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Abstract: An extension of Kohonen’s self-organizing mapping
algorithm together with an error-correction rule of Widrow-Hoff-
type is applied to develop an unsupervised learning scheme for
the visuo-motor-coordination of a simulated robot arm. Using
input signals from a pair of cameras, the “closed” robot arm
system is able to reduce its positioning error to about 0.3% of
the linear dimensions of its work space. This is achieved by
choosing the connectivity of a 3D-lattice between the units of
the neural net.
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1. The model

Control of their limbs is one of the oldest tasks biological or-
ganisms had to solve in order to survive successfully. Therefore
we have good reason to assume that much will be gained by elu-
cidating the principles of biological motor control systems, which
outperform todays robot control algorithms still by far (Arbib
1981). Only recently, topology conserving maps have been rec-
ognized as important for the generation of output for motor con-
trol (Sparks and Nelson 1987) and theoretical approaches using
topology conserving maps for robot control have been proposed
(Ritter and Schulten 1986, 1987; Ritter, Martinetz, Schulten
1988; Grossberg and Kuperstein 1986; Kuperstein 1987, 1988).

Our approach is based on an extension of Kohonen’s self-
organizing mapping algorithm (Kohonen 1982a-c) suggested ear-
lier by two of the authors (Ritter and Schulten 1986, 1987) and
an error-correction rule of Widrow-Hoff-type (Widrow and Hoff
1960), which is capable of learning a mapping between a (sen-
sory) input space and a (motor) output space by establishing
a topology-conserving map on an array of neuronal units. The
map is learnt from a sequence of random movements of the arm,
which are observed by cameras and used to gradually improve
the map. The topology-conserving map allows neighboring units
to cooperate during learning, which greatly contributes to the
efficiency and robustness of the algorithm. To maximally ex-
ploit this feature, we choose a network topology which mimics
the topology of the space of relevant input signals as closely as
possible and therefore is three-dimensional (Ritter, Martinetz,
Schulten 1988).
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Figure 1 shows the simulated three joint robot arm controlled
by a neural network, which receives its input from a pair of cam-
eras observing the arm. The task consists of learning to position
the end effector (manipulator) of the arm at a specified object
location within the work space in front of the robot arm, i.e.
to learn the kinematic visuo-motor-coordination between cam-
era output and desired end effector location. An essential aspect
is the “closedness” of the whole system, observing its own re-
actions and learning from them. As a consequence, the whole
“interfacing” to the outside world (output signals to joint mo-
tors and input signals from cameras) can be left to the adaptive
capabilities of the internal map.

2. The mapping algorithm

Each target object to be grasped by the manipulator of the
robot arm induces an intensity distribution on the retinas of
camera 1 and camera 2. We describe this distribution by a vector
Vo1 (and vyg for camera 2), in which the element v,; denotes
the intensity at pixel element a of the CCD-module of camera 1.
Va1 and v49 yield the information for two filters, which have to
extract the location of the object within the three-dimensional
work space. For our purpose, because we want to investigate
mainly the aspects of motorcontrol our robot system has to deal
with, we use a very simple “filter”, which extracts the center of
the intensity distribution on each camera retina. The postions
of these centers are given by
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with @,; as location of pixel element o on camera retina i. S;
denotes the whole intensity camera i receives and normalizes the
vector v, This simple filtering is sufficient, if, for example, the
light intensity I(7 ) is extremely peaked at the object location
within the work space.

We group both two-dimensional retina locations #y and @y
to a four-dimensional vector u which then carries the whole in-
formation necessary to determine the position of the target. To
be able to position its manipulator correctly the robot system
has to know the transformation (u) from retina locations u to
angles § of the three joint arm. This transformation depends
on both, the geometry of the robot arm and of the positions of
both cameras relative to the work space and shall be learned
automatically by an unsupervised learning procedure.

The control law is adaptively represented by a “winner-take-
all”-network of formal neurons, receiving the sensory input u
in parallel. Each neuron r is “responsible” for some small sub-
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Fig.1 The simulated robot system. Two cameras observe the robot arm to the right of the work
space whose borders are indicated schematically by lines. Each camera provides the intensity
distribution v, on its “retina” to a filter, which extracts the retinal coordinates i of the object

the manipulator of the robot arm shall reach for.

The retinal coordinates of both cameras

are grouped to a four-dlmensxonal vector u = (i1, #z) which is fed as input to a 3D-lattice of
neurons. The output 05, A of the neuron with the array vector wg which matches the sensory
input u best is used to specify the desired joint angles of the robot arm.

set (its “receptive field”) Fy of the four-dimensional input space
U. Whenever u € Fy, neuron r determines the output. In
the nervous system, the output will be specified by the average
behaviour of a localized subpopulation comprising many simul-
taneously active neurons with overlapping receptive fields (Geor-
gopoulos et al. 1986). Their average behaviour is summarized
by a single formal neuron in our model and the subsets Fr are
non-overlapping. To specify for each neuron r the subset Fr, a
vector wy € U is associated with each neuron. The vectors wy
are chosen as pairs Wy = (Wp1, Wy2) of two component vectors
Wel, Wpg. Wri is a two-dimensional location on the “retina” of
camera i, 1 = 1,2. Therefore each neuron is “binocular” and
“looks” essentially at two small spots centered at Wy] and wyo
on the two camera “retinas”.

To specify the required output, a vector 6, together with a
3 X 4 matrix Ay are associated with each neuron in addition to
wr. The system produces the joint angles 9( ) = (81,09,03)
by using 0z and Ay to specify the first two terms of a Taylor
expansion, i.e.

8(u) = 05 + As(u — ws). 2

Here s is the neuron that was responsible for the received input.
Neuron s “wins” whenever u € Fs, where F consists of all points
of U, which are closer to ws than to any other wr, r #s. That
means

Fy={ueU||ws - ul| < |lwz —ul| Vr}. (3)

Initially, wr and (5 A); are assigned randomly, and the task
of the learning phase is to gradually adjust them in such a way,
that the required control law 9( ) is approximated as accurately
as possible. This is achieved in the following way.

3. The learning procedure

During the learning phase, the objects the robot arm shall
reach for are presented at different, randomly chosen locations
within the work space. For each sensory input u, induced by an
object, the network output specified by (4, A)s is used to effect
an actual position, which during learning will be subject to some
error. Using an error-correction rule of W1drow~Hoff type, this
error is used to obtain an improved estimate (6%, A*) of what
the correct output should have been (the details are given in
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the subsequent Sections). Then for all neurons the following
adaptation step is made

wieW =wold 4 ehpg(u — wild), (4)
(@A) =(F, )2 + IRl (0, A)F — (7,07, (3)

Here s = s(u), the neuron selected by input u, € and ¢ scale the
overall size and hrs and hlg determine the spatial variation of
the adaptation steps.

If hys = hlg = érs, the system is equivalent to a perceptron.
However, an essential ingredient here is a topological arrange-
ment of the neurons. Each neuron r is considered as occupying
a position r in a lattice, normally a two-dimensional sheet, and
the coefficients hrs, hhg are taken to be unimodal functions of
Gaussian shape, depending on the distance ||r — s|j and with a
maximum at r = s (to remove the ambiguity in the scaling of
¢ and €, we require the normalisation hss = hls = 1). Hence,
neighboring neurons in the sheet share adaptation steps with
the same input and get tuned to similar inputs u. Kohonen was
the first to recognize this property for the formation of abstract
sensory maps onto normally two-dimensional sheets analogous
to the sensory maps found in the brain (Kohonen 1986a-c). Our
algorithm extends his method by associating with each formal
neuron a second piece of data, the output quantity (6, A)r (Rit-
ter and Schulten 1986, 1987; Ritter, Martinetz, Schulten 1988).
Hence in this case, there are two topology conserving maps, a
map between the input space U and thg neural net, and a map
between the output space, defined by (6, A), and the net. Both
maps develop simultaneously and therefore get matched in such
a way as to approximate the desired input-putput-relationship
(u). The resulting representation is an adaptive discretization,
which adjusts its resolution dynamically to the probability den-
sity of the required control actions §(u) by allocating neurons
only to those regions of U actually required for representing the

-

control law 6(u).

For the neurons, we choose the topological arrangement of
a 3D-lattice of 7 x 12 x 4 units. The three-dimensionality is
not directly suggested from the situation in the cortex, where
the neurons are arranged in a more sheet-like fashion, but for
our technical application, however, the three-dimensional topol-
ogy offers an essential advantage: Both retinal coordinates are
combined to the input vector u = (d1,43) € U and define a
four-dimensional space. However, because the given target loca-
tions are all chosen from a three-dimensional work space, every
u produced by an object within this work space is an element of
a subspace of U, which is only three-dimensional as well. There-
fore, it is convenient to take as connectivity between the neurons
of the net the topology of a 3D-lattice, which reflects the dimen-
sionalty of the space occupied by the input signals. The location
of the relevant three-dimensional subspace in U is determined by
the positions of the cameras relativ to the work space and there-
fore initially unknown to the learning algorithm of the robot
system. To be able to learn the required task, the robot sys-
tem has to find this subspace by its own. This is done by the
Kohonen-algorithm. wy determines the receptive field, the part
of the four-dimensional space the neuron r has to look at. As
we know, the Kohonen-algorithm organizes the receptive fields
of the neural net by using the sensory inputs actually received
by the network. Hence, the Kohonen-algorithm has the feature
only to map these sensory inputs, in our case the target locations
u, which really occur during the learning phase. That means, at
the end the neurons of our 3D-lattice are allocated only to these
inputs belonging to the relevant subspace of U.

4. The error-correction rule

In the absence of any further information, starting values for
wy and 5,-, A may be chosen randomly. It is the task of the
learning algorithm to adjust these to their correct final values.
Each learning step involves execution of a trial movement of the
end effector to some randomly designated target location. The
camera output u for this target location selects a neuron s “look-
ing” at u, i.e. u € Fs, for determining this movement. From the
actual outcome of the movement we derive an improved estimate
(6%, A*) and perform an adjustment according to (4) and (5). To
obtain 0% and A*, the following strategy is used (Ritter, Mar-
tinetz, Schulten 1988). First the array generates motor output
for a “gross movement”, which results from setting the joint an-
gles to the values 9; associated with the selected neuron. This
brings the end effector to a location in the vicinity of the desired
target point. The retinal coordinates of the end effector after
this gross movement are denoted by v;. The gross movement is
followed by a “fine movement” by switching on the linear cor-
rection term in (2). Denoting the resulting retinal coordinates
of the end effector by vy, we take as improved estimates §*, A*

g* = §s+As(u_Vf)s (6)
A = Ag+ Ag(u— ws — vy +vi)(v = vi)Tlivy = vil 72(7)

The first equation can be recognized as a linear error correction
rule for the discretization values fs. The motivation for the
second equation is more obvious, if it is written as

A* = A+ (AF - AsAu)AvT||Av|| 2, (8)

where Av = vy —v; and A = AlTUe Ay are the changes in the
retinal coordinates of the end effector and the joint angles during
the fine movement phase. As these are related by the matrix
Alr¥e 1o which Ag shall converge, (8) is seen to be equivalent to

A* = Ag+ (A — A )AvAVT||Av]| 2, (9)
i.e. a linear error correction rule for Ag.

5. The simulation results

In the following simulation we chose target locations from
the work space, which is indicated by lines in Fig.1. The size
of the work space is 0.7 x 0.4 x 0.2 units and the robot arm
segments, beginning at the base, have lengths of 0.5, 0.4 and 0.4
units respectively. Function hys was taken to be the Gaussian

hes = exp(~|Ir — s|[*/20°(2)) (10)

and AL, likewise. Parameters ¢, ¢’ and the widths o, ¢/ all had the
same time dependence p(t) = pi(pf/pi)t/tm’ with ¢ as the num-
ber of the already performed learning steps and tmaz = 30000.
The values were chosen as follows: ¢; = 1, e = 0.005, ¢ =1,
e’f = 0.7, 0; = 2.5, oy = 0.1, 0} = 1.5 und a'f = 0.05. Fig-
ure 2 and figure 3 show the results of the simulation from the
view of camera 2. Figure 2 shows the state of the mapping
r — wy relevant to camera 2 initially, after 6000 and after
30000 learning steps respectively. Each node r of the lattice
is mapped to a location Wyg in the image plane of camera 2.
Values associated with lattice neighbors are connected by lines
to visualize the lattice topology. Initially the vectors wy; and
Wyg were distributed randomly in the image plane of their cam-
era. This provided a homogenous distribution of the values wy
over the four-dimensional input space and the corresponding im-
age of the lattice is highly irregular (left diagram). After only
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Fig.2 The retinal locations wyz the neu-
rons get tuned to from the view of camera 2.
The robot arm and the work space are indi-
cated schematically by lines. The leftmost
picture shows the initial state after chosing
w; randomly. At the rightmost picture at
the top we see the state after 6000 learn-
ing steps, and the third picture shows the
locations the elements of the 3D-lattice are
assigned to after 30000 iterations.

6000 learning steps the initial distribution has retracted to the
relevant three-dimensional subspace corresponding to the work
space (top right). Finally (bottom right) a very regular distribu-
tion of the nodes has emerged, indicating a good representation
of the work space by the discretization points wg.

The leftmost pictures of Fig.3 show the mismatches between
intended target positions and actually achieved end effector lo-
cations which occur for the subset of visual inputs u = wy. Each
target position is indicated by a cross mark and the associated
positioning error of the end effector by an appended line seg-
ment. The initial values of 6 were chosen randomly (with the
only restriction that the resulting end effector positions should
lie in the space in front of the robot) and consequently the errors
are very large for the initial state (topmost left). However, after
6000 learning steps all errors have markedly decreased (center),
until finally (30000 steps, bottom) mismatches are no longer
visible.

0

As the 3 x 4 Jacobians Ay cannot easily be visualized di-
rectly, we instead show for each location v; the reaction of the
end effector to three required test movements. These test move-
ments are of equal length and directed parallel to the borders of
the work space. If Ay is correct, the end effector will trace out
little three-legged patterns, testing Ar along the three orthog-
onal space directions. The gradual convergence of these three
test movements, as seen from camera 2, are shown in the right-
most pictures. The initial Jacobians were chosen by assigning a
random value from the interval [—20, 20] to each element of Ar.
Therefore, the initial test movements are very poor. However,
after 6000 iterations the test movements are seen to be already
much better, and after 30 000 learning steps, they are traced out
very accurately.

In Fig.4 we have plotted the average positioning error versus
the number of learning steps. The error decreases very rapidly
to a final value of 1.7- 1077 units after 30000 iterations.
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Fig.3 The performence of the output at the start, after 6000 and after 30000 trial movements.

The leftmost pictures show the end effector locations v; (cross marks) resulting from visual input
u = w; (i.e joint angles are 0;), together with their deviation (appended line) from the target

locations associated with fy. The rightmost pictures visualize Ay by showing the reaction of the
end effector to small test movements parallel to the borders of the work space.

1I-355



05 Avera'ge error b
04 | 4
0.3 4
0.2 4

0.1 .

Learning steps
0.0 L 1 . i
0. 5000. 10000. 165000. 20000. 25000. 30000.

Abb.4 Average positioning error versus the number of learning steps.
The error decreases rapidly to a final value of 1.7-10~3 units after 30000
learning steps.

6. Conclusion

We have shown that an extension of Kohonen’s algorithm
for the formation of topologically correct feature maps together
with an error-correction rule of Widrow-Hoff-type is able to learn
the control of robot arm movements by using only the input
signals of two cameras. The basic idea is to use an input and
an output map evolving simultaneously on the same sheet of
neurons, thereby automatically matching corresponding input-
output pairs in a topology-preserving fashion. This approach
allows robust and flexible learning of continous input-output-
relations from a sequence of examples. We applied our method to
learn the required transformations for visuo-motor-coordination
of a robot arm. For low dimensional spaces, the method may
offer an interesting alternative to backpropagation (Rumelhart
et al. 1986).
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