
S1

Supporting Information

Quantitative Characterization of Domain Motions in Molecular Machines

Suvrajit Maji
1
, Rezvan Shahoei

2,3.4
, Klaus Schulten

2,3,4*
 and Joachim Frank

1,5,6*

1
Department of Biochemistry and Molecular Biophysics, Columbia University

2
Department of Physics, University of Illinois at Urbana-Champaign

3
Center for the Physics of Living Cells, Department of Physics, University of Illinois at Urbana-

Champaign

4
Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-

Champaign

5
Howard Hughes Medical Institute, Columbia University

6
Department of Biological Sciences, Columbia University

*corresponding authors

*Joachim Frank (Tel: (212) 305 9510. Email: jf2192@cumc.columbia.edu)

*Klaus Schulten (Tel: 217-244-1604. Email: kschulte@ks.uiuc.edu)

mailto:jf2192@cumc.columbia.edu
mailto:kschulte@ks.uiuc.edu

S2

Text S1. Volume Segmentation

Distance Transform. The Distance Transform
1-6

 of a volumetric image (or density map) is

defined as the distance of every voxel 𝑋 from its nearest non-zero valued voxel, and is given by

𝐷𝑇(𝑋) = min { 𝑑𝑝(𝑋, 𝑌) | 𝑌 ∈ 𝑂, 𝑋 ∈ 𝑂 ∪ 𝑂𝑐}

 𝑆1.1

where 𝑑𝑝(𝑋, 𝑌) is a distance function (of order 𝑝 or p-norm as shown in equation 𝑆1.3), 𝑂 is the

set of object voxels, and 𝑂𝑐 is the set of background voxels. Alternatively, we can also define the

distance transform as the distance of each voxel from its nearest zero-valued voxel (in that case,

𝑌 ∈ 𝑂𝑐 in equation 𝑆1.1). Since we calculate the Distance Transform (Section 1.2 step (d)) on

the complementary binary map, ~𝑀𝑏𝑖𝑛, we will show how we define the object voxels for

~𝑀𝑏𝑖𝑛. Given the Gaussian filtered map 𝑀𝑓, the binary map 𝑀𝑏𝑖𝑛 is defined as:

𝑀𝑏𝑖𝑛(𝑘) = {
1 , 𝑀𝑓(𝑘) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 where k is the number of the voxel

 𝑆1.2

Then, for the complementary binary map, the values of voxels are the reverse of those in

𝑀𝑏𝑖𝑛(𝑘). So, the object voxels for ~𝑀𝑏𝑖𝑛 are defined as the non-zero voxels, i.e., voxels k for

which ~𝑀𝑏𝑖𝑛(𝑘) = 1.

S3

A commonly used distance function
7-8

 𝑑𝑝 for calculating the Distance Transform (equation 𝑆1.1)

is defined as

 𝑑𝑝(𝑋, 𝑌) = ‖𝑋 - 𝑌‖𝑙𝑝 = (∑|𝑥𝑘 − 𝑦𝑘|
𝑝

𝑛

𝑘=1

)

1/𝑝

 𝑆1.3

𝑤ℎ𝑒𝑟𝑒 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛), 𝑌 = (𝑦1, 𝑦2, … , 𝑦𝑛) such that 𝑋, 𝑌 𝜖 ℝ𝑛. Then 𝑋, 𝑌 and 𝑑𝑝 define the

metric space (ℝ𝒏, 𝑑𝑝) with 𝑑𝑝 as the distance metric. For 𝑝 = 1 we obtain the 𝑙1-norm, also

known as the Manhattan norm; for 𝑝 = 2 we obtain the 𝑙2-norm, or the Euclidean norm; and for

the case where 𝑝 → ∞ , we obtain the 𝑙∞-norm or maximum norm.

In our case the image dataset is three-dimensional (𝑛 = 3) and we have used the 𝑙1-norm as the

distance metric since this choice seemed to generate better segmentation for our 3D volume

images, compared to the typically used 𝑙2-norm

𝑑1(𝑋, 𝑌) = ∑|𝑥𝑘 − 𝑦𝑘|

3

𝑘=1

 .

 𝑆1.4

Segmentation Steps. The segmentation steps are summarized below.

a. Convert pdb structure into the corresponding 3D density map : 𝑀𝑣𝑜𝑙

b. Apply a Gaussian filter to 𝑀𝑣𝑜𝑙 to obtain a smooth map 𝑀𝑓

S4

c. Obtain a binary map: 𝑀𝑏𝑖𝑛(𝑘) = {
1 , 𝑀𝑓(𝑘) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 where k is the number of the voxel.

For simulated maps (derived directly from a pdb structure as in our case), with no

background noise, we use 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0, otherwise we can choose a higher value

for experimental density maps with noise. We can inspect the binary map for proper

thresholding (Figure 1A). Alternatively, we can also use an automatic thresholding

method
9
 based on density values.

d. Generate the Distance Transform of the complementary binary map: ~𝑀𝑏𝑖𝑛 → 𝐷𝑇

where the elements of 𝐷𝑇 are obtained from equation 1.1 using the distance function

𝑑 (equation 1.2).

e. Invert the Distance Transform matrix to convert the high-density regions (potential

object location) into catchment basins: 𝐷𝑇 ≔ −𝐷𝑇

f. Make the background or non-object voxels (~𝑜𝑏𝑗𝑒𝑐𝑡_𝑣𝑜𝑥𝑒𝑙𝑠) for 𝑀𝑏𝑖𝑛 in 𝐷𝑇 (from

step (e)) as – 𝑖𝑛𝑓 ; i.e., force the background to be its own catchment basin.

g. Apply the Watershed Algorithm (Section 1.1) on 𝐷𝑇 (from step (f)) to obtain

segments 𝑆𝑟.

h. Apply the region merging step as described above to merge over-segmented regions

𝑆𝑟 into 𝑆𝑚 (𝑚 < 𝑟). It may be possible to obtain a pre-specified number of segments

through iterative application of the merging criteria (maximum merging size and

merging level) but at present we have chosen to use the merging criteria already

tested on the first input dataset and were able to get the expected segmentation for the

subsequent datasets.

S5

i. Once we have the segmentation parameters from one input dataset, we perform the

segmentation (Figure 2) on the fly for multiple input pdb structures by using the

residue list from the first input pdb structure so as to obtain consistent segmented

domains on all pdb structures, assuming the subsequent structures are obtained from

the same source such as a simulation trajectory. However, if the structures originate

from mixed sources then we can use the initial segments derived from the first pdb

structure as masks for each of the subsequent structures, potentially with missing

residues, to extract the enclosed residues.

Text S2. Inertia Tensors. Tensors
10

 are compact mathematical constructs that describe the

linear mapping defined on a set of vectors or scalars. By definition, scalars are treated as zero-

order tensors, vectors are first-order tensors, and 2D vectors or matrices are second-order tensors.

In general, tensors have 𝑁𝑅 elements where N is the dimension and R is the rank of the tensor.

inertia tensors
10

 are second-order tensors and they are represented by 𝑁2 elements. For a 3D

object, the inertia tensor 𝑰 is a 3 × 3 matrix that describes the distribution of mass and, when the

object is in motion, it provides the relationship between the angular velocity (�⃗⃗�) and angular

momentum (�⃗�):

�⃗� = 𝑰�⃗⃗� 𝑆2.1

Suppose we have an arbitrary rigid body (Figure S2A) and let �⃗� = 𝑥 𝑖̂ + 𝑦 𝑗̂ + 𝑧 �̂� be the

position vector of an infinitesimal mass element 𝑑𝑚. Then the inertia tensor 𝑰 for the rigid body

is expressed as below:

S6

𝑰 = [

∫(𝑦2 + 𝑧2)𝑑𝑚 − ∫𝑥𝑦 𝑑𝑚 −∫𝑥𝑧 𝑑𝑚

−∫𝑥𝑦 𝑑𝑚 ∫(𝑧2 + 𝑥2)𝑑𝑚 −∫𝑦𝑧 𝑑𝑚

−∫𝑧𝑥 𝑑𝑚 −∫𝑦𝑧 𝑑𝑚 ∫(𝑥2 + 𝑦2)𝑑𝑚

] 𝑆2.2

or, element-wise, the tensor matrix can be represented as

𝑰 = [

𝐼𝑥𝑥 −𝐼𝑥𝑦 −𝐼𝑥𝑧

−𝐼𝑦𝑥 𝐼𝑦𝑦 −𝐼𝑦𝑧

−𝐼𝑧𝑥 −𝐼𝑧𝑦 𝐼𝑧𝑧

] 𝑆2.3

The diagonal terms of 𝑰 are called moments of inertia whereas the off-diagonal terms are

called products of inertia. In general, the angular momentum �⃗� and angular velocity �⃗⃗� are not in

the same direction (as we can see from equation 𝑆2.1), producing a torque on the rigid body, but

in a special case both the vectors are in the same direction, making the description of rotational

motion simpler. Such a rotation occurs around the axis known as the principal axis. Therefore,

the inertia tensor matrix is transformed into the principal axes form where all off-diagonal terms

are zero. The diagonal terms are called principal moments of inertia.

The principal axes of inertia tensor 𝑰 are coordinate axes such that 𝑰 is a diagonal matrix.

Thus determining these axes is equivalent to solving the eigenvalue problem:

𝑰�⃗⃗� = 𝜆�⃗⃗� 𝑆2.4

On solving equation 𝑆2.4, we obtain the three eigenvalues 𝜆 = {Ikk }𝑘=1…3 which are the

moments of inertia . Then we can obtain the diagonalized matrix 𝑰 as:

S7

𝑰 = [

𝐼11 0 0
0 𝐼22 0
0 0 𝐼33

] 𝑆2.5

Now we can use the eigenvalues {Ikk }𝑘=1…3 to compute the corresponding

eigenvectors { �̂�𝒌}𝑘=1…3 , which are the principal axes introduced above.

For a symmetric object, the axis of symmetry is always one of the three orthogonal

principal axes. For example if we have a circular disk (Figure S2B), then one of the axis of

symmetry (𝑧 − 𝑎𝑥𝑖𝑠) passing through the center is a principal axis. The other two orthogonal

axes are arbitrarily chosen on the 𝑥 − 𝑦 plane since two of the eigenvalues or principal moments

of inertia will have the same value, making the disk axisymmetric. For a perfect sphere, there is

an infinite number of ways to select the principal axes as there are infinite axes of symmetry

passing through the center of the sphere. For an arbitrarily shaped, asymmetric object, the three

principal axes define the three major direction of mass distribution.

There are a few additional aspects and features worth mentioning about the ordering of

the principal axes based on the eigenvalues or principal moment of inertia and the implication for

rotational motion. For a rigid body undergoing a rotational motion, the largest eigenvalue or the

largest principal moment (e.g. 𝐼11) corresponds to the rotation about the principal axis (axis 1)

perpendicular to the largest cross-section and the smallest moment (e.g. 𝐼33) is for the rotation

about the principal axis (axis 3) perpendicular to the smallest cross-section (axis 3). This can also

be interpreted in terms of the shape of the rigid body (Figure S2C). The mass is most elongated

along the principal axis (axis 3) about which the moment is the smallest (𝐼33) and least elongated

along the principal axis (axis 1) about which the moment is the largest (𝐼11). Also, in the context

of a rigid body motion and following the conservation of angular momentum, we can say that the

S8

angular velocity around axis 3 has the largest magnitude since the moment of inertia (𝐼33) is the

least, and the angular velocity around axis 1 has the least magnitude, since the moment of inertia

(𝐼11) is the largest.

Text S3. Definition and Properties of Quaternions. Quaternions
11

 have been widely applied in

computer vision and robotics
12

, animations
13

 and also in spacecraft orientation
14

. Quaternion

(Hamilton, 1843) is a 4-dimensional extension to complex numbers and can be thought of as a

vector with 4 components which can describe rotations and orientation in three dimensions.

Quaternions are generally represented as

�̊� = 𝑞𝑤 + 𝑞𝑥 𝑖 + 𝑞𝑦 𝑗 + 𝑞𝑧 𝑘 , 𝑤ℎ𝑒𝑟𝑒 𝑞𝑤, 𝑞𝑥, 𝑞𝑦, 𝑞𝑧 ∈ ℝ

Here 𝑖2 = 𝑗2 = 𝑘2 = −1 and 𝑖𝑗 = 𝑘 = −𝑗𝑖, 𝑗𝑘 = 𝑖 = −𝑘𝑗, 𝑘𝑖 = 𝑗 = −𝑖𝑘

 𝑆3.1

It can also be expressed as �̊� = (𝑞𝑤, 𝒒𝒗), where 𝑞𝑤 is the scalar part and 𝒒𝒗 = (𝑞𝑥, 𝑞𝑦, 𝑞𝑧) is the

vector part. . The norm of a quaternion is defined as

||�̊�|| = √𝑞̊𝑞̊∗ = √𝑞̊ ⋅ 𝑞̊ = √𝑞𝑤
2 + 𝑞𝑥

2 + 𝑞𝑦
2 + 𝑞𝑧

2 𝑆3.2

where 𝑞̊∗ is the conjugate of 𝑞̊ and defined as

𝑞̊∗ = 𝑞𝑤 − 𝑞𝑥 𝑖 − 𝑞𝑦 𝑗 − 𝑞𝑧 𝑘. 𝑆3.3

Note that 𝑞̊∗ can also be represented as 𝑞̊∗ = (𝑞𝑤, −𝒒𝒗).

S9

Rotation of any vector can be represented by a unit quaternion 𝑞̊, where 𝑞̊𝑞̊∗ = 1 and also

𝑞̊ ⋅ 𝑞̊ = 1 and such rotation preserves the length of the vector. Also �̊� and -�̊� gives the same

rotation. Except for this ambiguity, every rotation is uniquely represented by a unit quaternion,

which can also be described using an angle-axis representation as:

𝑞̊ = (cos (𝜃 2), sin(𝜃 2⁄) �̂�)⁄ 𝑆3.4

where 𝜃 is the angle of rotation and �̂� = 𝑒𝑥𝑖̂ + 𝑒𝑦 𝑗̂ + 𝑒𝑧�̂� is a unit vector representing the axis

of rotation. We can obtain 𝑆3.2 from 𝑆3.1 as :

𝜃 = 2 cos−1(𝑞𝑤), �̂� = (𝑒𝑥, 𝑒𝑦, 𝑒𝑧)
𝑇

=
1

√1−𝑞𝑤
2
 (𝑞𝑥, 𝑞𝑦, 𝑞𝑧)

𝑇
 𝑆3.3

We can now see that the unit quaternion has a geometrically intuitive representation for any 3D

rotation (Figure 4D).

The rotation of any vector can be represented by a unit quaternion �̊�. Let a 3D vector be defined

as 𝒓 = 𝑥 𝑖̂ + 𝑦 𝑗̂ + 𝑧 �̂�, where 𝑖̂, 𝑗̂, �̂� are the unit vectors in x,y,z directions. It can be represented

as a purely imaginary quaternion with a zero scalar part (𝑟𝑤 = 0) as

𝑟̊ = 0 + 𝑟𝑥 𝑖 + 𝑟𝑦 𝑗 + 𝑟𝑧 𝑘 𝑆3.4

The product of quaternions can also be expressed using the product of a 4 × 4 orthogonal matrix

and a 4 × 1 vector as:

S10

𝑟�̊�̊ = [

𝑟𝑤 −𝑟𝑥 −𝑟𝑦 −𝑟𝑧
𝑟𝑥 𝑟𝑤 −𝑟𝑧 𝑟𝑦
𝑟𝑦 𝑟𝑧 𝑟𝑤 −𝑟𝑥
𝑟𝑧 −𝑟𝑦 𝑟𝑥 𝑟𝑤

] 𝑞̊ = 𝑀𝑞̊ 𝑆3.5

𝑞̊𝑟̊ = [

𝑟𝑤 −𝑟𝑥 −𝑟𝑦 −𝑟𝑧
𝑟𝑥 𝑟𝑤 𝑟𝑧 −𝑟𝑦
𝑟𝑦 −𝑟𝑧 𝑟𝑤 𝑟𝑥
𝑟𝑧 𝑟𝑦 −𝑟𝑥 𝑟𝑤

] 𝑞̊ = �̅�𝑞 ̊ 𝑆3.6

𝑀 and �̅� are orthogonal and for a purely imaginary quaternion they are also skew-symmetric i.e.

we have 𝑀𝑇 = −𝑀, �̅�𝑇 = −�̅�.

If we apply a unit quaternion 𝑞̊ on a vector 𝑟̊, we obtain a rotated vector 𝑟̊′ given by

�̊�′ = �̊��̊��̊�∗

= (−�̊�)�̊�(−�̊�∗) 𝑆3.6

We can see that ‖𝑟̊′‖ = ‖𝑟̊‖ as ̊ 𝑞̊ ⋅ 𝑞̊ = 1; therefore rotation preserves the length of the vector 𝑟̊.

We should point out some features of rotation using unit quaternions compared to using

rotation matrices. We need fewer arithmetic operations to multiply two unit quaternions

compared to multiplying two rotation matrices, in order to obtain the same rotation. Moreover,

due to numerical precision issues, the length of the vector may change or the norm of unit

quaternion may not be exactly equal to one after the rotation operation. It is easier to normalize a

quaternion to obtain a unit quaternion than to obtain the nearest orthonormal matrix. However,

rotation matrices are recommended when a large number of points are involved in the rotation.

S11

Text S4. Closed-form solution to the least-squares problem of Absolute Orientation. The

original paper by Horn
15

 provides more details than what we are using, hence we will present

only the relevant mathematical background here for an easier understanding of the method.

 Horn’s method finds a closed-form solution to the least-square problem of absolute

orientation using unit quaternions, for three or more points, although, for matching two sets of

points when the data have been corrupted considerably, the algorithm proposed by Umeyama
16

may be more appropriate as the other method produces reflections instead of rotation in such

cases. Umeyama’s algorithm gives us rotation matrices and is similar in essence to Horn’s

method, except for a correction step for taking account of the reflection, and this could be

incorporated later in our toolset. At present, however, we use Horn’s method as it produces a

compact solution using unit quaternion and we are dealing with principal axes coordinates which

are consistent across a set of structures.

Let us assume that we have the transformation from coordinate system 1 to coordinate

system 2 and let the corresponding set of points be {𝒓𝟏,𝒊}𝑖=1… 𝑛 and {𝒓𝟐,𝒊}𝑖=1… 𝑛 , respectively. If

𝒓𝟏 and 𝒓𝟐 are vectors in the two systems with 𝑅(𝒓𝟏) as the vector obtained after rotating 𝒓𝟏 ,

then the transformation from one coordinate system to the other can be represented as

𝒓𝟐 = 𝑠 𝑅(𝒓𝟏) + 𝒓𝟎 𝑆4.1

Here 𝑠 is the scale factor and 𝒓𝟎 is the translation offset. As rotation preserves the length of a

vector we have

‖𝑅(𝒓𝟏)‖
2 = ‖𝒓𝟏‖

2 𝑆4.2

The residual error for the transformation of each point can be calculated as

S12

𝒆𝒊 = 𝒓𝟐,𝒊 − 𝑠 𝑅(𝒓𝟏,𝒊) − 𝒓𝟎 𝑆4.3

We want the calculations to be made relative to the centroid of the measured points for

simplification. The centroids in the systems 1 and 2 are given by

�̅�𝟏 =
1

𝑛
∑ 𝒓𝟏,𝒊

𝑛

𝑖=1

, �̅�𝟐 =
1

𝑛
∑ 𝒓𝟐,𝒊

𝑛

𝑖=1

 𝑆4.4

Let 𝒓′
𝟏,𝒊 and 𝒓′

𝟐,𝒊 be the centroid-subtracted coordinates in systems 1 and 2, given by:

𝒓′
𝟏,𝒊 = 𝒓𝟏,𝒊 − �̅�𝟏 , 𝒓

′
𝟐,𝒊 = 𝒓𝟐,𝒊 − �̅�𝟐 𝑆4.5

Then the modified translational offset 𝒓′𝟎 is given by

𝒓′𝟎 = 𝒓𝟎 − �̅�𝟐 + 𝒔𝑅(�̅�𝟏) 𝑆4.6

It follows from equations 𝑆4.4 and 𝑆4.5 that

∑ 𝒓′
𝟏,𝒊

𝑛

𝑖=1

= 0 , ∑ 𝒓′
𝟐,𝒊

𝑛

𝑖=1

= 0 , ∑𝑅(𝒓′
𝟏,𝒊)

𝑛

𝑖=1

= 0

 𝑆4.7

Then the residual error for each point can be written as

𝒆𝒊 = 𝒓′𝟐,𝒊 − 𝑠 𝑅(𝒓′
𝟏,𝒊) − 𝒓′𝟎 𝑆4.8

and the objective is to minimize the sum of the squared residual errors

S13

𝑬 = ∑‖𝒆𝒊‖
2

𝑛

𝑖=1

= ∑‖𝒓′
𝟐,𝒊 − 𝑠 𝑅(𝒓′

𝟏,𝒊) − 𝒓′
𝟎‖

2
𝑛

𝑖=1

 𝑆4.9

 = ∑‖𝒓′
𝟐,𝒊 − 𝑠 𝑅(𝒓′

𝟏,𝒊)‖
2

𝑛

𝑖=1

− 2 𝒓′
𝟎 ⋅ ∑(𝒓′

𝟐,𝒊 − 𝑠 𝑅(𝒓′
𝟏,𝒊))

𝑛

𝑖=1

+ 𝑛 ‖𝒓′
𝟎‖

2.

 𝑆4.10

Now from equation 𝑆4.7 it follows that the middle term is zero, so we have

𝑬 = ∑‖𝒓′
𝟐,𝒊 − 𝑠 𝑅(𝒓′

𝟏,𝒊)‖
2

𝑛

𝑖=1

+ 𝑛 ‖𝒓′
𝟎‖

2.

 𝑆4.11

First we aim to find 𝒓𝟎
′ such that it minimizes 𝑬. Since the first term is independent of

𝒓𝟎
′ and ‖𝒓𝟎

′‖ ≥ 0 . Therefore 𝑬 can only be minimized with respect to 𝒓′
𝟎 when 𝒓′

𝟎 = 0. So,

from equation 4.6 we have

 𝒓𝟎 − �̅�𝟐 + 𝒔𝑅(�̅�𝟏) = 0 or

𝒓𝟎 = �̅�𝟐 − 𝒔𝑅(�̅�𝟏) 𝑆4.12

Then from equation 4.10 we have

𝑬 = ∑(‖𝒓′
𝟐,𝒊‖

2
− 2𝑠 𝒓′

𝟐,𝒊 ⋅ 𝑅(𝒓′
𝟏,𝒊) + 𝑠2‖𝑅(𝒓′

𝟏,𝒊)‖
2
)

𝑛

𝑖=1

 .

 𝑆4.13

Noting the relation in equation 𝑆4.2, let us denote the terms in the equation 𝑆4.13 as

S14

𝑆1 = ∑‖𝒓′
𝟏,𝒊‖

2
𝑛

𝑖=1

 , 𝑆2 = ∑‖𝒓′
𝟐,𝒊‖

2
𝑛

𝑖=1

 𝑆4.14

𝐷𝑅 = ∑𝒓′
𝟐,𝒊 ⋅ 𝑅(𝒓′

𝟏,𝒊)

𝑛

𝑖=1

.

 𝑆4.15

Here we will consider only the relevant symmetric case from the Horn paper. The

transformations from coordinate system 1 to 2 and coordinate system 2 to 1 should be symmetric

in terms of the scale factor. The scale factor when we go from 𝒓′
𝟏,𝒊 → 𝒓′

𝟐,𝒊 using 𝑅(𝒓′
𝟏,𝒊) is

inverse of the scale factor when we go from 𝒓′
𝟐,𝒊 → 𝒓′

𝟏,𝒊 using 𝑅(𝒓′
𝟐,𝒊) . So, instead of the

expression in equation 𝑆4.13 we should use a symmetric expression for the residual error for

transformation; by dividing the right hand side by 𝑠 to get

𝑬 =
1

𝑠
𝑆2 − 2𝐷𝑅 + 𝑠 𝑆1 .

 𝑆4.16

We can complete the square in 𝑠 for 𝑬 as follows

𝑬 = (√𝑠 √𝑆1 −
1

√𝑠
√𝑆2)

2

+ 2(√𝑆1√𝑆2 − 𝐷𝑅) .

 𝑆4.17

We can see that 𝑬 can be minimized w.r.t 𝑠 if we have the first term as zero.

S15

⇒ 𝑠 = (
𝑆2

𝑆1
)
1/2

= (∑‖𝒓′
𝟐,𝒊‖

2
𝑛

𝑖=1

∑‖𝒓′
𝟏,𝒊‖

2
𝑛

𝑖=1

⁄)

1/2

.

 𝑆4.18

Therefore the optimal scale factor is essentially the ratio of the root mean square

deviation of the points in coordinate systems 2 and 1.

𝑬|𝑠=𝑠∗ = 2(√𝑆1𝑆2 − 𝐷𝑅) . 𝑆4.19

So far we have seen that getting the optimal translation offset and scale factor is

independent of the rotation of the points for the best transformation. Now to find the best rotation

we focus on the term 𝐷𝑅 describing the rotation. From equation 𝑆4.19 we can see that the

residual error is further minimized if we maximize the term 𝐷𝑅. The objective is to find a unit

quaternion 𝑞̊ that maximizes the sum of the dot products (𝐷𝑅) of corresponding coordinates in

system 2 with the rotated coordinates in system 1. Also the vectors can be represented using the

corresponding (purely imaginary) quaternion and the rotation 𝑅(𝒓′
𝟏,𝒊) can be expressed using a

unit quaternion products such as 𝑞̊ 𝑟̊′1,𝑖 𝑞̊∗. Therefore from equation we have:

𝐷𝑅 = ∑(𝑞̊ 𝑟̊′1,𝑖 𝑞̊∗
𝑛

𝑖=1

) ⋅ �̊�′
2,𝑖 ,

 𝑆4.20

where 𝑞̊ 𝑟′
1,𝑖 𝑞̊∗ are the rotated coordinates of system 1, with the unit quaternion 𝑞̊

causing the rotation. So the sum of dot product 𝐷𝑅 becomes larger as each vector in coordinate

system 2 gets closer to the corresponding rotated vector in the system 1 and we obtain a better

estimate of rotation.

S16

Also, we have (𝑞̊ 𝑝̊) ⋅ (𝑞̊ 𝑟̊) = 𝑝̊ ⋅ 𝑟 ̊ , since 𝑞̊ ⋅ 𝑞̊ = 1, and (𝑝̊ 𝑞̊) ⋅ 𝑟̊ = 𝑝̊ ⋅ (𝑟 ̊𝑞̊∗) then equation

𝑆4.20 becomes

𝐷𝑅 = ∑(𝑞̊ 𝑟̊′1,𝑖

𝑛

𝑖=1

) ⋅ (�̊�′
2,𝑖 𝑞̊) .

 𝑆4.21

Using equations 𝑆3.5 and 𝑆3.6 we can express the products in 𝑆4.21 as

𝑞̊𝑟̊′1,𝑖 = �̅�1𝑞̊ 𝑆4.22

𝑟̊′2,𝑖𝑞̊ = 𝑀2𝑞̊ 𝑆4.23

Using equations 𝑆4.22 and 𝑆4.23 in equation 4.21, the sum to be maximized is:

𝐷𝑅 = ∑(�̅�1,𝑖 �̊�) ⋅ (𝑀2,𝑖 𝑞̊)

𝑛

𝑖=1

= 𝑞̊𝑇 (∑�̅�1,𝑖
𝑇
𝑀2,𝑖

𝑛

𝑖=1

) �̊� [since matrix multiplication is associative]

= �̊�𝑇 (∑𝑁𝑖

𝑛

𝑖=1

) �̊�

= �̊�𝑇𝑁�̊�,

 𝑆4.24

where 𝑁𝑖 = �̅�1,𝑖
𝑇
𝑀2,𝑖 and 𝑁 = ∑ 𝑁𝑖

𝑛
𝑖=1 . The matrices 𝑁𝑖’s are symmetric and hence 𝑁 is

symmetric. It is shown in Horn’s paper that the unit quaternion which maximizes 𝐷𝑅 = �̊�𝑇𝑁�̊� is

S17

the eigenvector of the matrix 𝑁 corresponding to the largest positive eigenvalue and is unique if

the eigenvector is distinct.

Therefore, the remaining task is to perform the eigen-decomposition of 𝑁. To this end we first

compute the matrix 𝑀, whose elements are sums of products of coordinates measured in the

centroid-corrected system 1 and 2, and which is given by

𝑀 = ∑ 𝒓′
𝟏,𝒊 𝒓

′𝑻
𝟐,𝒊

𝑛

𝑖=1

 𝑆4.25

𝑀 = [

 𝑆𝑥𝑥 𝑆𝑥𝑦 𝑆𝑥𝑧

𝑆𝑦𝑥 𝑆𝑦𝑦 𝑆𝑦𝑧

𝑆𝑧𝑥 𝑆𝑧𝑦 𝑆𝑧𝑧

] 𝑆4.26

where 𝑺𝒙𝒙 = ∑ 𝒙′
𝟏,𝒊 . 𝒙

′
𝟐,𝒊

𝒏
𝒊=𝟏 and 𝑺𝒙𝒚 = ∑ 𝒙′

𝟏,𝒊 . 𝒚
′
𝟐,𝒊

𝒏
𝒊=𝟏 , and so on.

Next, using the elements of 𝑀, we can construct the 4 x 4, real and symmetric matrix 𝑁 as

shown below:

𝑁

=

[

(𝑆𝑥𝑥 + 𝑆𝑦𝑦 + 𝑆𝑧𝑧) 𝑆𝑦𝑧 − 𝑆𝑧𝑦 𝑆𝑧𝑥 − 𝑆𝑥𝑧 𝑆𝑥𝑦 − 𝑆𝑦𝑥

𝑆𝑦𝑧 − 𝑆𝑧𝑦 (𝑆𝑥𝑥 − 𝑆𝑦𝑦 − 𝑆𝑧𝑧) 𝑆𝑥𝑦 + 𝑆𝑦𝑥 𝑆𝑧𝑥 + 𝑆𝑥𝑧

𝑆𝑧𝑥 − 𝑆𝑥𝑧 𝑆𝑥𝑦 + 𝑆𝑦𝑥 (−𝑆𝑥𝑥 + 𝑆𝑦𝑦 − 𝑆𝑧𝑧) 𝑆𝑦𝑧 + 𝑆𝑧𝑦

𝑆𝑥𝑦 − 𝑆𝑦𝑥 𝑆𝑧𝑥 + 𝑆𝑥𝑧 𝑆𝑦𝑧 + 𝑆𝑧𝑦 (−𝑆𝑥𝑥 − 𝑆𝑦𝑦 + 𝑆𝑧𝑧)]

 𝑆4.27

S18

The final step is to perform the eigen-decomposition of matrix 𝑁 and compute the

eigenvector 𝒆𝑚𝑎𝑥 with the most positive eigenvalue, as discussed earlier. The unit quaternion 𝑞̊

in the direction of 𝒆𝑚𝑎𝑥 is the required solution to the absolute orientation problem.

Text S5. Decomposition of a Unit Quaternion. To determine the decomposition
17-19

 of a

unit quaternion, we followed the algorithm (Section S5.1) described in the paper
19

 on swing-

twist decomposition of a spinor and derived an equivalent approach by replacing the spinor with

a unit quaternion, since a spinor in three dimensions is a quaternion. A spinor is represented as

�̊� = 𝑎 + 𝑏𝒆𝟏𝟐 + 𝑐𝒆𝟐𝟑 + 𝑑𝒆𝟑𝟏, where the unit bivectors 𝒆𝟐𝟑, 𝒆𝟑𝟏, 𝒆𝟏𝟐 are respectively equal to

𝑖, 𝑗, 𝑘 for quaternions (𝑆3.1). Using the steps in the section below we can decompose the unit

quaternion �̊� into its twist (𝑞̊
𝑡
) and swing (𝑞̊

𝑠
) components such that �̊� = 𝑞̊

𝑠
𝑞̊

𝑡
. This particular

approach is called as swing after twist decomposition.

S5.1. Given a unit quaternion �̊� = (𝑞𝑤, 𝑞𝑥 , 𝑞𝑦, 𝑞𝑧) and a non-zero vector 𝑣 = (𝑣𝑥, 𝑣𝑦, 𝑣𝑧)
𝑇

we can determine the decomposition of �̊� = 𝑞̊
𝑠
𝑞̊

𝑡
 using the following steps:

a. 𝑢 ← 𝑣𝑥𝑞𝑥 + 𝑣𝑦𝑞𝑦 + 𝑣𝑧𝑞𝑧

b. 𝑛 ← 𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2

c. 𝑚 ← 𝑞𝑤 𝑛

d. 𝑙 ← √𝑚2 + 𝑢2𝑛

S19

e. �̊�𝑡 ←
𝑚

𝑙
+

𝑣𝑥𝑢

𝑙
𝑖 +

𝑣𝑦𝑢

𝑙
𝑗 +

𝑣𝑧𝑢

𝑙
𝑘

f. 𝑞̊
𝑠
← �̊� 𝑞̊

𝑡
−1

We will illustrate how 𝑞̊
𝑡
, as determined above, is equivalent to a projection of �̊� onto 𝑣 and

determines the component of rotation around the given vector 𝑣 .

If we let 𝑟 𝑞 = (𝑞𝑥, 𝑞𝑦, 𝑞𝑧)
𝑇

 be the rotation axis component of �̊�, then we obtain the following terms

(Section S5.1 steps (a) - (d)) :

𝑢 = 𝑣𝑥𝑞𝑥 + 𝑣𝑦𝑞𝑦 + 𝑣𝑧𝑞𝑧 = 𝑟 𝑞 ⋅ �⃗�

𝑛 = 𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2 = ‖�⃗� ‖2

𝑚 = 𝑞𝑤 𝑛 = 𝑞𝑤 ‖�⃗� ‖2

𝑙 = √𝑚2 + 𝑢2𝑛 = 𝑛√𝑞𝑤
2 +

𝑢2

𝑛
= ‖�⃗� ‖2√𝑞𝑤

2 +
(𝑟 𝑞⋅�⃗�)

2

‖�⃗� ‖2 = ‖�⃗� ‖2√𝑞𝑤
2 + ‖𝑟 𝑞 ⋅ �̂� ‖

2
 , where 𝑣 =

 �⃗�

‖𝑣‖

is a unit vector along 𝑣 .

If we let 𝑓 = √𝑞𝑤
2 + ‖𝑟 𝑞 ⋅ �̂� ‖

2
 , then we obtain the following terms (Section S5.1 step (e)):

𝑚

𝑙
=

𝑞𝑤

𝑓
,

𝑣𝑥𝑢

𝑙
=

(𝑟
𝑞
⋅ �⃗�)

𝑓‖�⃗� ‖2
𝑣𝑥 ,

𝑣𝑦𝑢

𝑙
=

(𝑟
𝑞
⋅ �⃗�)

𝑓‖�⃗� ‖2
𝑣𝑦 ,

𝑣𝑧𝑢

𝑙
=

(𝑟
𝑞
⋅ �⃗�)

𝑓‖�⃗� ‖2
𝑣𝑧

 𝑆5.1

Combining the last three expressions (𝑆5.1), we obtain the vector part of 𝑞̊
𝑡
as:

S20

𝑞̊
𝑡𝑣

=
(𝑟

𝑞
⋅ �⃗�)

𝑓‖�⃗� ‖2
 (𝑣𝑥 ,𝑣𝑦 , 𝑣𝑧) =

1

𝑓

(𝑟
𝑞
⋅ �⃗�)�⃗�

‖�⃗� ‖2
=

1

𝑓
 �⃗� 𝑟𝑞𝑣

 𝑆5.2

 where �⃗� 𝑟𝑞𝑣 =
(𝑟 𝑞⋅�⃗�)�⃗�

‖�⃗� ‖2
= (𝑟 𝑞 ⋅ �̂�) �̂� is the projection of 𝑟 𝑞 on 𝑣 . Using equations 𝑆5.1 and 5.2 , we

obtain :

�̊�𝑡 = (
𝑞𝑤

𝑓
,
1

𝑓
�⃗� 𝑟𝑞𝑣) =

1

𝑓
(𝑞𝑤 , �⃗� 𝑟𝑞𝑣)

=
1

√𝑞𝑤
2 + ‖𝑟 𝑞 ⋅ �̂� ‖

2

(𝑞𝑤, (𝑟 𝑞 ⋅ �̂�) �̂�)

 𝑆5.3

It is easy to verify that ‖𝑞̊
𝑡
‖ = 1.

Also, when we choose 𝑣 = 𝑟 𝑞, it is straightforward to verify that we recover the original quaternion.

(𝑟 𝑞 ⋅ �̂�) �̂� = (𝑟 𝑞 ⋅
𝑟 𝑞

‖𝑟 𝑞‖
)

𝑟 𝑞

‖𝑟 𝑞‖
= 𝑟 𝑞

 𝑆5.4

𝑞𝑤
2 + ‖𝑟 𝑞 ⋅ �̂� ‖

2
= 𝑞𝑤

2 + ‖𝑟 𝑞 ‖
2

= ‖�̊� ‖2 = 1 𝑆5.5

and using equations 𝑆5.4 and 𝑆5.5 in equation 𝑆5.3 we obtain �̊�𝑡 = (𝑞𝑤, 𝑟 𝑞) = �̊�.

S21

Therefore, 𝑞̊
𝑡
 is a unit quaternion representing the component of rotation around the given vector

𝑣 . The component 𝑞̊
𝑠
 (Section S5.1, step (f)) describes the rotation around a vector �⃗� 𝑝 which is

orthogonal to 𝑣 .

We can either use this direct geometrical approach to construct the twist component

(𝑆5.3) of the unit quaternion �̊� or use the equivalent algorithmic approach as described above

(Section S5.1).

Text S6. Conventional Rotation Angle Calculation. (a). We obtain some of the conventional

angle information such as ‘tilt’ angle 𝜃 (polar angle) and ‘swivel’ angle 𝛹 (azimuthal), in the

spherical coordinate system (𝑟, 𝜃,𝛹) directly from the principal axes coordinates:

𝑥 = 𝑟𝑠𝑖𝑛(𝜃)𝑐𝑜𝑠(𝛹), 𝑦 = 𝑟𝑠𝑖𝑛(𝜃)𝑠𝑖𝑛(𝛹), 𝑧 = 𝑟𝑐𝑜𝑠(𝜃) 𝑆6.1

𝜃 = cos−1 (
𝑧

𝑟
) , 𝛹 = tan−1 (

𝑦

𝑥
) S6.2

(b). We also measure one set of three Euler rotation angles around the three principal axes by

calculating the projections of the three orthogonal axes against a reference coordinate system.

We calculate these angles when the reference system is fixed and aligned to the XYZ Cartesian

coordinate system. Then we can get a measure of the motion by calculating the differences

between the angles in the different states.

S22

Text S7. Full Method Workflow. Here we briefly summarize the overall workflow using the

different sections of the tool described in more details in their corresponding sections 1-3. The

steps are as follows:

a. Segment the input pdb structure into relevant domains as discussed in Section 1, following the

segmentation steps in Section 1.2

b. Select the domains of interest, reference domain (𝑅𝑇) and target domain (𝐷𝑚𝑇) (Figure 4A).

c. Compute the inertia tensor and principal axes for the reference domain as discussed in Section

2.1

d. Align the principal axes of the reference domain with the Cartesian coordinate system XYZ.

Details of the alignment is provided through an example in Section 2.2. The alignment ensures

that the characterization of the motion of any domain is performed relative to a fixed coordinate

frame, in this case, the principal axes of the reference domain.

e. Next, compute the inertia tensor and principal axes for the target domain.

f. Repeat the steps (a) – (e) for subsequent pdb structures. We now have the principal axes of the

target domain for multiple input structures (different states).

g. Finally, following the steps in Section 3.1, solve the least square absolute orientation problem

for the pair of coordinate axes for the target domain transforming from state A to B. The solution

of this coordinate axes transformation is given by a unit quaternion. The axis and angle of

rotation for the target domain, undergoing the transformation, can now be derived from the unit

quaternion.

S23

Text S8. Implementation Details and Limitations. At present VMD has limited capability of

processing volume density maps, with few available packages such as volutil and volmap which

lack the tool for segmentation. For this reason we implemented the segmentation method using

Matlab (The MathWorks Inc.) along with DIPimage
20

 (version 2.7), a Matlab toolbox for

scientific image processing. We then transformed the complete set of Matlab codes into a

standalone executable program, which can be run from a command line in VMD using a Tcl

wrapper script. The limitation of the executable program for segmentation is that the output,

which in our case are segmented density map files, can only be analyzed using the Tcl script

through an I/O approach; i.e., first saving the segmented map files to the disk and then loading

the maps onto the VMD platform for further analysis. As an alternative, one can implement the

same volume segmentation method in Python using the image processing library in Python and

execute it on VMD.

We used the program pdb2mrc
21

 for generating a volume density map (mrc) from the pdb

coordinates of a structure. We used a resolution of 1.7 Å, and a pixel size of 1.25 Å for

generating the map with a size of 240 × 240 × 240. In order to prevent over-segmentation, we

performed a Gaussian smoothing of the density map prior to the application of the Watershed

and region merging algorithms. We used a Gaussian filter of size 𝑆𝑍 = [1.49 1.49 1.49], with a

standard deviation 𝜎 = (𝑆𝑍/2) /2.3548. The resolution at which the map is generated from the

pdb model and the Gaussian smoothing filter size can be adjusted as needed for obtaining a

reasonable segmentation. An isovalue threshold of 0.05 was used here for extracting the residues

contained within the individual segmented volumes.

The steps for computing the inertia tensor and principal axes for each domain, as

discussed in Section 2, is implemented in Tcl using the Orient package
22

 for VMD and the Hume

S24

Linear Algebra Tcl package la1.0. We have modified and customized the Orient package for our

specific requirements. We also implemented the absolute orientation with unit quaternion

method in Tcl. In the future we expect that VMD would have an inbuilt tool for volume

segmentation or at least the capability of writing segmentation code directly in VMD such that

the whole toolset described here can be seamlessly integrated into one single package which

would greatly improve the input/output capability and analysis on the same platform.

Text S9. Illustration of Absolute Orientation with Example data. We demonstrate the

working principle of the Absolute Orientation algorithm (Section 3.1) using an example case of

transformation between coordinate axes system 1 and 2. Let the coordinate system 1 (matrix

columns as the axes), such as the tensor 𝐷𝑚𝑇 (Figures 4A & 4B) be

 𝑃𝐴1 = [
1 0 0
0 1 0
0 0 1

]

Then we rotate the axes system 𝑃𝐴1 by an angle 𝜃𝑢,1→2 = 36.0 around the axis �̂� =
1

√6
[1, 1, 2]

passing through the point 𝑥0 = (0, 0, 0)𝑇 (Figure 4C).

Then the transformed coordinate system 2 like the tensor 𝐷𝑚𝑇
′ (Figures 4A & 4B) is

 𝑃𝐴2 = [
0.8408 −0.4481 0.3036
0.5118 0.8408 −0.1763

−0.1763 0.3036 0.9363
]

Therefore we have to solve the absolute orientation problem for the transformation 𝑃𝐴1 → 𝑃𝐴2.

From step (c) in section 3.1 we obtain the matrix

S25

 𝑀 = [
0.6087 0.1197 −0.5309

−0.6802 0.4487 −0.0509
0.0715 −0.5684 0.5818

]

and from step (e) in section 3.1 we obtain the matrix

𝑁 = [

1.6393 0.5175 0.6024 0.7999
0.5175 −0.4218 −0.5606 −0.4594
0.6024 −0.5606 −0.7418 −0.6193
0.7999 −0.4594 −0.6193 −0.4757

]

The unit quaternion obtained after the eigen-decomposition of 𝑁 is given by

�̊� = (0.9511, 0.1262, 0.1262, 0.2523)𝑇

When �̊� is expressed in the angle-axis form (Figure 4D), we get the corresponding axis of

rotation as �̂� = (0.408248, 0.408248 , 0.816497)𝑇 and the angle of rotation around the

axis �̂� is 𝜃 = 36.0, which is exactly the same as �̂� =
1

√6
[1, 1, 2] and 𝜃𝑢,1→2 , respectively. We

should note that there is no change in the scale factor 𝑠 for the transformation, so 𝑠 = 1, and

there is no translation, so the offset 𝑟0 = 0.

Text S10. Estimating the Error in Segmentation and the Rotation Angle Calculations.

We evaluated the segmentation quality by using a segmented reference and also estimated the

error in the rotation angle for the SSU domain. We have used precision and recall measures
23

 as

S26

defined below to measure the segmentation error. For a segment 𝑆 and given the corresponding

reference segment 𝑅, we can calculate the 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃𝑐) and 𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅𝑐) as:

𝑃𝑐 =
|𝑅 ∩ 𝑆|

|𝑆|
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑃

 𝑆10.1

 𝑅𝑐 =
|𝑅 ∩ 𝑆|

|𝑅|
=

𝑇𝑃

𝑇𝑃 + 𝐹𝑁

 𝑆10.2

where TP, FP and FN denote true positive (correct identification), false positive (incorrect identification)

and false negative (incorrect rejection) instances respectively.

For a series of segments {𝑆𝑖}𝑖=1… 𝑛 , given the reference segments {𝑅𝑖}𝑖=1… 𝑚 , we can calculate

the 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃𝑐) and 𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅𝑐) as:

𝑃𝑐 = ∑|𝑅𝑖𝑚 ∩ 𝑆𝑖|

𝑛

𝑖=1

∑|𝑆𝑖|

𝑛

𝑖=1

⁄

 𝑆10.3

𝑅𝑐 = ∑|𝑅𝑖 ∩ 𝑆𝑖𝑚|

𝑚

𝑖=1

∑|𝑅𝑖|

𝑚

𝑖=1

⁄

 𝑆10.4

S27

where 𝑅𝑖𝑚 and 𝑆𝑖𝑚 are the segments with maximum overlap with the individual segments

{𝑆𝑖}𝑖=1… 𝑛 and {𝑅𝑖}𝑖=1… 𝑚, respectively. We can also calculate the −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 , which is the

weighted harmonic mean of the 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃𝑐) and 𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅𝑐) values, given by:

𝐹 =
1

𝛼
1
𝑃𝑐 + (1 − 𝛼)

1
𝑅𝑐

 𝑆10.5

Here, we have calculated all three measures based on the number of atoms in the segmented

domains relative to the atoms in the reference domains. The reference model for the ribosome

comprised the LSU with 221495 atoms, the SSU with 136903 atoms and a bound ligand as

third domain (red segment in Figures S3, S4, S5) with 12943 atoms. As mentioned earlier

(Results and Discussion section), we excluded the third domain from all structures for all

subsequent analysis. For calculating the 𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 (Table S3), we have used 𝛼 = 0.5.

We evaluated several instances of segmentation by varying the parameters (Text S8, Table S1)

and summarized the quality measures (Figure S6, Table S3). For each case (Table S1), we

calculated the SSU rotation from structure A to B and the error in SSU rotation angle (Table S1).

Since a reference segmentation for SSU body versus SSU head was not available, we have

reported (Figure 6C) the SSU Body and SSU Head rotation for all the cases. The detailed

rotation calculations with rotation axes and rotation angles for case 1 is presented in Table 1.

S28

Table S1. Comparison of SSU rotation for the various cases of segmentation (Table S3) and the

reference model with known LSU and SSU segmentation.

Case Voxel Size

(Å)

Effective

Resolution of

the Segmented

Map (Å)

Merge-

Level

Max

Merge

Size

 x,y,z

(Voxels)

𝜃𝑆𝑆𝑈

 (degree)

∆𝜃𝑆𝑆𝑈 =

𝜃𝑆𝑆𝑈(𝑅𝑒𝑓)

− 𝜃𝑆𝑆𝑈

0 (𝑅𝑒𝑓) − − − − 10.62 −

1 1.25 2.44 11 503 10.24

0.38

2 1.25 2.36 11 503 10.17 0.45

3 1.25 2.46 11 503 10.29 0.33

4 1.26 2.40 10 503 10.28 0.34

5 1.25 2.92 11 503 9.67 0.95

6 1.25 2.65 11 503 10.78 −0.16

7 1.25 2.60 11 503 9.91 0.71

8 1.25 2.62 11 503 11.50 −0.88

9 1.25 2.86 11 503 8.79 1.83

10 1.26 2.91 10 503 9.03 1.59

11 1.25 3.56 10 503 8.63 1.99

12 1.26 2.77 10 503 9.84 0.78

13 1.26 2.79 10 503 9.91 0.71

14 1.26 4.09 10 503 8.6 2.02

15 1.25 2.93 11 503 10.0 0.62

S29

Case Voxel

Size

(Å)

Effective

Resolution

of the

Segmented

Map (Å)

Merge-

Level

Max

Merge

Size

 x,y,z

(Voxels)

𝜃𝑏𝑜𝑑𝑦

(degree)

𝜃ℎ𝑒𝑎𝑑

(degree)

1 1.25 2.44 11 503 14.26 16.68

2 1.25 2.36 11 503 13.76 16.20

3 1.25 2.46 11 503 13.84 16.09

4 1.26 2.40 10 503 14.22 16.44

5 1.25 2.92 11 503 11.82 20.10

6 1.25 2.65 11 503 09.28 11.44

7 1.25 2.60 11 503 11.83 12.96

8 1.25 2.62 10 503 10.97 12.44

9 1.25 2.86 11 503 10.96 12.09

10 1.26 2.91 10 503 11.31 12.85

11 1.25 3.56 10 503 10.64 12.50

12 1.26 2.77 10 503 13.83 15.49

13 1.26 2.79 10 503 14.04 15.69

14 1.26 4.09 10 503 10.28 12.01

15 1.25 2.93 11 503 12.34 18.90

Table S2. SSU Body and SSU Head rotation angle estimates for the segmentation cases shown

in Table S1.

S30

Case Domain

Segmented

Atoms

(𝑆)

Correctly

Segmented

Atoms

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

(𝑃𝑐)

𝑅𝑒𝑐𝑎𝑙𝑙

(𝑅𝑐)

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒

(𝐹)

0

(𝑅𝑒𝑓)

LSU 221495 − − − −

SSU 136903 − − − −

All 358398 − − − −

1 LSU 220831 218129 0.9878 0.9848 0.9863

SSU 139844 135633 0.9699 0.9907 0.9802

All 360675 353762 0.9808 0.9871 0.9839

2 LSU 221034 218164 0.9870 0.9850 0.9860

SSU 139270 135193 0.9707 0.9875 0.9790

All 360304 353357 0.9807 0.9859 0.9833

3 LSU 221111 218517 0.9883 0.9866 0.9874

SSU 139189 135483 0.9734 0.9896 0.9814

All 360300 354000 0.9825 0.9877 0.9851

4 LSU 220664 218455 0.9900 0.9863 0.9881

SSU 139791 135931 0.9724 0.9929 0.9825

All 360455 354386 0.9832 0.9888 0.9860

5 LSU 217919 215260 0.9878 0.9719 0.9798

SSU 144375 135868 0.9411 0.9924 0.9661

All 362294 351128 0.9692 0.9797 0.9744

6 LSU 214594 213261 0.9938 0.9628 0.9781

SSU 147484 136188 0.9234 0.9948 0.9578

All 362078 349449 0.9651 0.9750 0.9701

7 LSU 217825 214896 0.9866 0.9702 0.9783

SSU 144777 135175 0.9337 0.9874 0.9598

All 362602 350071 0.9654 0.9768 0.9711

8 LSU 212687 211243 0.9932 0.9537 0.9731

SSU 149615 136135 0.9099 0.9944 0.9503

All 362302 347378 0.9588 0.9693 0.9640

9 LSU 229764 217859 0.9482 0.9836 0.9656

S31

SSU 132998 127287 0.9571 0.9298 0.9432

All 362762 345146 0.9514 0.9630 0.9572

10 LSU 229480 218054 0.9502 0.9845 0.9670

SSU 132914 127526 0.9595 0.9315 0.9453

All 362394 345580 0.9536 0.9642 0.9589

11 LSU 226685 216111 0.9533 0.9757 0.9644

SSU 136867 128258 0.9371 0.9369 0.9370

All 363552 344369 0.9472 0.9609 0.9540

12 LSU 219098 216628 0.9887 0.9780 0.9833

SSU 143468 135853 0.9469 0.9923 0.9691

All 362566 352481 0.9722 0.9835 0.9778

13 LSU 219411 216893 0.9885 0.9792 0.9839

SSU 142611 135635 0.9511 0.9907 0.9705

All 362022 352528 0.9738 0.9836 0.9787

14 LSU 226785 215625 0.9508 0.9735 0.9620

SSU 136880 127923 0.9346 0.9344 0.9345

All 363665 343548 0.9447 0.9586 0.9516

15 LSU 218936 216592 0.9893 0.9779 0.9835

SSU 143287 135906 0.9485 0.9927 0.9700

All 362223 352498 0.9732 0.9835 0.9783

Table S3. Evaluation of the segmentation quality for various cases with the parameters reported

in Tables S1, S2. The 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑅𝑒𝑐𝑎𝑙𝑙 and 𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 values for individual domains as

well as the overall structure, calculated based on the atoms in each of the segmented domains

relative to the reference domains (case 0) provides an estimate of the segmentation error.

S32

Segmentation Case Ranked by

SSU 𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒

Ranked by error in

SSU Rotation Angle

1 3 4

2 4 5

3 2 2

4 1 3

5 8 11

6 10 1

7 9 8

8 11 10

9 13 13

10 12 12

11 14 14

12 7 9

13 5 7

14 15 15

15 6 6

Table S4. Ranking of the Segmentation Cases based on the 𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 of SSU and error in

the SSU rotation angles. Case 6 has relatively high segmentation error as indicated by the

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 measure of SSU and case 8 has the lowest 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 measure for SSU segmentation.

Case 14 has the lowest SSU 𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟e.

S10.1. Sensitivity of the Rotation Measurements to Segmentation Errors. If we allow the

error cut-off for SSU rotation angle (Table S1, Figure 6B) to be ±1.0° instead of ±0.5° (Results

and Discussion) then this would include the segmentation cases 5, 7, 8, 12, 13, 15 (Table S1, S3,

S4) with much lower segmentation quality (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑅𝑒𝑐𝑎𝑙𝑙, 𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 0.90 −

0.97).

.

S33

Supporting Information Figures

Figure S1. Illustration of classical Watershed flooding algorithm for a 1D image. The idea

remains the same for a 2D image or 3D density map. ‘s’ denotes the flooding level or intensity

(density) (arbitrary values here). Colored regions are catchment basins and the vertical lines are

the Watershed lines demarcating the boundaries between the basins. The flooding starts from a

source at the catchment basin at the minimum intensity level for the and gradually fills up the

basins with increasing flooding levels until it reaches the maximum level. In the process of

flooding, the Watershed is marked between two neighboring basin at the moment when the flood

water starts to spill into the neighboring basin.

S34

Figure S2. Inertia Tensor and Principal Axes of a Rigid Body. A. An arbitrary rigid body with

an axis of rotation 𝑃 passing through the origin 𝑂 (center of mass). An infinitesimally small

element with mass 𝑑𝑚 is situated at 𝑋 with position vector 𝑟 . The rigid body is rotating with an

angular velocity of �⃗⃗� . B. An example of a disc with radius 𝑟 (and radial vector 𝑟) rotating

around 𝑍 axis passing through the center of the disc. C. Three principal axes computed for each

of the two domains of the ribosome. The two domains shown are LSU (blue) and SSU body

(yellow). The principal axes for individual domains are shown with the same color as the

corresponding domain. The inset on the right panel shows the principal axes only.

S35

Figure S3. Segmentation Error for the Segmentation Case 1 in Tables 1, S1, S3. A. Initial

segmentation of the three relevant domains LSU (blue), SSU Body (yellow), SSU Head (orange).

The red segment could not be automatically segmented out. Part of the red segment belongs to

SSU (highlighted region) and the other part to LSU (highlighted region). B. The false positive

(incorrectly identified; pink) and false negative (incorrectly rejected; green) atoms are shown on

the segmented LSU domain (blue). The third panel shows the interface view of the LSU. C. The

false positives (pink) and false negatives (green) are shown on the segmented SSU domain

(yellow). The residues belonging to the red segment are not shown in (B) and (C) and were

excluded from the LSU and SSU residues in subsequent calculations.

S36

Figure S4. Segmentation Error for the Segmentation Case 14 in Tables S1, S2, S3. A. The false

positives (pink) and false negatives (green) are shown on the segmented LSU domain (blue). The

third panel shows the segmentation error in the interface view of the LSU. B. The false positives

(pink) and false negatives (green) are shown on the segmented SSU domain (yellow). The

residues belonging to the red segment were excluded from the LSU and SSU residues in

subsequent calculations.

S37

Figure S5. Segmentation Error for the Segmentation Case 6 (top row) and Case 8 (bottom row)

in Tables S1, S2, S3. A. The false positives (pink) and false negatives (green) are shown on the

segmented LSU domain (blue). The third panel shows the interface view of the LSU. B. The

false positives (pink) and false negatives (green) are shown on the segmented SSU domain

(yellow). The residues belonging to the red segment were excluded from the LSU and SSU

residues in subsequent calculations.

S38

Figure S6. Characterizing the Error in Domain Segmentation and Domain Rotation Angle. A.

Segmentation quality measures with 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑅𝑒𝑐𝑎𝑙𝑙, 𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 calculated for the

individual domains and the full structure, in all the segmentation cases listed in Table S1. The

plotted values are ranked based on the 𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 of the SSU (Table S4). Across all the

segmentation cases, the 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑅𝑒𝑐𝑎𝑙𝑙 values for the individual subunit seemed to vary

more than the corresponding measures for the full structure and the 𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒. B. The

rotation angle for SSU, SSU body and SSU head for the corresponding segmentation cases and

the plotted angles are ranked in the same manner as in A.

S39

Supporting Information Movies

Movie MS1. Fixed LSU with SSU body rotation from state “A” to “B.”

Movie MS2. Fixed SSU Body with SSU head rotation from state “A” to “B.”

Movie MS3. Fixed LSU with Full SSU rotation from state “A” to “B.”

Supporting References

1. Rosenfel.A; Pfaltz, J. L., Sequential operations in digital picture processing. J. Acm 1966,

13 (4), 471-&.

2. Coeurjolly, D.; Vacavant, A., Separable distance transformation and its applications. In

Digital geometry algorithms, Springer: 2012; pp 189-214.

3. Bailey, D. G. In An efficient euclidean distance transform, International workshop on

combinatorial image analysis, Springer: 2004; pp 394-408.

4. Fabbri, R.; Costa, L. D. F.; Torelli, J. C.; Bruno, O. M., 2d euclidean distance transform

algorithms: A comparative survey. ACM Comput. Surv. 2008, 40 (1), 1-44.

5. Felzenszwalb, P.; Huttenlocher, D. Distance transforms of sampled functions; Cornell

University: 2004.

6. Danielsson, P. E., Euclidean distance mapping. Comput. Graph. Img. Proc. 1980, 14 (3),

227-248.

7. Deza, M. M. D., Elena, Encyclopedia of distances. 3 ed.; Springer: Berlin, 2014.

8. Akleman, E.; Chen, J. N., Generalized distance functions. In Shape Modeling

International '99 - International Conference on Shape Modeling and Applications, Proceedings,

1999; pp 72-79.

9. Sezgin, M.; Sankur, B., Survey over image thresholding techniques and quantitative

performance evaluation. J. Electron. Imaging. 2004, 13 (1), 146-168.

10. Goldstein, H., Classical mechanics. 1980.

11. Dam, E. B.; Koch, M.; Lillholm, M., Quaternions, interpolation and animation.

Datalogisk Institut, Københavns Universitet: 1998.

12. Pervin, E.; Webb, J. A., Quaternions in computer vision and robotics. Carnegie-Mellon

University, Department of Computer Science: 1982.

13. Shoemake, K., Animating rotation with quaternion curves. SIGGRAPH Computer

Graphics 1985, 19 (3), 245-254.

14. Lovren, N.; Pieper, J. K., Error analysis of direction cosines and quaternion parameters

techniques for aircraft attitude determination. IEEE Trans. Aerosp. Electron. Syst. 1998, 34 (3),

983-989.

S40

15. Horn, B. K. P., Closed-form solution of absolute orientation using unit quaternions. J.

Opt. Soc. Am. A 1987, 4 (4), 629-642.

16. Umeyama, S., Least-squares estimation of transformation parameters between two point

patterns. IEEE Trans. Pattern Anal. Mach. Intell. 1991, 13 (4), 376-380.

17. Baerlocher, P.; Boulic, R., Parametrization and range of motion of the ball-and-socket

joint. In Deformable avatars, Springer: 2001; pp 180-190.

18. Shoemake, K., Fiber bundle twist reduction. In Graphics gems iv, Paul, S. H., Ed.

Academic Press Professional, Inc.: 1994; pp 230-236.

19. Dobrowolski, P. Swing-twist decomposition in clifford algebra ArXiv e-prints [Online],

2015. https://arxiv.org/abs/1506.05481.

20. Hendriks, C. L.; Van Vliet, L.; Rieger, B.; van Kempen, G.; van Ginkel, M. Dipimage: A

scientific image processing toolbox for matlab Quantitative Imaging Group, Faculty of Applied

Sciences, Delft University of Technology, Delft, The Netherlands [Online], 1999.

21. Ludtke, S. J.; Baldwin, P. R.; Chiu, W., Eman: Semiautomated software for high-

resolution single-particle reconstructions. J. Struct. Biol. 1999, 128 (1), 82-97.

22. Grayson, P. Orient, 1.0; 2002.

23. Zhang, X. L.; Feng, X. Z.; Xiao, P. F.; He, G. J.; Zhu, L. J., Segmentation quality

evaluation using region-based precision and recall measures for remote sensing images. ISPRS J.

Photogramm. 2015, 102, 73-84.

