Nato ASI Series 'Self-Organization,
Emerging Properties and Learning',
A. Babloyantz, Editor,

(Plenum Press, 199§)

A Model for Synchronous Activity
in the Visual Cortex

Christian Kurrer, Benno Nieswand, and Klaus Schulten
Beckman Institute and Department of Physics

The University of Illinois at Urbana-Champaign

405 N. Mathews Ave., Urbana Il 61801, U.S.A.

Key-Words: neural modeling, synchronization, binding-problem,
excitable elements, non-linear dynamics.

Abstract

We investigated the problem of figure-ground separation or bind-
ing problem of image processing in the brain. Recent experiments by
Singer et al. have shown in the visual cortex of cat synchronous fir-
ing activity among neurons coding similar features. The observations
suggest that synchronization may be an important coding principle
for information processing in the brain.

The investigations reported here are based on a dynamical descrip-
tion of single neurons as excitable elements with stochastic activity.
We demonstrate that sets of weakly coupled neurons of this type can
readily develop synchronous activity when subject to coherent exci-
tation. We provide a mathematical analysis of the dynamical model
chosen as well aspresent numerical simulations illustrating how syn-
chronous firing can be used in the visual cortex to segment images.

1 Introduction

Most present neural network models, e.g. back-propagation or Hopfield neu- -
ral nets, use a single state variable to describe a neuron. This state variable
represents the firing activity of a physiological neuron. In spite of important



advances using these kind of neural nets, many problems concerning infor-
mation processing through neural networks are left unsolved. A most im-
portant unsolved problem is the socalled binding problem|[1], which addresses
the question how the brain segments images into objects and which neurons
correspond to different objects. An example is the figure-ground separation
task, i.e. the task to determine the parts of the visual cortex involved in
“seeing” the figure and the parts involved in “seeing” the background. This
separation is a nontrivial task since both figure and background can contain
very similar optical properties such as color, luminosity, texture. Also the
figure often does not have a clearly marked outline.

Whereas formerly the firing rate of a neuron was assumed to contain all
the information transmitted to the brain by sensory neurons, it recently be-
came apparent that in the cortex also the timing of the firing of one neuron
relative to other neurons in the same cortical area contains essential informa-
tion. For example, recordings in the olfactory cortex performed by Freeman
[2, 3] revealed the occurrence of specific spatio-temporal patterns as soon as
a specific odor is identified. However, the problems connected with the mea-
surement of olfaétory input seemed to be a major obstacle in establishing
quantitative input-output relations between the spatio—temporal patterns
and the excitation of the olfactory sensory neurons. Thus it was not easy
to discover the mechanisms causing the formation of spatio-temporal pat-
terns and the importance of these for the subsequent steps in information
processing.

Important progress in clarifying the role of spatio-temporal patterns in
the firing activity of cortical neurons was achieved through recent experi-
ments performed on the visual cortex, initiated by Gray and Singer as well
as by Eckhorn et al. [4, 5]. These experiments, for the first time, related
the firing correlation of two cortical neurons to the fact that these corti-
cal neurons processed information originating from the same object, such as
an illuminated bar shown to the retina. When two neurons processed in-
formation originating from the same bar, a situation which can be checked
by determining their receptive field beforehand, their firing activity was ob-
served to be synchronized. This result supports the conjecture by von der
Malsburg 6] that the “binding” of different stimuli to the same object is
achieved through synchronization of the corresponding neural activity in the
cortex.

Models for Synchronously Firing Neurons

The new findings on the temporal correlation properties of interacting neu-
rons prompted an investigation of neuron models that incorporate the tem-
poral aspects of the firing of neurons. Some approaches |7, 8, 9, 10} employed
oscillator models for a single neuron, and introduced rules that govern the
synchronization of these oscillators. These approaches implicitly assume that
the normal state of a neuron is described by oscillators which adjust their



phases when subjected to certain kinds of input. _

Previous research on coupled nonlinear oscillators [11, 12, 13, 14, 15]
elicited essentially three ways of enhancing the synchronization of coupled
nonlinear oscillators: (1)increasing coupling strength between the oscillators,
(2)reducing spread of the intrinsic frequencies, and (3) reducing random per-
tubations of the phases of the nonlinear oscillators. Oscillator models for
neural networks addressing the synchronization issue, thus, were restricted
to stating rules how the excitations of the sensors influences one of these
three properties of the population of neurons. With the aid of these rules,
some of the experimental results could be reproduced[8, 16]. '

However, it seems to be hard to translate the rules back into physiological
context. This limits the stimulus such models might provide for further
experiments, and one may doubt whether the mechanim which are relevant
in the brain have actually been described by these rules.

Moreover, periodic oscillations of single isolated neurons have been ob-
served very rarely in experimental recordings. Other models, the ones dis-
cussed in [17], employ a more detailed representation of the single neuron
incorporating a firing threshold, relaxation and refractory behavior. Their
models, however, nevertheless describe single neurons only in a rather ab-
stract fashion.

2 Nonlinear Dynamics Models

To achieve synchronous oscillations in the cortex, our approach employs sin-
gle neurons which are ezcitable element (EE) [18] rather than oscillators. An
EE is a dynamical system with a stable state to which the system relaxes
directly after small perturbations. When the strength of the perturbation
exceeds a certain threshold, the equilibrium state will only be regained af-
ter the system passes through a series of specific states which significantly
deviate from the stationary state.

In the case of a neuron this corresponds to the phenomenon that small
variation of the transmembrane voltage result in a direct relaxation back to
the -65 mV resting potential, whereas larger variations cause the cell first
to increase its transmembrane potential up to +40 mV before the resting
potential is reestablished.

As a mathematical model for such an EE we employ a set of equations
known as the Bonhoeffer-van-der-Pol (BvP) or Fitzhugh-Nagumo (FN) equa-
tions [19, 20]. These equations, on the one hand, contain only the minimal
number of nonlinear terms necessary to yield an EE behavior and, there-
fore, are mathematically relatively simple; on the other hand, the equations
are closely related to the Hodgkin-Huxley description of neurons [21], i.e.
to a quantative description of certain neurons (squid giant axon), as shown
by Fitzhugh. Hence, the dynamical variables involved can be interpreted in
terms of physiological observables.
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Figure 1: (left side) Some typical phase space trajectories for z = —0.4:
All trajectories eventually lead into a stable limit cycle. Represented is

a stroboscopic view of trajectories for 9 different initial states.

Figure 2: (right side) Some typical phase space trajectories for z=0: All
trajectories lead to the stable stationary point at (1.1,-0.5). Note that a
trajectory which passes very near by the stationary point will lead the
phase point back to its stationary state only after a long path through
the phase space.

2.1 The Bonhoeffer-van-der-Pol or Fitzhugh-Nagumo
Equations

The dynamics of a neuron in the BvP model is given by the set of equations

£ = Fi(z,22) = c(z;—23/3+ 29+ 2)
flfg = F2(IL‘1,CL‘2) = (a—xl—bx2)/c.

(1)

According to Fitzhugh’s derivation of the BvP equations, x, represents the
negative transmembrane voltage and z, is closely related to the potassium
conductivity. The nonlinear term in the first equation reproduces the effect
of the voltage-dependent sodium channels. The equations reproduce the re-
sponse of a single neuron for the choice of control parameters a = 0.7, b = 0.8,
and ¢ = 3.0. The dynamical character of the solutions of this system of equa-
tions is determined by the parameter z, which corresponds to the excitation
current I in the Hodgkin-Huxley equations. Within the physiological range
2.0 > z > —0.6, the dynamical behavior depends on whether z is larger or
smaller than z.,.; &~ —0.34. For 2> z;, the variables (z;, ) asymptotically
reach a stable fixed point, whereas for z < z,;. the solutions are periodic in
time. The latter solution corresponds to a periodic firing of neurons. The
phase portrait for these two dynamical modes is shown in Figs. 1 and 2.
Whereas the BvP modei describes a neuron which at 2, abruptly changes
its behaviour from complete silence to firing at a fairly constant frequency,
Treutlein and Schulten [22] showed that the model can be made more realistic
by adding noise, which opens the possibility of varying the firing frequency
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smoothly from zero to its maximal value. The resulting dynamics of the
neuron is described by

gy = Fi(z,z)+m@) = oz —23/3+ 20+ 2) +m(2) (2)
Ty = Fp(z1,22)+m(t) = (a— a1 —bag)/c+m(t)

where 7;(t), (¢ = 1,2) represents Gaussian white noise with amplitude ¢ =
V26-T charactarized through the relations

(m() =0,  (m(t)ni(t2)) = B~ 8(t1 — ta) &5 . (3)

These equations were investigated for the range of z leading to limit cycle
dynamics in [23]. Here, we will focus on a range of z where these equations
describe an EE (corresponding to the case shown in Fig. 2). Because of
the noise added to the BvP dynamics, the phase point will not be trapped
at the stationary state, but rather exhibits diffusion-like behavior in the
phase space. Eventually it will reach an escape trajectory, shown in Fig. 2,
which attracts the phase point to negative z; values, and in this way action
potentials are generated. The influence of the noise thus leads to trajectories
that follow a stochastic limit cycle.

The rate by which a stochastic excitable element (SEE) releases action
potentials depends on the amplitude of the noise as well as on the distance
between the stationary point and the closest escape trajectory. This distance
determines the excitability of the EE and depends on the parameter z. A
change in z will thus influence the average firing rate of the SEE, as shown
in Fig. 3.

A change in the excitation parameter z is thus the key physiological mech-
anism by which the behavior of an individual neuron is controlled in our
model. In the remaining part of this text, we will investigate how this pa-
rameter influences the synchronicity of firing of coupled neurons, and how
this firing synchronicity can serve visual information processing.

3 Dynamics of Coupled Neurons

To describe the dynamics of coupled neurons, we expanded the BvP-equations
to include an interaction term between neurons
i = (@1 — 23 /3+ Tai +2) + m(t) + T, Wini(t)
zo; = (a—1x1;—bxg;)/c+ m(t).
The coupling of neuron j to neuron 1 is described by

Winilt) = 6(~21,(1)) - (15(0) = 214(8)) - wye, ij € {1,2,... N} (5)
This interaction term is to be interpreted as follows : (1) neuron j only excites
neuron i when neuron j is momentarily firing, i.e when the step function 6 is
1; (2) the interaction strength is proportional to the difference in the volt-
ages of the neurons, i.e. an excited cell cannot be further excited effectively
by another excited cell; (3) the interaction strength is scaled by “synaptic
weights” wj;.

(4)



Figure 3: Dependence of the aver-
age frequency of action potentials
on the input parameter z in the
BvP-model (Eq. 2) for different
noise amplitudes o. The frequen-
cies were obtained by integrating
the stochastic equations (Eq. 2)
over a long time and counting the
number of action potentials re-
leased.

A Measure for Synchronicity

In the following we provide a measure for the time correlation of the firing
activity of populations of coupled neurons. In case individual neurons are
described by nonlinear oscillators, the synchronicity of N oscillators can be
determined in terms of the phases qﬁi(t) of the individual oscillators as follows:

Cult) = gy D2 eos(6, (1) ~ (0. (6)
( 1#1

The definition of a phase ¢;(t) of the individual oscillators can be expanded
to stochastic nonlinear oscillators in close proximity to the limit cycle [11].
In general, however, it is not easy to find a meaningful definition of the phase
of an SEE. Since each SEE will stay an undetermined amount of time in the
vicinity of the stationary point, the knowledge that two systems are close
to each other on the stochastic limit cycle does not allow a prediction of
the time when these two systems will start their next turn on the stochastic
limit cycle. Therefore, the relative location of SEE’s in the phase space is
not a good basis for defining their synchronicity. For this reason we define
the synchronicity of coupled SEE in terms of the function ¢(t) for neuron ¢;
this function gives at the instant ¢ the time t; at which neuron ¢ started to
fire last, the beginning of firing being defined as the time when z, crosses the
zg-axis from z7 > 0 to ; < 0. The synchronicity Csgg for SEE’s was then
defined accordingly as

t;(t) — ()
REA ALY 7
Csee(t) = NV -1 ECOS T ) (7)
where T is the average firing frequency of the population of SEEs. This
definition becomes equivalent to the definition in Eq. (6) when z is changed
from z > —0.34 to z < —0.34, i.e. when the SEE’s adopt a limit cycle which

does not require noise, as shown in Fig. 1.
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Figure 4: Simulation of the firing activity of 50 coupled BvP neurons. At the
time indicated by the vertical dashed lines, the excitation z is first increased
from z = —0.16 to z = —0.24 and then restored to the initial value z = —0.186.
The top trace shows the correlation function Csgg(t). The synchronicity
Csek responds to the change in z with a delay of about two firing cycles. The
lower three traces represent the transmembrane voltage signal z,(t) of three
neurons. (noise amplitude is ¢ = 0.1, synaptic weights are all w; ; = 0.01).

3.1 Dynamical Properties of Coupled SEEs

To study the dynamics of a population of coupled SEE’s, we numerically
integrated the dynamics of 50 uniformly coupled SEE’s described by Egs. (4).

Figure 4 shows the result of a typical simulation. In the initial time
interval the neurons were only slightly excited (z = —0.16). At the instant
indicated by the first dashed line, the excitation value is suddenly increased
(2 = —0.24) for a time period lasting to the instant indicated by the second
dashed line, at which time the value of z = —0.16 is restored. The uppermost
graph shows how the correlation function Csgg defined in Eq. 7 responds to
the changes of z. One can see, that the correlation function responds within
approximately two periods to changes of z. This fast synchronization and
desynchronization is a key feature of our model and is in good agreement
with experimental data [4]. The three lower traces in Fig. 4 show the voltage
signal z1(t) of three of the 50 neurons. At low excitation values (z = —0.16),
the neurons fire at a relatively low frequency. As the excitation of the neurons
increase (z = —0.24), the firing frequency rises and at the same time, the
firing pattern of the coupled neurons becomes synchronized.

In Fig. 5 we present histograms showing the time correlation of action
potentials for large populations of neurons for different values of the excita-
tion parameter z. The histograms show the firing probability of neuron i at a
time 6t after neuron j has fired. For the first two simulations with z = —0.12
and z = —0.16 the firing is essentially asynchronous. There is only a small
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correlation due to the finite size of the neuronal population (N = 100). For
z = —0.20 and z = —0.24 the firing is synchronous. The synchronicity be-
comes more pronounced as the parameter z is further lowered below the value
of zeriy & —0.185, for which the system would show a synchronization phase
transition with order parameter Csgg in the limit of N — co. (A detailed
discussion of this phase transition will be published elsewhere.)

Figure 6 shows the the firing frequencies of coupled and uncoupled neu-
rons and order parameter Csgg as a function of z, obtained from simulations
of N = 500 neurons. It is worth noting that this transition in the firing pat-
tern already occurs at quite low excitation values, much lower than necessary
for an individual neuron to become continuously firing.

Experiments by Gross and Kowalsky [24] have shown that the synchronous
firing activity in populations of randomly coupled neurons is usually con-
nected with intense firing activity. This relation is naturally reproduced by
our model (see Fig. 6).

4 Artificial Cortical Geometry

We simulated the dynamics of the neural activity in a system where the cou-
pling strengths between any two neurons are no longer uniform, but mimic
the coupling scheme of neurons in the visual cortex. The aim was to re-

Figure 5: Histograms showing the time correlation of firing of 100 ho-
mogeneously coupled neurons. Plotted are the number of times that two
firing events have been recorded with a time difference of 6t in a sim-
ulation involving 100 neurons. The values of z are -0.12 for (A), -0.16
for (B), -0.20 for (C), and -0.24 for (D). The time span over which firing
events are correlated increases with lowered z-value (noise amplitude is
o = 0.1, synaptic weights are all w; ; = .005).
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Figure 6: Correlation and firing frequency as a function of the excitation
parameter z. The graph shows the dependence on z of the frequency of
coupled neurons (upper graph) compared to the frequency of uncoupled
neurons (middle graph). The bottommost graph gives the correspond-
ing Csgg for the coupled system which is simulated using 500 neurons
coupled by w;; = 0.001 and with noise o= 0.1.

produce experiments by Gray and Singer [4] in which oriented light bars
presented to the retina of a cat evoked synchronous activity in area 17 of the
visual cortex.

Extensive neuroanatomical studies based on Hubel and Wiesel’s pioneer-
ing works [25, 26] have resulted in information on the structure of the visuo-
cortical pathways: activity in the retina projects onto the visual cortex in
such a way, that signals from nearby areas on the retina project to nearby
areas of the visual cortex. On a lower hierarchal level one finds cells that
respond best to stimuli of a specific orientation. Cells representing all ori-
entation prefences are grouped in the socalled hypercolumns of the primary
visual cortex.

Accordingly, we distribute the neurons in our simulation on a two dimen-
sional grid labeling them by their horizontal and vertical position (4, j) and
assigning them four different orientation preferences 6;; = 0°,45°,90°,135°
relative to the x-axis according to the scheme displayed in Figure 7. This dis-
tribution scheme ensures that four neurons on any 2 x 2 area of the artificial
cortex assume all four orientation preferences. The scheme is a caricature
of the observed orientation homogeneity in the hypercolumns of the cortex
(27, 28].

The coupling between two neurons (¢,7) and (¢, j') was described as in
Eq. 5. The weights w; ; are chosen

®)

— (1) (2)
Wi 5 ' = Wmax ® wi’j;i/’jl . 'w,-,j;i,,j; . wi’j;i:’j: (8)
where
(1) — 2
wi’j;,-;’j/ = COSs (6,‘,]' - eil’jl) (9)
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Figure 7: Distribution of orienta-
tion preferences of neurons in the
artificial cortex. The center part
of the figure shows a quadruple of
neurons which represent an orien-
tation column.
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and & ;. j+ is the orientation of the connection vector between neurons (i, j)
and (¢, j'). The weights are scaled by the global parameter wmax. The three
factors in this formula describe how the coupling strength depends (1) on the
relative orientation preference, (2) on the distance, and (3) on the alignment
of the orientation preferences of neighboring neurons, respectively.

Rotating Bar on the Artificial Cortex

We use our artificial cortex to simulate the synchronous activity evoked in
the visual cortex by a rotating bar presented to the retina. This bar is shown
schematically in Fig. 8. In these simulations, cortical neurons the receptive
fields of which overlap with the light bar receive an additional excitation of
strength Az

21 = (@ =27 /3 4 29 + (2 + Dzig) 4+ ;Wi

. 12
zhi = (0= o= bag)/c+ (D) 12)
where
Azmax cos2(9,~,j —6p) : for neurons receiving input
Az = ‘ from the light bar (13)
0 : for all other neurons
with 6y being the orientation of the bar. The other parameters are z = —0.16,

Azmax = —0.16, 0 = 0.1, and wmax = 0.04.
We simulated a light bar presented through the retina to an array of
25 x 25 neurons. The light bar initially covered the central portion of the
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retina which is connected to 7 x 21 neurons of the cortex then rotated around
its center with a constant angular velocity (see Fig. 8). In these simulations,
the neurons covered by the light bar and having an orientation preference
approximately parallel to the bar engaged in synchronous, periodic oscilla-
tion. Neurons covered by the light bar, but having an orientation preference
approximately perpendicular to the orientation of the bar, did not fire pe-
riodically and had a much lower frequency; their firing spikes however were
correlated with the firing spikes of the neurons with correct orientation pref-
erence. Figure 9 presents a histogram of time differences between spikes for
the two populations of neurons, those covered by the bar (1) and those not
covered by the bar (2). One can see that firing correlation is maintained over
a long time for population (1). The population (2) does not show long time
correlation; the small wiggle in the correlogram is caused by the influence of
the neurons of (1), which s excite adjacent neurons of population (2) .

As the bar rotates, the population (1) of excited neurons constantly
changed due to the rotation of the bar, with new neurons added and other
neurons leaving the population. The ability of these neurons to respond
quickly with their firing activity, i.e. quickly synchronize or desynchronize
with the rest of the population, was thereby important for the coding of the
location of the bar in terms of synchronous firing activity. Although different
neurons participated in the synchronous activity during the rotation of the
bar, the phase of the oscillations was preserved over a time period of a full
turn of the object.

5 Conclusion

Our investigations demonstrated that synchronous periodic oscillations ap-
pear in populations of SEE’s with sufficiently large external excitation z.
Both synchronization and desynchronization occur within few firing periods
after modification of z. We believe that this behaviour is relevant to under-
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number of events

Figure 9: Histograms showing the
firing time correlation of different
populations of the cortical neu-
rons. Plotted are the number of
times that two firing events of
neurons of the same population
have been recorded with a time
difference of 6t. The upper curve
shows the counts for neurons (1)
covered by the bar, the lower
curve shows the counts for neu-
rons (2) not covered by the bar.
Neurons (1) under the bar fire
at a higher frequency and with
larger correlation. (z = —0.16,
Azmax = —0.16, ¢ = 0.1, and
wmaX=0.04).

time difference

stand the occurrence of synchronous firing in physiological neural networks
as observed in [4, 5].

The only way to achieve synchronization and desynchronization in os-
cillator models, rather than SEE models, is to shift the phases of single
oscillators. This shift is driven by the competition of two mechanisms, cou-
pling and noise. This shift develops only slowly, unless coupling and noise
are changed drastically. SEE models show a different, and more suitable
behaviour. Synchronicity is controlled by the excitability of the neurons.
Periodic activity only arises as the excitability of the neurons is increased
beyond a critical threshold z.;;. The single neurons themselves have no
autonomous phase, but respond with their firing activity such that periodic
activity emerges very rapidly in a population of coupled SEEs. While oscilla-
tor models have been similarly successful in describing the state of collective
oscillations in neural networks, the SEE model also describes well the state of
non-synchronous firing. Furthermore the model reproduces the relation be-
tween high firing frequency and synchronicity experimentally measured for
randomly connected networks [24].

The model in based on a description of single neurons in terms of observ-
able dynamic variables. The results presented demonstrate a simple mecha-
nisms by which synchronization can be induced and exploited for solution of
the binding problem.
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