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We investigate site percolation on lattices with directed bonds. Numerical simulations in which
the lattice coordination number of the percolation lattices is systematically varied show that the
inverse of the percolation threshold depends approximately linearly on the lattice coordination

number.

We show that this linear relationship is due to a similarity of percolation clusters in

lattices for different coordination numbers. We compare this relationship to results obtained by
Flory [Principles of Polymer Chemisiry (Cornell University Press, Ithaca, New York, 1953), Ch?.p.
IX] in the study of gelation processes and discuss its general applicability for related percolation

models.
PACS number(s): 64.60.AK

Starting with the work of Broadbent and Hammersley
[1], percolation phenomena have been studied as models
for a variety of physical processes. The various appli-
cations have led to the study of percolation transitions
on different lattices (quadratic, hexagonal, ...) and un-
der a variety of conditions, such as site percolation, bond
percolation, and correlated percolation. These studies
have led to a wealth of data about critical probabilities
and critical exponents which characterize the percolation
transitions [2,3].

In these studies the same sets of critical exponents ap-
peared in different percolation transitions. This led to
the classification of percolation transitions into univer-
sality classes according to their sets of critical exponents.
‘The origin of the critical exponents in percolation and
other phase transitions continues to attract widespread
interest {4,5].

Comparatively little effort has been spent on classify-
ing the percolation thresholds. In Flory’s gelation theory
[6], which can be understood as percolation on a Cayley
tree, the gelation threshold p, was found to depend on
the lattice coordination number f as

pol=(f—1). ¢

This formula is derived from the simple requirement that
a cluster of molecules can only be of infinite size and thus
form the gel phase if every molecule connected to this
cluster by one of its f possible bonds continues the cluster
through at least one of its (f —1) remaining bonds. Many
subsequent refinements, mostly from scientists closer to
an experimental approach, have led to the introduction of
correction factors that take into account intramolecular
reactions or dilution effects but leave the basic mean-
field-theory approach unaltered.

For example, Kilb's calculations {7] and Stepto’s ex-
periments [8] suggest expanding Flory’s formula (1) to

7t =(1-N(-1), 2

where )\ describes the fraction of intramolecular reac-
tions. These refined theories usually allow quantitative
predictions of the gelation transition.
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The percolation-theory approach [9,10], on the other

- hand, focuses less on a quantitative prediction of the

threshold but more on a qualitatively correct description
of the critical behavior in the vicinity of the percolation
transition. By replacing the Cayley tree by more realistic
two- or three-dimensional lattices, one obtains more real-
istic critical exponents than those obtained by mean-field
theory. Coniglio, Stanley, and Klein [11] also included di-
lution and correlation effects in their percolation model
of the gelation process. However, the relative lack of
success in predicting qualitatively the gelation threshold
might be due to the restricted choice of lattices that have
so far been used for percolation studies.

The lattices used for percolation studies were usually
chosen out of a small pool of simple lattices. The preva-
lence of quadratic lattices with nearest-neighbor-only in-
teractions is, e.g., more readily explained in terms of their
ease of manipulation than in terms of their specific rele-
vance to polymer gelation.

Since, as mentioned earlier, the critical exponents are
fairly insensitive to details of the lattice geometry, this
approach was justified when the investigations focused on
critical exponents. For quantitatively meaningful results
for the percolation transition, however, more attention
has to be paid to the details of the lattice geometry.

In our investigations we explore systematically how
percolation thresholds depend on the lattice connectivity.
We initially focused on directed site percolation. (Using
directed bonds simplifies the cluster-counting procedure
considerably since it then only requires one single sweep
through the lattice.) In our lattices, every site (i, j) was
connected to z sites (i—1, j—(2—1)),..., (i—1, j) through
incoming directed bonds and to z sites (¢ -+1,5),..., (i +
1,7 + (2 — 1)) through outgoing directed bonds. (For
z = 2; this geometry is equivalent to the quadratic lat-
tice with directed bonds studied by Kinzel and Yeomans
[12].) Sites denoted by the same first coordinate i will be
said to belong to the same generation of cells.

Our simulations are carried out as follows: First we
fill a fraction p of the sites with cells and tag all cells in
the first generation as belonging to the cluster. For every
subsequent generation we then tag those cells that can
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be reached through directed bonds from tagged cells in
the previous generation. In this way we obtain in every
generation all the cells that can be reached from cells in
the first generation through an uninterrupted chain of
directed bonds.

For every generation i, we determine the fraction w;
of sites that are occupied by tagged cells. For values of
p below the percolation threshold p., w; will steadily de-
crease and eventually reach zero. For values of p above
the percolation threshold p., w; will decrease from its ini-
tial value of p and eventually scatter around its asymp-
totic value wo,. This asymptotic value is then identified
with the strength of the infinite cluster.

As p approaches p. from above, the asymptotic value
wWeo decreases to zero. At the same time, the number of
generations through which the percolation process has to
be iterated to obtain reliable estimates for w,, diverges.
Therefore, using simulations of lattices of a given finite
size, one will not be able to obtain reliable values for very
small we,.

In our simulations we used lattices of 50000 sites per
generation and iterated up to 200000 generations. We
then determined the values of p, and v which would result
in the best fit of the data to the form

Weo (D) = (p — pe)". B

We applied this procedure to a set of different lattice
geometries that were characterized by varying numbers
of bonds z. The resulting percolation thresholds for z in
the range from 1 to 8 are shown in Table I. For all 2z, we
obtained values of ¥ = 0.29 4= 0.02 that agree for z =
with the value obtained in [12].

Columns 3 and 4 of Table [ show the inverse value of
the percolation threshold as well as the increment A(z) =
1/pc(2z) — 1/pc(z — 1). The convergence of A(z) to the
value of 0.445 £+ 0.003 suggests the empirical formula for
the percolation thresholds,

1
" 0.518(3) -+ 0.445(3)z, (4)

with significant deviations only for small n, ie.,, n =
1,2,3.

We now want to explore the origin of the linear rela-
tionship expressed in (4) by calculating the strength of
the cluster in generation i through a recursion relation.

TABLE I. Thresholds for site percolation with directed
bonds. z denotes the number of connections per site. A(z)
has been calculated by A(z) = 1/pc(2) — 1/pe(z — 1).

z pe(2) 1/pe(2) Alz)
1 1 1

2 0.7052(2) 1.4180 0.4180
3 0.5387(3) 1.8563 0.4383
4 0.4351(3) 2.2983 0.4420
5 0.3645(3) 2.7435 0.4452
8 0.3135(3) 3.1898 0.4463
7 0.2754(3) 3.6311 0.4413
8 0.2452(3) 4.0783 0.4472

For any site to belong to the cluster, it has to be occu-
pied by a cell, and at least one parent site in the previous
generation has to belong to the cluster. The probability
w;+1,5 that site j in generation (i+1) belongs to the clus-
ter can be expressed in terms of the probabilities w, 3 for
the sites in the previous generation, of the cell concen-
tration p, and of the number of parent sites 2

k=z—1
Wit1,5 = p(l - II a- w,-,,-_k)). ()
k=0

(The second index in w;43,; indicates that this probabil-
ity refers to one specific cell j. If this second index is
missing, the quantity is to be understood as the average
over all cells of a generation.) The product term on the
right-hand side expresses the probability that all parent
sites are not cluster sites. If we neglect any correlation ef-
fects (i.e., w;; = w; j» = w;) and use the self-consistency
condition (wi4+1 = W; = We) We can transform Eq. (5)
to :

Weo
1-Thi=sta -

p= (6)

woo)

We then obtain the percolation threshold p. by letting
Weo approach zero from above, i.e.,

pe= lim p= lim k ui°° -
wmo? = w0 T TR (1~ wioo)
= lim Woo = ‘1‘ < (7)

Woon0 1 — (1 — 2Weo ++++) 2

We thus obtain again the Flory result of Eq. (1) in that
the percolation threshold equals the inverse of the num-
“ber of outgoing bonds.

‘We now take into account correlation effects. For this
purpose, we introduce conditional probabilities when cal-
culating the product probability that none of the parent
sites are cluster sites. The probability that parent site
(3,5 + k') is not a cluster site will be lowered if we know
that the parents (¢,7+1),..., (4,7 +k’—1) are noncluster
sites. This can be expressed by setting

Wi jrk = Ck,zWi (8)

with ¢p,; =1 and 0 < ¢,z < 1 for k& > 0. Note that
the ¢k, , are (k + 1)-site correlation functions. Inserting
these correlation coefficients into Eq. (5) and solving for
P, ONE obtains

| pc(z) ch 2 = 2&(z), (9)

vAvheré‘ ‘
: 1 z—1
- g(z) = po ch,z
k=0

is the average of the correlation coefficients.
It should be pointed out that these coefficients cg, .

(10)

:--do not only depend on k and z, but also on w; and p.
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FIG. 1. S=Z:;; ¢k, z(p) {continuous curves) for z = 2, 3, 4,
and f(p) = 1/p (broken curve) as a function of the lattice oc-
cupancy p. These curves intersect at the critical probabilities
pc(z) for the respective z.

In the present investigation, we are only interested in
the values ck,, for w; = We. In simulations, we thus
look at the percolation cluster in sufficiently high gen-
erations, where the properties of the cluster no longer
depend on the properties of the cluster in generation 1.
The dependence of Z;;}, Ck,z on the cell concentration
p is shown in Fig. 1 for z = 2,3,4. Notice that for p
close to 0 or 1, E;;}, Ck,z & 2, l.e., correlations do not
play a role in nearly empty or nearly fully occupied lat-
tices. Correlations are most significant around p = pe..
At p = p., the curves for EZ;}, Ck,. intersect the broken
curve f(p) = 1/p, thus confirming the first equality of
Eq. (9).

We now focus on the values of the correlation coefli-
cients for p = p. and investigate their dependence on &
and z. It is reasonable to assume that there must be
some similarity between percolation clusters obtained in
lattices with different coordination numbers. This simi-
larity should be reflected in a relation between the cor-
relation coefficients for different 2.

As shown in Fig. 2, our numerical calculations for
z = 2,4, and 8 indeed suggest that for large z the cx ;s
depend on k and z only in the combination (k/2z) and
that we can set

ek, = c*(k/2). (11)

Then, the evaluation of the sums of Eq. (10) can be
understood as a Riemann integration over the function
c*(k/z), which uses z strips and in which the value of
the function at the lower bound of the integration strip
is taken as the value for the whole strip.

For large z, the Riemann sum (10) converges towards
the integral over c*(k/z), which is independent of z.
Then, the only remaining z dependence of the percola-
tion thresholds in Eq. (9) will be the linear factor z. The
numerical values for the ci,, were obtained for values
of p slightly below p, (0.704 vs 0.7052, 0.434 vs 0.4351,
0.2445 vs 0.2452) in order to obtain convergence in finite
time. As a consequence, the correlation values shown
in Fig. 2 are slightly higher than their true values for
p = p.. In addition, it is to be expected that there
are, for small 2z, some deviations between cg , and the
asymptotic values ¢*(k/z). Indeed, Fig. 2 does not show

correlation
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FIG. 2. Correlation values cx,, plotted as a function of k/z.
Starting with the uppermost line, the lines connect correla-
tion values pertaining to 2=2, 4, 8, obtained from simulations
using p = 0.704, 0.434,0.2445, respectively. The dashed curve
approximates the asymptotic function ¢*(k/z).

exact overlap for the curves obtained for z = 2,4 or for
z = 4,8. 'To estimate how close the curves connecting
the points cx,, are to the asymptotic function c*(k/z2), we
evaluated their integral from O to 1. The values obtained
were 0.490,0.471, 0.460 for z = 2, 4, 8, respectively. From
Eq. (4), the integral of the asymptotic function c*(k/z)
is expected to be 0.445. For comparison, we included a
curve (broken line) in Fig. 2 whose integral is 0.445.

We have carried out similar investigations also for per-
colation on lattices that resemble the Bethe cactus dis-
cussed in [13]. Details of these calculations will be re-
ported elsewhere. Here we only note that different species
of these cacti are characterized by different correlations,
but within a species, we again found a linear relation
between the coordination number and the percolation
threshold.

It is thus reasonable to assume that an asymptotic lin-
ear relationship

1/pc(2) = =2 (12)
will be found in many sets of lattices in which the coor-
dination number is systematically varied.

Finally, we want to comment on different interpreta-
tions of the linear dependence between the percolation
thresholds and the lattice coordination number as ex-
pressed in Eq. (12). From one point of view, this law
describes how the percolation threshold decreases when
the number of bonds that one site can form increases.
Another point of view may be taken when one is inter-
ested in the clustering of (macroscopic) particles that can
be bonded not through a finite number of bonding sites,
but rather at arbitrary points on their surfaces. Such a
problem might be modeled through percolation theory
by discretizing the surfaces of the particles. The coarse-
ness of the discretization introduces some arbitrariness
into the model. However, the asymptotic linear relation-
ship between the percolation threshold and the number
of bonding sites then states the very plausible assertion
that the density of functional bonds per unit surface area
required for percolation becomes independent of the dis-
cretization for sufficiently fine-grained discretization.
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