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Noise-induced synchronous neuronal oscillations
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We investigate a model for synchronous neural activity in networks of coupled neurons. The in-
dividual systems are governed by nonlinear dynamics and can continuously vary between excitable
and oscillatory behavior. Analytical calculations and computer simulations show that coupled ex-
citable systeras can undergo two different phase transitions from synchronous to asynchronous firing

behavior.

One of the fransitions is akin to the synchronization transitions in coupled oscillator

systems, while the second transition can only be found in coupled excitable systems. We present an
analytical derivation of the two transitions and discuss implications for synchronization transitions

in biological neural networks.
PACS number(s): 87.10.+e, 05.20.—y

L INTRODUCTION

Recently, the temporal characteristics of neuronal fir-
ing patterns have received renewed interest. This has
been triggered by experiments that related firing corre-
lation of neurons in the visual cortex to properties of the
visual stimulus [1,2]. The concept of synchronous neu-
ronal firing itself, however, is not new. Neurons in the
brain tend to fire synchronously under a large variety
of conditions; the very fact that macroscopic currents
and potentials are recorded in EEG measurements in-
dicates that the neurons must be involved in coherent
activity [3,4].

In an attempt to understand the origin and role of syn-
chronous neuronal activity, a number of recent modeling
approaches have been based on a description of the sin-
gle neuron as oscillators [5-11], firing coherency being
controlled through a competition between synchronizing
interactions and desynchronizing noise. However, recent
computer simulation studies using coupled integrate-and-
fire [12,13] or excitable neurons [14-16] have shown a sec-
ond type of synchronization transition which is triggered
by changes in the excitation threshold. In this paper,
we provide an analytical derivation of the latter type of
synchronization transitions. We will demonstrate the im-
portance of noise added to the neuron dynamics in both
destroying and generating firing coherency. }

In Sec. II, we discuss the nonlinear dynamics of physi-
ological neuron models. We will study the firing frequen-
cies of both noiseless and noisy neurons and point out
that upon change of the input parameter, noiseless neu-
rons undergo an abrupt transition between silence and
constant firing, whereas noisy neurons smoothly increase
their firing frequency in this case. In Sec. III, we discuss
the concept of a stochastic limit cycle, that will allow us
to treat noisy excitable dynamical systems in a way simi-
lar to that of dynamical systems with limit cycle. In Sec.
IV, we discuss the active rotator model, which describes
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the dynamics of a neuronal system along the stochastic
limit cycle. In Sec. V, we derive a solution of the Fokker-
Planck equation for ensembles of coupled active rotator
systems. This solution will be used in Sec. VI to derive
a phase diagram for the synchronous and asynchronous
modes of coupled active rotators. In the concluding Sec.
VII, we discuss some of the implications for the under-
standing of the role of synchronous neural activity that
has been observed in physiological neural networks.

II. NONLINEAR DYNAMICS OF
PHYSIOLOGICAL NEURONS

The first quantitative physiological model for neuronal
dynamics was formulated by Hodgkin and Huxley [17].
Their set of four coupled differential equations described
the neuron as an excitable element or oscillator, depend-
ing on the value of the stimulation current. Fitzhugh [18]
proposed a simplification of the Hodgkin-Huxley equa-
tions in terms of the two-dimensional Bonhoeffer—van der
Pol (BvP) dynamics,

# = Fi(z1,z2) = c(z1 —23/3 + 22 + 2),
1

[+4

1)

T2 = Fy(zy,z2) (a — z1 — bz2),
choosing a=0.7,b=0.8,c=3. The variable z; represents
the transmembrane voltage, while the “recovery variable”
x, represents slow ionic membrane conductivities. The
parameter z represents the external stimulation of the
neuron: for high stimulation (—0.34 >z > —0.875), the
system becomes an oscillator with approximately fixed
frequency. The more interesting case, however, is that of
low or intermediate stimulation (0.5>2z>—0.34), for which
the system of equations (1) has a stable stationary point
and represents an excitable system. In this case, random
noise added to the neuron dynamics, e.g., in =3, will lead
to the occasional release of a single pulse. Variations of
z, representing synaptic input, will change the height of
the firing threshold and, thereby, can change the average
firing rate of neurons by orders of magnitude [19,20]. (In
this paper, we only discuss the effect of slow variations of
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FIG. 1. Firing frequencies of BvP neurons as a function of
the input parameter z. For noiseless BvP systems, the firing
frequency jumps abruptly to a near constant value at z = 0.34
(broken curve). For noisy systems, the firing frequency varies
continuously as a function of z in a sigmoid fashion (solid
curve).

the threshold on the average firing rate. For a discussion
of the effect of fast variations of the threshold on the
structure of the pulse train, we refer to a recent paper by
Wiesenfeld et al. [21].)

Figure 1 shows the firing frequencies for the physiolog-
ical BvP neurons as a function of the input variable z. In
the noiseless case, the activity switches abruptly between
silence and limit cycle oscillations. Moderate noise added
to the BvP dynamics produces a sigmoid transition in the
average firing frequency. It is important to note that the
neuron is most sensitive to variations of the input z in a
range of z (z = —0.2) where the BvP equations result in
an excitable element rather than limit cycle dynamics.

In this paper, we will thus address the question of how
synchronous activity can arise in networks of coupled ex-
citable elements.

III. STOCHASTIC LIMIT CYCLES

Investigations of coupled nonlinear oscillators are often
simplified by parametrizing the limit cycle of the oscilla-
tor in terms of a phase variable [22]. One can also assign
a phase to states of the oscillator that are in the vicinity
of the limit cycle by projecting the states onto the limit
cycle along so-called isochrones. This reduction from a
multidimensional state vector to a one-dimensional phase
variable for a single oscillator significantly simplifies the
treatment of ensembles of coupled neurons and in many
cases makes the derivation of analytical results possi-
ble [23]. )

When investigating excitable elements, we can use the
concept of stochastic limit cycles to reduce a multidimen-
sional dynamical system to a one-dimensional system de-
scribed by a phaselike variable. The concept of stochastic
limit cycles [19,20] stems from the observation that noise-
driven excitable systems often yield dynamical behavior
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" “very similar to that of limit cycle systems. In an excitable

system, noise can drive the system away from the station-
ary point toward an excitation threshold. After reaching
the excitation threshold, the dynamical system will re-
turn to the stationary state usually after a long detour
through phase space. We can then define the stochastic
limit cycle for excitable systems by connecting the most
likely escape trajectory out of the stationary point with
the most likely return trajectory back to the stationary
point. The state of systems on this circular trajectory, as
well as points in its vicinity, can again be parametrized
in terms of a one-dimensional phaselike variable.

IV. STOCHASTIC ACTIVE ROTATOR NEURONS

The phase dynamics of a limit cycle oscillator can al-
ways be expressed as

¢=F(g)=1 )

through a suitable rescaling of the time scale. This is
not the case of stochastic limit cycles. In the absence of
noise, the motion along the stochastic limit cycle is not
uniform; on some parts of the cycle, the deterministic
dynamics would actually push the system backwards on
the cycle rather than forwards. This situation of alternat-
ing positive and negative phase speed along the circular
trajectory can be described in first order approximation
through the modified phase dynamics,

¢ = F(¢) =1~ asin(¢), ®3)

the so-called “active rotator” model first studied in this
context by Shinomoto and Kuramoto [14]. For a > 1,
Eq. (3) yields stretches of positive and negative phase
velocity like on a stochastic limit cycle, while for a < 1,
Eq. (3) corresponds to ordinary limit cycle dynamics.

The two cases @ > 1 and a < 1 yield the same quali-
tative behavior as the BvP model neuron for z > —0.34
and z < —0.34, respectively. In the following, we want to
focus on the case a > 1 in which the system behaves as
an excitable system. The stationary point of the active
rotator dynamics is given by

¢s = arcsin(1/a). 4)

In the presence of Gaussian white noise, the neuron dy-
namics is described by

¢ = F(¢) +n(t), (5)
(n(t2)n(ta)) = 2D8(tz — t1)-

In this case the state of a neuron will no longer remain
exactly in the stationary state [Eq. (4)]. Nonetheless, the
neuron is most likely to be found in the vicinity of this
stationary point, as it is driven back to ¢, after small
perturbations. In the limit of small noise, the probabil-
ity distribution for the state of a single neuron ¢ can be
described approximately by a Gaussian function centered
at the stationary point
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with

o = +/D/(acos¢,). (M

From time to time, noise will drive the system suffi-
ciently far away from ¢, such that the neuron will no
longer be attracted directly back to ¢,, but rather orbit
once around the stochastic limit cycle. This corresponds
to the release of a single spiking event in a biclogical neu-
ron. The distance that has to be overcome by noise to
evoke a spike decreases as a approaches 1, making such
spiking events more and more likely. In this way, changes
of a can modulate the average firing rate in close analogy
to such modulation through the parameter z in the BvP
model [19]. The pulse train produced by such a stochas-
tic neuron is nevertheless very irregular (only when a is
lowered below 1 will the spike train become quasiperi-
odic).

We now consider the case of a network of coupled
stochastic neurons. For the sake of simplicity, we assume
that all neurons 7 interact linearly with all other neurons
i (=1, N) [24]

¢i = Fi(¢i, {63 }) + mi(2) ®)

N
= (P60 + 5 D wsesin(ds — 69 | + (o).

The linear interactions can be superimposed and replaced
by a single force pulling the neuron towards the center of
mass of all other neurons. The dependence on neurons

{#;} in Eq. (8) can then be replaced by a dependence .

on the center of mass ¢c... of the population of neurons.
Moreover, we will assume that % > ;wij = w for all 4,
i.e., all neurons are connected to the other neurons of
the network by the same average synaptic strength. Un-
der these conditions, the probability distribution p;(¢:)
for one neuron ¢ will become representative for all other
neurons, allowing a mean field description. Note that the
w;; describe only a coupling of neurons within the net-
work, while the effect of external input is described by
changes of a in F(¢;).

For large values of a, the probability distribution for
a single neuron is again peaked in the vicinity of the
stationary point. As we lower the value of a, individ-
ual neurons will then fire more often, although still un-
correlated. Below a certain value a. > 1, however, the
probability distribution will cease to be stationary [14];
instead, its center of mass will be able to slip over the
escape threshold and orbit periodically around the limit
cycle. This entails that the firing pattern of neurons will
make a transition from uncorrelated and aperiodic firing
to correlated and periodic firing.

In order to describe this transition we have to study un-
der what conditions a distribution of neurons can jointly
escape out of an attractive basin of a stationary point.

While the specific system described by Eq. (8) has been
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characterized numerically in earlier work [14,25], the ap-
proach outlined below allows an (approximate) analytical
solution; it focuses on the escape of a distribution across
a threshold and should be applicable to a general class of
escape processes. While the escape of a single stochastic
system out of a local minimum has been extensively stud-
ied and can approximately be described by the passage
time formulas [26], we want here to develop a general
theory describing the coherent escape of a distribution of
interacting systems.

V. APPROXIMATE SOLUTION OF THE
FOKKER-PLANCK EQUATION FOR ACTIVE
ROTATOR NEURONS

An exact description of the probability distribution
would require a self-consistent solution of the Fokker-
Planck equation

Bepi(di,t) = [~ 0, Fi(bir pen.) + DI ] idint)  (9)

which is not available for arbitrary F'.

A standard approach [27] to solving Eq. (9) for local-
ized distributions, used in [28], would be to expand F in
a Taylor expansion around the center of the distribution

Pem.

Fi(¢i7 (?Sc.m.) = F(¢c.m.) + (¢1. - ¢c.m.)a¢c,m,F(¢c.m.)-
(10)

Using this approximation in Eq. (9), one obtains as so-
lution a Gaussian distribution

PURPSNN SR A 4 C R N ()
pl(d’nt) - \/2-7r“o_(t) P( 2 0'2(t) ) ’ (11)

where the motion of the center of mass and the time
evolution of the width of the distribution are given by

&c.m. = F(d’c.m.)’ (12)
02 =2[8y, . F(bem) —w]o? + 2D. (13)

In this approximation [27] the center of the Gaussian
distribution would always end up in the stationary point
for ¢ = oco. To describe the escape from the stationary
point, we have to take into account additional terms in
the Taylor expansion Eq. (10). Accounting for terms up
to second order [29], we obtain an improved version of
Egs. (12) and (13),

. 02
bem. = F(‘?Sc‘m.) + 'Z*F"(Gbc.m.)’ (14)
02 =2[8, . F(¢em)—w|o®+2D. (15)

Equation (11) together with (14) and (15) thus pro-
vides an approximate solution of the Fokker-Planck equa-
tion (9).

For distributions of finite size & > 0, Eq. (14) can
describe the escape out of a stationary point character-
ized by F(¢) = 0. Approximating the distribution as
a Gaussian distribution can be done as long as the dis-
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FIG. 2. Oscillation periods for the center of mass phase of
ensembles of coupled active rotators. The continuous curves
show the periods obtained from Eqs. (16) and (17) for w =1
and D = 0 (top curve), 0.025, 0.05, and 0.1 (bottom curve).
The three sets of dots represent periods obtained from Monte
Carlo simulations of 10 000 coupled active rotators.

tribution is sharply peaked, i.e., w > D. The solution
of Eq. (9) will approach an exact Gaussian in the limit
where —%% +w> [i—’,’%%% (n > 1). We can then im-
prove Egs. (14) and (15) by averaging the values of F'
and % over the whole Gaussian distribution (11).

For coupled active rotators [Eq. (8)], averaging F' and
%% over the whole distribution p(¢) yields the equations

of motion T

bem =1 — asin(@em)e T, (16)
02 = ~2[acos(dem)e”F +we]o? +2D.  (17)

In order to test the validity of the Gaussian approxima-
tion that was used to derive these equations, we inte-
grated Eqs. (16) and (17) numerically to calculate the
oscillation period of the center of mass for different pa-
rameter values and compared these predictions with re-
sults obtained from Monte Carlo simulations of 10 000
coupled active rotators. The results are shown in Fig. 2.

The distributions become exact Gaussians only in the
limit ¢ « 1. Distributions with large o will no longer
be exactly Gaussian and we can, thus, expect differences
between the actual firing period and the one predicted
using Egs. (16) and (17). Deviations in predicted os-
cillation periods due to o & 1 become apparent in the
bottom pair of curves of Fig. 2 for D = 0.1.

VI. PHASE TRANSITIONS IN ACTIVE
ROTATOR ENSEMBLES

From Egs. (16) and (17) we can now derive boundaries
in (a,w, D) space for the different dynamical regimes of
the solutions. First we want to determine under which
condition there exists a solution in which ¢. . = 0 and

-
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o2 = 0 holds simultaneously. Inserting these conditions
into Egs. (16) and (17) yields

a3

sin(¢) = —e 7,
2 D

0% =" = .
acos(p)e™T +we—*

(18)
(19)

Q]

For small 0 (D « w) and in the limit ¢ < w, we only
obtain a stationary solution if
. . 1D

-0 Le>ac=l4g (20)
If a is larger than a., the solution will be stationary and
peaked in the vicinity of the stationary point ¢,. If a is
smaller than a. the center of mass may continuously orbit
around the limit cycle. Equation (20) thus describes our
first phase boundary.

Next we address whether for a < a. the width of the
distribution will remain finite, corresponding to corre-
lated firing of the neurons, or whether the width will
grow without bounds, which corresponds to a probabil-
ity distribution which smears out over the whole limit
cycle. We, therefore, have to investigate the long time
behavior of Eq. (17). By averaging Eq. (17) over one
limit cycle revolution for a << w we obtain

o2 = ~2we™" o + 2D. (21)
With w > 0 and D > 0, we can only obtain a solution
o2 =0if

D/w < 0.736. (22)
Equation (22) describes the approximation result for the
second phase boundary. (While it is obtained through an
approximation strictly valid only in the low noise limit,
it is reasonably close to the numerical result D/w = 0.5
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FIG. 3. Phase boundaries for a network of coupled active
rotators. The broken curves show the approximated phase
boundaries for w >> a. The continuous curves show the
exact phase boundaries obtained from Egs. (16) and (17) for
w=0.25.
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FIG. 4. Distributions of active rotator neurons along the
limit cycle for ¢ = 1.02, w = 1, and D = 1 (top),
D = 0.05, and D = 0.01 (bottom) (arbitrary y
scale). For D = 0.05, distributions are shown for times
0 (= 53),1,2,6,21,42,48, 50,51, and 52 (peaks from left to
right). For D = 0.01 or 1, the distributions are stationary.

obtained in [14].) In the limit we considered (w > a), the
behavior of the system according to Eqgs. (16) and (17)
depends only on the value of @ and on the ratio D/w.
We can thus draw a phase diagram analogous to the one
obtained in [14] for the different dynamical modes of the
system of coupled active rotators (Fig. 3).

Figure 3 shows three different regions in the phase
space. In region I, individual neurons fire stochastically
at a low average firing rate. The firing among different
neurons is uncorrelated. As we increase the noise level or
increase the external stimulation of the cell (by lowering
the value of a), we enter region II, which is characterized
by high frequency, synchronous, and periodical firing. As
we increase the noise level further or decrease the interac-
tion strength, we enter region III, upon which the firing
pattern changes from high frequency correlated firing to
high frequency uncorrelated firing. It should be pointed
out that while a continuous transition is possible directly
from phase I to phase III, these two phases are separated
by different transitions from phase II and can be charac-
terized by their low or high firing rate, respectively.

Figure 4 illustrates the probability distributions found
in the three regions of the phase space: In region I, a
highly localized stationary distribution, and in region II,
a time-dependent localized distribution, and in region
111, a stationary nonlocalized distribution. It should be
pointed out that the stationary distributions in regions
I and III correspond to low frequent and high frequent
uncorrelated firing activity, respectively.

VII. CONCLUSIONS

We have argued that in order to study the firing char-
acteristics of neurons, it might be more appropriate to
start from a description in terms of stochastic excitable
elements rather than from an oscillator description. We
have seen that the analytical treatment of excitable ele-
ment neurons can be simplified by focusing on its dynam-
ics along its stochastic limit cycle, which can be modeled
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in terms of the active rotator model. ,

In order to describe the synchronous firing of interact-
ing excitable neurons, we have developed a method that
allows us to describe the collective escape of an ensemble
of interacting systems out of a local minimum, a method,
that should be useful in a series of related problems.

By applying the method to active rotator neurons, we
were able to derive the phase boundaries between the
phases of synchronous and asynchronous firing activities.
Our results have a couple of consequences for the mod-
eling and understanding of synchronous activity in net-
works of neurons: Figure 3 shows the importance of con-
sidering full neuronal dynamics rather than assuming os-
cillator dynamics from the beginning: if one bases a net-
work model on a description of neurons as oscillators, one
is restricted to the left side of Fig. 3, where only one of
the two phase transitions occurs.

In excitable systems we thus observe two phase tran-
sitions: In the “low noise” transition, I+II, noise can
actually induce synchronous oscillatory behavior, while
in the “high noise” transition, II+III, noise will lead to
a loss of coherency. It might be possible to observe both
kinds of transitions in biological neural networks. The
noise level should probably be treated as a constant in a
given biological system; then, the first transition between
I and II would be triggered by changes in the excitability
of the neurons (parameter a), while the second transition
between II and III would be triggered by changes in the
synaptic efficacies w. Due to the different characters of
the transitions, Hopf vs saddle-node [12,14,25], crossing
the first phase boundary (I-II) leads to a fast, discon-
tinuous increase in firing correlation, while crossing the
second phase boundary leads to a gradual, continuous
change of firing correlation.

If firing correlation is to play a role in fast recognition
processes in the visual cortex, it should be a transition
of the first type (I—I[). This would mean the physiolog-
ically plausible implication, that the same parameter a,
which modulates the firing frequency of a single neuron
in a sigmoidal fashion, would also be responsible for trig-
gering the onset of synchronicity in networks of coupled
neurons. It is not yet clear whether networks that process
input coming from the visual cortex are actually sensi-
tive to varying degrees of firing correlation among the
neurons of the visual cortex. Since the synchronization
transition triggered by variations of the synaptic input a
is always accompanied by a discontinuous increase in the
firing frequency, the phase transition could well be signif-
icant for cortical information processing even by merely
acting as a signal amplifier which would lead to contrast
enhancing between cortical regions that are subcritically
stimulated and those that are strongly stimulated with
0<a<ac.
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