 dNBD → 41Å, βat9◦ 40,20,5,5,5 21,54,103,100,102 112,159,230,221,223

98,99,100,101,102 93,94,95,96,97 α→ 47◦, dNBDat41Å, βat9◦ 40,20,5,5,5 209,248,350,399,354 321,408,581,621,579
103,104,105,106,107 98,99,100,101,102 γ → 75◦, αat47◦, βat9◦ 40,20,5,5,5 46,120,341,287,279 368,529,923,910,860
108,109,110,111,112 88,89,90,91,92 α→ 47◦, βat9◦ 40,20,5,5,5 189,244,344,310,341 280,350,472,429,463
113,114,115,116,117 108,109,110,111,112 γ → 75◦, αat47◦, βat9◦ 80,40,10,10,10 36,158,496,423,438 317,510,970,854,902

118,119,120,121,122 33,34,35,36,37 β → 9◦, dNBDat41Å 40,20,5,5,5 27,41,48,51,50 42,64,77,75,78

123,124,125,126,127 118,119,120,121,122 α→ 47◦, βat9◦, dNBDat41Å 40,20,5,5,5 179,201,263,295,268 221,266,340,370,347
128,129,130,131,132 123,124,125,126,127 γ → 75◦, αat47◦, βat9◦ 40,20,5,5,5 55,109,269,229,224 277,375,611,601,572
133,134,135,136,137 88,89,90,91,92 γ → 75◦, βat9◦ 80,40,10,10,10 94,152,332,298,319 183,259,450,412,434
138,139,140,141,142 133,134,135,136,137 α→ 47◦, γat75◦, βat9◦ 40,20,5,5,5 16,63,202,156,151 200,323,652,569,586
143,144,145,146,147 18,19,20,21,22 β → 9◦, γat75◦ 40,20,5,5,5 30,57,154,121,140 160,224,383,329,372
148,149,150,151,152 143,144,145,146,147 α→ 47◦, βat9◦, γat75◦ 40,20,5,5,5 23,66,194,131,146 184,291,578,461,518

153,154,155,156,157 63,64,65,66,67 β → 9◦, γat75◦, dNBDat41Å 40,20,5,5,5 32,59,126,124,142 151,203,304,285,321
158,159,160,161,162 153,154,155,156,157 α→ 47◦, βat9◦, γat75◦ 40,20,5,5,5 18,58,155,117,130 169,262,461,402,452

163,164,165,166,167 93,94,95,96,97 γ → 75◦, dNBDat41Å, βat9◦ 40,20,5,5,5 27,50,134,105,122 136,201,356,304,345
168,169,170,171,172 163,164,165,166,167 α→ 47◦, γat75◦, βat9◦ 40,20,5,5,5 23,61,171,115,127 159,262,528,420,473

173,174,175,176,177 118,119,120,121,122 γ → 75◦, βat9◦, dNBDat41Å 40,20,5,5,5 22,30,68,58,62 61,89,142,124,134
178,179,180,181,182 173,174,175,176,177 α→ 47◦, γat75◦, βat9◦ 40,20,5,5,5 15,36,91,67,62 77,126,234,191,196

183,184,185,186,187 2,2,0,1,2 RMSDIF−o : 21Å → 0Å 160,80,20,20,20 460,638,1254,1111,1144 460,638,1254,1111,1144

∗The index by which the resulting trajectory/conformation will be referred to (e.g., as an “initial conformation” for another simulation). Each index in a row corresponds to a simulation with an “initial conformation” and a
“runtime” specified in the same order.
†The center of the harmonic bias is moving toward (→) a target point or is fixed “at” a constant point in the collective variable space.
‡Work accumulated only during the current stage (“stage work”) or during the current and all previous stages (“total work”).

S
22



Table S3. List of the simulations involved in a OF →IF-c transition biased according to the
protocol (β → dNBD → γ) with interstage relaxations ( i.e., RMD).

initial runtime stage work total work
index conformation protocol (ns) (kcal/mol) (kcal/mol)
88∗ 2 β → 9◦ 40 90 90
188 88 βat9◦ 20 - -

189 188 dNBD → 41Å, βat9◦ 40 11 117

190 189 dNBDat41Å, βat9◦ 20 - -

191 190 γ → 75◦, dNBDat41Å, βat9◦ 40 23 159

192 191 γat75◦, dNBDat41Å, βat9◦ 20 - -

∗This simulation was also listed in Table S2.

Table S4. List of the simulations involved in a OF →IF-o transition biased according to the
“optimum protocol” (dNBD → β → γ → α) with interstage RMD relaxations (see Figs. 4 and
S9).

initial runtime stage work total work
index conformation protocol (ns) (kcal/mol) (kcal/mol)

33∗ 2 dNBD → 41Å 40 24 24

193 33 dNBDat41Å 20 - -

194 193 β → 9◦, dNBDat41Å 40 22 47

195 194 βat9◦, dNBDat41Å 20 - -

196 195 γ → 75◦, βat9◦, dNBDat41Å 40 15 62

197 196 γat75◦, βat9◦, dNBDat41Å 20 - -
198 197 α→ 47◦, γat75◦, βat9◦ 40 15 77
199 198 αat47◦, γat75◦, βat9◦ 20 - -

∗This simulation was also listed in Table S2.

Table S5. List of the biased simulations which explore the (α, β) and the (α, γ) spaces without
assuming discrete stages (discussed ∗ in Fig. S8).

initial runtime stage work total work
index conformation protocol (ns) (kcal/mol) (kcal/mol)

200,201 22,22 β → 9◦, γat75◦ 10,10 84,94 404,414
202,203 200,201 α→ 47◦, βat9◦, γat75◦ 10,10 65,61 469,475
204,205 22,22 β → 14◦, γat75◦ 5,5 29,34 349,354
206,207 204,205 α→ 16◦, β → 9◦, γat75◦ 10,10 172,183 521,537
208,209 206,207 α→ 47◦, γat75◦ 5,5 37,52 558,589
210,211 22,22 β → 15◦, γat75◦ 10,10 21,32 341,352
212,213 210,211 α→ 47◦, γat75◦ 10,10 179,165 520,517
214,215 22,22 α→ 47◦, β → 9◦, γat75◦ 20,20 361,382 682,701
216,217 22,22 α→ 47◦, γat75◦ 10,10 311,334 631,654
218,219 216,217 β → 9◦, γat75◦ 10,10 254,286 885,940

220,221 97,97 γ → 75◦, βat9◦, dNBDat41Å 10,10 86,92 316,322
222,223 220,221 α→ 47◦, βat9◦ 10,10 63,82 379,404

224,225 97,97 γ → 60◦, βat9◦, dNBDat41Å 5,5 33,37 263,267
226,227 224,225 α→ 47◦, βat9◦ 15,15 306,330 569,597
228,229 97,97 α→ 47◦, βat9◦ 20,20 367,433 597,663
230,231 97,97 α→ 47◦, γ → 75◦, βat9◦ 20,20 474,520 704,750

∗Figure S8A,B: Simulations 200 and 202 (black), Simulations 204, 206, and 208 (blue), Simulations 210 and 212 (green), Simulation 214 (orange),
and Simulations 216 and 218 (red). Figure S8C,D: Simulations 220 and 222 (black), Simulations 224 and 226 (blue), Simulation 228 (orange),
Simulation 229 (red), and Simulation 230 (green).
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Table S6. List of the biased simulations which examine the role of the NBD twist ( i.e., change in γ) in other NBD and
TMD conformational changes associated with OF →IF transition (discussed ∗ in Fig. S7).

initial runtime stage work total work
index conformation protocol (ns) (kcal/mol) (kcal/mol)

232 89 γ → 65◦, βat9◦ 20 198 302

233 90 γ → 75◦, dNBD → 41Å, βat9◦ 20 180 306
234,235,236,237,238 94,134,164,232,233 βat9◦ 10,10,10,10,10 - -

239 34 γ → 75◦, β → 9◦, dNBDat41Å 20 176 208

240 34 γ → 75◦, β → 20◦, dNBDat41Å 20 122 154

241 240 β → 9◦, γat75◦, dNBDat41Å 20 29 183

242,243,244,245,246 64,119,174,239,240 dNBDat41Å 10,10,10,10,10 - -

∗Figure S7A: Simulations 94 and 234 (red), Simulations 134 and 235 (blue), Simulations 164 and 236 (magenta), Simulations 232 and 237 (orange), and Simulations 233
and 238 (green). Figure S7B: Simulations 64 and 242 (orange), Simulations 119 and 243 (red), Simulations 174 and 244 (magenta), Simulations 239 and 245 (green), and
Simulations 240, 241, and 246 (blue).

Table S7. List of the umbrella potentials in the BEUS simulations. The initial conformations were selected from Table S4:
Simulation 198. The simulations were carried out for 24 ns (for each replica).

index 1 2 3 4 5 6 7 8 9 10 11
umbrella center (degrees)∗ 13.4 14.9 16.7 18.7 20.0 21.2 23.1 25.4 26.6 28.4 31.0

harmonic constant (kcal/mol) 10000 10000 5000 5000 10000 8000 4000 2500 2500 2500 2500

exchange rate (percentage)† 26 25 31 22 20 20 20 35 35 30 28
index 12 13 14 15 16 17 18 19 20 21 22

umbrella center (degrees)∗ 32.5 34.1 36.6 39.0 40.1 41.6 42.7 44.1 46.3 47.9 48.7
harmonic constant (kcal/mol) 5000 5000 2500 2500 5000 5000 5000 5000 5000 7500 10000

exchange rate (percentage)† 24 22 31 33 26 32 32 25 23 30 -

∗The centers are projected onto theα space. The actual centers of the biasing potentials are in the(qcis
α,i, qtrans

α,i ) space (see Sampling Protocol for Free Energy
Calculations).
†The reported exchnage rate for each umbrella is with its following umbrella.
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Supplementary Movie S1. IF↔OF conformational transition of apoMsbA: The OF→IF transition was induced using the optimized protocol (dNBD → β →
γ → α). The backward process was not simulated (although shown here by reversing the movie). The total simulation time was 220 ns including four 40-ns “transition"
stages (using nonequilibrium driven MD) and three 20-ns interstage “relaxation" simulations (using restrained MD). The NBD/TMD conformational changes associated
with each transition stage are given.

S25


