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The boundary integral method for calculating the stationary states of a quantum particle
in nano-devices and quantum billiards is presented in detail at an elementary level.
According to the method, wave functions inside the domain of the device or billiard are
expressed in terms of line integrals of the wave function and its normal derivative along
the domain’s boundary; the respective energy eigenvalues are obtained as the roots of
Fredholm determinants. Numerical implementations of the method are described and
applied to determine the energy level statistics of billiards with circular and stadium
shapes and demonstrate the quantum mechanical characteristics of chaotic motion. The
treatment of other examples as well as the advantages and limitations of the boundary
integral method are discussed.
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1. Introduction

Recent advances in nanotechnology, based on advanced crystal growth and litho-
graphic techniques, have opened an avenue to fabricate very small and clean elec-
tronic devices, known as nano-devices1. The charge carriers (electrons) in such
devices, through gate voltages, are confined to one or two spatial dimensions. At
very low temperatures, the spatial extent of the systems along the direction of con-
finement is comparable to the Fermi wavelength of the electrons. Quantum dots
and quantum wires are examples of quasi zero- and one-dimensional nano-devices
in which confinement of the electrons occur along all three and along two spatial
directions, respectively, while in the inversion layer of narrow-gap semiconductor
heterostructures the electrons are confined along the direction perpendicular to the
layer. Quantum dots are relevant in the study of the Coulomb blockade phenomena2,
while quantum wires are experimental realizations of so-called Luttinger liquids3.
The motion of the electrons in a clean two-dimensional nano-device is ballistic,

i.e., the electrons are scattered mainly by the device boundaries and not by impuri-
ties. The device boundaries, due to high precision lithography, may have arbitrary
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2 Boundary Integral Method for Stationary States

shapes and are very sharp, i.e., the electrical potential changes abruptly on atom-
ic scales. As a result, the behavior of such two-dimensional nano-devices, which
exhibit quantum confinement in one direction and free motion of the electrons in
a finite two-dimensional domain of sub-micron size, is governed by single-electron
(particle) physics, and can be described theoretically by solving the corresponding
Schrödinger wave equation. Such nano-devices can be considered as quantum me-
chanical analogue of classical billiard systems4 in which point like particles bounce
inside a two-dimensional (2D) region D delimited by the contour Γ. An idealized
quantum billiard confines a quantum particle inside a 2D infinite potential well; the
shape of the infinite well being determined by Γ.
Quantum billiards represent models of nano-devices which play an important

role in modern semiconductor industry1. The experimental study, via STM tech-
niques, of quantum billiards provides a new testing-ground for the predictions of
quantum mechanics1. The study of quantum billiards allows one to investigate also
the quantum signatures of classical chaos. It is known that non-integrable classical
systems are chaotic, i.e., the phase space trajectory of the system exhibits exponen-
tial sensitivity to the initial conditions. In the case of billiards, the chaotic behavior
is caused by the irregularities of the boundary and not by the complexity of the
interaction in the system (e.g., scattering of the particle from randomly distribut-
ed impurities). Since the concept of “phase space trajectory” loses its meaning in
quantum mechanics, one can naturally ask oneself what is the quantum mechanical
analogue of (classical) chaos, or more precisely, is there any detectable difference
between the behavior of a quantum system with chaotic- and non-chaotic classical
limit, respectively.
The answer to these questions should be sought in the characteristics of the

fluctuations of the energy levels of the quantum billiard systems5,6. Thus, in or-
der to study the physical properties of quantum billiards one needs to find first
the corresponding energy spectrum by solving the time independent Schrödinger
equation

Ĥψn(r) ≡
[
− h̄

2

2m
∇2 + V (r)

]
ψn(r) = Enψn(r) , (1)

where Ĥ is the Hamiltonian of the system, V (r) is the potential energy, and ψn
is the eigenfunction corresponding to the energy eigenvalue En. In general, in (1)
the potential V (r) does not contain the term corresponding to the infinite potential
well; the effect of the later is reflected by the “hard-wall” (i.e., Dirichlet) boundary
conditions at the billiard boundary. The spectrum is discrete and the distribution of
the energy levels En is determined by the form of the potential and by the boundary
conditions.
Eq.(1) can be solved analytically only for very few special cases, when the system

is integrable, i.e., when there exists, besides the energy, a second conserved physical
quantity. Such examples, like a quantum particle in a rectangular or circular infinite
potential well, are discussed in most of the quantum mechanics textbooks7 and in
some recent publications8, as well. However, for a generic quantum billiard the
energy spectrum can be determined only numerically, and the description of such
numerical methods lacks in all widely used quantum mechanics textbooks.
The purpose of the present article is to fill this gap by providing the reader with

a self-contained and practical introduction to a powerful numerical method, known
as the Boundary Integral Method (BIM), for calculating the energy levels of a 2D
quantum system, e.g., a quantum billiard. While the BIM, sometimes also referred
to as the Boundary Element Method (BEM), has been extensively used for many
years for solving different engineering problems9,10,11, its application for calculating
energy spectra of quantum billiards has emerged only recently12,13,14,15,16.
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Before we embark on our presentation of the BIM for calculating energy spectra
of 2D quantum systems, let us first mention a few other frequently used numerical
methods in the same context.
Essentially all numerical methods devised to solve the single particle Schrödinger

equation (1) can be classified in two groups. The methods belonging to the first
group assume that one readily knows a complete set of orthonormal functions
{φm(r)} which obey the desired boundary conditions along the billiard boundary.
By expanding the unknown energy eigenfunctions

ψn(r) =
∑
m

cnmφm(r) , (2)

the Schrödinger equation is converted into the familiar system of homogeneous linear
equations for the coefficients cnm∑

m

(Hnm − Enδnm) cnm = 0 , (3)

Here δnm is the Kronecker-delta (equal to 1 for n = m and zero otherwise), and the
matrix elements of the Hamiltonian are

Hnm =
∫
dr φ∗n(r)Ĥ φm(r) . (4)

Equation (3) admits non-trivial solutions (energy eigenstates or stationary states)
only for those values of En (the energy eigenvalues) which satisfy the condition

det |Hnm − Enδnm| = 0 . (5)

This condition can be employed to determine the En’s.
When the billiard boundary is irregular, in general, it is impossible to find ana-

lytical expressions for the functions φm(r) and, therefore, the method as described
fails. However, in this case one can overcome the previously mentioned difficulty by
either performing a coordinate transformation which renders the boundary highly
regular, or by extending the system, fitting the billiard inside a rectangle or circle
along which the Dirichlet boundary conditions apply. Now a complete set of or-
thonormal functions can be easily found, but the price one pays in both cases is that
the corresponding Hamiltonian becomes more complicated: in the former case the
simple form of the kinetic energy is altered18 while in the latter case the potential
energy is modified19, i.e., V (r) = 0 inside D and V (r) = ∞ (in practice a suitably
chosen large value) outside D.
The second class of numerical methods intended to calculate billiard spectra

regard Eq.(1) as a partial differential equation for which the general solution is for-
mally given by (2) for some conveniently chosen basis functions φm(r). The energy
eigenfunctions and eigenvalues are determined by requiring the general solution (2)
to obey the Dirichlet boundary conditions along ∂D. Of course, the boundary condi-
tions can be met only for particular values of the energy, i.e., the energy eigenvalues.
Heller20 used this method choosing as the basis functions plane waves, while a more
general and systematic implementation of this method in plane polar coordinates
is described by Schmit21.
The BIM is an efficient alternative to the above mentioned two classes of methods

for solving numerically the Schrödinger equation. We shall consider its application
only for two-dimensional systems. The BIM will allow us to study the quantum
analogue of classical chaotic systems and reveal that chaotic behavior is reflected in
the spacing of the energy eigenvalues En. For this purpose, the BIM is formulated
in Sec. 2 and is applied, in Sec. 3, to the spectra of circular, stadium and generalized
stadium billiards. In Sec. 4 we discuss further examples to which the BIM can be
applied. In Sec. 5 we present concluding remarks.
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2. The Boundary Integral Method

Consider a quantum particle of mass m moving in a finite, simply connected region
D, experiencing the potential V (r) and being governed by the Hamiltonian

Ĥ = − h̄
2

2m
∇2 + V (r) . (6)

The energy spectrum of the particle can be determined from the time-independent
Schrödinger equation (1) together with the boundary conditions for the wave func-
tions ψn(r) specified on a closed curve Γ = ∂D which delimits the region D.
The Schrödinger equation (1) is an implicit equation for En and ψn(r). This

differential equation can be replaced by an implicit integral equation which can also
serve to determine En and ψn(r). For this purpose, one introduces the Green’s
function, G(r, r′;E) of the operator E − Ĥ, defined as the solution of

[E − Ĥ(r)]G(r, r′;E) = δ(r − r′) , (7)

where δ(r−r′) is the two-dimensional δ-function, E is a complex variable , and r, r′
are arbitrary points in D. Multiplying Eq.(1) by G(r, r′;E), Eq.(7) by ψn(r), and
adding the resulting equations yield

ψn(r)δ(r − r′) + (En − E)ψn(r)G(r, r′;E) =

G(r, r′;E)Ĥψn(r)− ψn(r)ĤG(r, r′;E) . (8)

We consider now Eq.(8) for E = En. In this case the second term on the LHS
vanishes, provided that G is finite (i.e., has no poles) at En. A necessary (but not
sufficient) condition is that G does not obey the same boundary conditions as ψn.
Inserting the Hamiltonian (6) in the RHS of Eq.(8) eliminates the terms containing
the potential energy V (r) and Eq.(8) becomes

ψn(r)δ(r − r′) =
h̄2

2m
[
ψn(r)∇2G (r, r′;En)−G (r, r′;En)∇2ψn(r)

]
. (9)

Recalling the identity u∇2v = ∇(u∇v)−∇u∇v, valid for any differentiable functions
u(r) and v(r), the RHS of the above equation can be written as a divergence

ψn(r)δ(r − r′) =
h̄2

2m
∇ · [ψn(r)∇G (r, r′;En)−G (r, r′;En)∇ψn(r)] . (10)

Integration with respect to r over the domain D yields, on the LHS, ψn(r′) since
r′ ∈ D; applying Green’s formula22, the integral on the RHS can be expressed as a
line integral along Γ = ∂D and Eq.(10) becomes

ψn(r′) =
h̄2

2m

∮
Γ

ds(r) [ψn(r)∂νG (r, r′;En)−G (r, r′;En) ∂νψn (r)] . (11)

Here ds(r) is the infinitesimal arc length along Γ at r ∈ Γ, and the normal derivative
∂ν is defined through

∂ν ≡ ν(r) · ∇r , (12)

with ν(r) representing the exterior normal unit vector to Γ at r ∈ Γ. This is the
desired integral equation which, for nano-devices and quantum billiards, provides
a simpler avenue to En and ψn(r) than the Schrödinger equation (1). Note that
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Eq. (11) does not exhibit an explicit dependence on the potential function V (r);
the effect of the latter is incorporated entirely in the Green’s function G(r, r′;E).
The eigenvalues En can be obtained by noting that existence of solutions ψn(r)

implies conditions of the type (5). We will adopt a similar strategy for Eq. (11)
and consider for this purpose the limit r′ ∈ Γ. In this limit Eq.(11) becomes an
implicit equation for ψn(r) confined solely to the boundary Γ such that a condition
like (5) can be postulated and exploited to determine En.
The limit r′ ∈ Γ in (5) is not trivial since both the Green’s function and its

normal derivative are singular at r = r′. However, these singularities are integrable
in the sense of Cauchy’s principal value. To demonstrate this we carry out the
integration in (5) along a slightly altered contour Γε which avoids the singularity
and then let the altered contour approach Γ continuously. For this purpose we
define Γε = Γ̃ε ∪ Cε, where Γ̃ε coincides with Γ, except for a portion of arc-length
2ε centered about r′; Cε is a circular arc with center at r′ and radius ε as shown in
Fig. 1, where r′ lies inside the region delimited by Γε. We consider then the integral
in (5) for limε→0+ Γε = Γ.
For Γε the integral has two contributions corresponding to Γ̃ε and Cε. The

r
r’

ε=r−r’

ϕν(r)

ε

O

T1

T2

Γ

  θ(r’) 

A

Cε

Fig. 1. Geometry of the boundary Γε in the vicinity of the point A (position vector r’) where the
Green’s function is singular.

integration along Γ̃ε in the ε→ 0+ limit is, by definition, Cauchy’s principal value
integral along the original contour Γ. We denote the integral as

lim
ε→0

∫
Γε

ds(r) . . . ≡ P
∮

Γ

ds(r) . . . . (13)

The contribution due to the integral along Cε depends on the type of singularity
of the Green’s function at r = r′. The integral can be calculated as shown in
Appendix B. One obtains

lim
ε→0

h̄2

2m

∫
Cε

ds(r) [ψn(r)∂νG (r, r′;En)−G (r, r′;En) ∂νψn(r)] =
1
2
ψn(r′) . (14)

In the derivation of this formula we have implicitly assumed that there is a u-
nique tangent to Γ at r′, i.e., that the angle θ(r′) in Fig. 1 is equal to π. Other-
wise, according to Eq.(B.4) in Appendix B, the RHS of (14) must be replaced by
(θ(r′)/2π)ψn(r′), where θ(r′) is the exterior angle between the two tangents to Γ
at r′.
Altogether, one obtains for ψn(r′) , r′ ∈ Γ the integral equation

ψn(r′) =
h̄2

m
P

∮
Γ

ds(r) [ψn(r)∂νG (r, r′;En)−G (r, r′;En) ∂νψn(r)] (15)
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where one still needs to specify the boundary condition on Γ which involves ψn
and/or its normal derivative ∂νψn. The boundary condition is expressed as a linear
functional relation

F [ψn(r), ∂νψn(r)] = 0 , r ∈ Γ . (16)

The actual form of the functional F depends on the physical problem at hand, but
not on the contour Γ. The energy eigenvalues En are determined by requiring that
Eqs.(15) and (16) admit nontrivial solutions for ψn. This condition leads us to an
equation involving functional (Fredholm) determinants of the type (5) which need
to be solved by numerical means. Once En and the corresponding ψn and ∂νψn on
Γ are determined, the eigenfunction inside the domain D can be calculated using
Eq.(11).
Below we will demonstrate the application of the method outlined which is re-

ferred to as the Boundary Integral Method (BIM). The method is practical whenever
(i) a Green’s function G is available analytically and (ii) the boundary condition
(16) is fairly simple; the method applies to Γ of arbitrary shape.

3. Billiard Spectra via BIM

Inside a billiard a particle moves freely, i.e., V ≡ 0 in (6). The Green’s function
defined through (7) is well known in this case and is given by

G (r, r′;E) = − im
2h̄2H

(1)
0 (k |r − r′|) , (17)

as shown in Appendix A. Here k =
√
2mE/h̄ is the so-called wave vector; the index

n is dropped since we focus in the following on a single eigenstate. We will also
use the notation G (r, r′; k) for the Green’s function. Since the particle is confined
to the billiard, its wave function ψ ≡ ψn must vanish along Γ and the boundary
condition (16) takes the form

ψ(r) = 0 , ∂νψ(r) = arbitrary , ∀ r ∈ Γ . (18)

Inserting (18) in the the integral equation (15) leads to

P
∮

Γ

ds(r)G (r, r′;E) ∂νψ(r) = 0 . (19)

This integral equation admits non-trivial solutions only if the corresponding Fred-
holm (functional) determinant vanishes, i.e., for

det [G (r, r′;E)] = 0 , (20)

a condition which allows one to determine the energies En.
Even though the analytical expression of the Green’s function G is known, the

Fredholm determinant (20) is difficult to evaluate for arbitrary billiard boundaries
Γ. Below we describe more practical schemes for solving the integral equation (19).

3.1. Methods for Solving the BIE

There are basically three different methods for solving the BIE (15) for the billiard
problem. Before presenting these methods, let us first parameterize the billiard
boundary Γ through the arc length s ∈ [0,L], where L is the length of the billiard
boundary Γ. Thus, the position of each point r ∈ Γ is uniquely determined by s
through the function r = r(s). It is convenient to introduce the notation

u(s) ≡ un(r(s)) ≡ ∂νψn(r) . (21)
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The BIE (19) can be recast then as

∫ L

0

ds G (s, s′; k)u(s) = 0, (22)

where, for brevity, we have dropped the index n which labels the eigenstates.
Method I. The most obvious (but not necessarily the most convenient)

method of solution relies on the observation that both the wave function and its
normal derivative (i.e., u(s)) are single-valued functions and, therefore, u(s) must
be a periodic function of s with period L. Hence, (22) can be expressed as a Fourier
series

u(s) =
∞∑

j=−∞
uj exp(iKjs) , (23)

where
Kj ≡ 2π

L j , j = 0,±1,±2, . . . (24)

and where uj is the Fourier transform of u(s)

uj =
1
L

∫ L

0

ds u(s) exp(−iKjs) . (25)

By taking the Fourier transform of Eq.(22) with respect to s′ and using (23) one
obtains the system of linear equations

∞∑
j=−∞

Aij(k)uj = 0 , (26)

where

Aij(k) =
1
L

∫ L

0

ds

∫ L

0

ds′G (s, s′; k) exp [−i(Kis
′ −Kjs)] . (27)

Here the information about the billiard boundary Γ is contained in the s- and s′-
dependence of the Green’s function through r = r(s) and r′ = r(s′). The energy
eigenvalues, expressed through k, are the solutions of the equation

det [Aij(k)] = 0 (28)

which must hold in order to render (26) solvable.
For an arbitrary Γ one cannot solve Eq.(28) exactly. However, approximate

energy eigenvalues can be obtained by truncating the infinite system of linear e-
quations (26) at some suitably chosen wave vector Kc. The truncation implies that
the Fourier components of u(s) which correspond to |Kj | > Kc are set equal to
zero in (23). In this case the relevant part of the matrix Aij becomes finite and
the corresponding determinant can be calculated numerically. The drawback of the
truncation is that the resulting energy eigenvalues expressed through k are accurate
only as long as k ≤ Kc. If one seeks to describe energy levels with larger k-values
one needs to increaseKc which, however, leads to an increased computational effort,
the latter increasing rapidly with the dimension of the matrix Aij .
The calculation of the matrix elements Aij as double integrals (with an integrand

which is singular at s = s′) is computationally cumbersome and, as a result, the
present method is impractical, except for the case of a circular billiard. In this case
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Aij(k) is a diagonal matrix and its elements can be expressed in terms of products
of Bessel and Hankel functions as shown in Appendix C. Equation (28) reads then

det [Aij(k)] ∝
∞∏

j=−∞
Jj(k)H

(1)
j (k) = 0 . (29)

The Hankel functions H(1)
j (k) have no real roots and, hence, the energy eigenvalues

for a circular billiard with unit radius are given by the zeros of the integer order
Bessel functions

Jj (kn) = 0 , En = h̄2k2
n/2m , j = 0,±1,±2, . . . (30)

a well known result, which can also be obtained by solving the Schrödinger equa-
tion (1) by means of separation of variables8. The present derivation of this result
demonstrates the equivalence of the BIE (22) and the stationary Schrödinger equa-
tion. Note that because J−j(k) = (−1)jJj(k) [formula 9.1.5 in Ref.23] all the roots
corresponding to j �= 0 are doubly degenerate.

Method II. Rather than approximating the BIE in Fourier space one can
approximate it in coordinate space, i.e., one can solve (19) and not (26). For this
purpose one proceeds in two steps. First, one approximates the boundary Γ by a
polygon with N vertices situated on Γ, as shown in Fig. 2. Denoting the segment
between vertices i and i + 1 by Γi one can write Γ ≈ ∪N

i=1Γi, and the BIE can be
approximated by a sum of integrals along the N sides of the polygon. In a second
step, one replaces along each segment Γi the function u(s) ≡ ∂νψn(r) by a constant
ui. The BIE is then replaced by

N∑
i=1

ui

∫
Γi

ds(r)G (r, r′; k) = 0 . (31)

Equation (31) still contains the continuous variable r′ which should be elim-
inated. For this purpose, let us denote the position vector of the vertex i (see
Fig.2) by si and the position vector of the middle point of Γi by ri = (si + si+1) /2.
Then, setting in (31) r′ = rj , j = 1, 2, . . . , N , one arrives at the so-called Boundary
Element Equation (BEE)9,10

N∑
i=1

ui ∆si
∫ 1

2

− 1
2

dξ G (ri + ξ∆si, rj ; k) = 0 , (32)

where ∆si ≡ si+1 − si. The above equation represents a homogeneous system of N
linear equations and can be written

N∑
j=1

Bij(k) uj = 0 . (33)

The elements of the matrix Bij(k), up to an irrelevant constant factor, are given by
[cf. Eq.(17)]

Bij(k) ≡ ∆sj
∫ 1

2

− 1
2

dξ H
(1)
0 (k |rj − ri + ξ∆sj |) . (34)



Boundary Integral Method for Stationary States 9

1

23

i

i+1 N

Γiνi

D

Γ

Fig. 2. The billiard boundary Γ is approximated by a polygon with N vertices.

In analogy to our previous approach, the (approximate) energy eigenvalues can be
obtained (in terms of k) from

det[Bij(k)] = 0 , (35)

i.e., as the real roots of this equation.
The matrix elements Bij in (34) are expressed as single integrals in contrast

to the matrix elements Aij defined in (27) which are expressed in terms of double
integrals. As a result, Method II is computationally less demanding than Method I,
but has nevertheless two unfortunate features. First, the evaluation of the diagonal
matrix elements Bii requires special integration technique due to the (integrable)
singularity of the Green’s function at ξ = 0. Second, in contrast to Method I where
the truncation of the exact, infinite matrix Aij (defined in the Fourier space) pro-
vides us with a natural cutoff wave vector Kc, in case of Method II the relationship
between a similarKc and the degree of discretization of the boundary (in real space)
is less obvious.
It should be emphasized that truncation in Fourier space is not quite equivalent

to truncation (discretization of the boundary) in real space15. As an empirical rule,
if one wishes to calculate energy eigenvalues corresponding to k ≤ Kc accurately,
one must take at least a few (about ten) discretization points for each section of the
boundary of length equal to the corresponding de Broglie wave length λ = 2π/Kc.
Thus, the number of discretization points N scales with the length L of the billiard
boundary and the wave vector Kc as follows

N ∼ 10
L
λ
=

10
2π
(KcL) ∼ KcL. (36)

Accordingly, accurate calculations of energy eigenvalues corresponding to sufficient-
ly large k values require a large number of discretization points N along the bound-
ary Γ, a condition which leads to large matrices Bij and, since these matrices are
dense, to undesirable computational efforts.

Method III. The most widely used method for the evaluation of billiard
spectra is based on a non-singular version of the BIE (19). A simple, but not
entirely rigorous17, derivation of this method applies the normal derivative operator
∂ν′ = ν(r′) · ∇r′ to both sides of Eq.(15) which, according to definition (21) and
with boundary condition (18) leads to

u (r′) = − h̄
2

m

∮
Γ

ds(r) ∂ν′G (r, r′;E)u(r) . (37)

The integral kernel on the RHS, indeed, is non-singular at r = r′. BIE (37) is a
homogeneous integral equation with unknown u(r); the energy eigenvalues E are
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given by the zeros of the corresponding Fredholm determinant [cf. Eq.(20)], i.e., as
the solutions of

det
[
δ (r − r′) +

h̄2

m
∂ν′G (r, r′;E)

]
= 0 . (38)

Taking into account the explicit form (17) of the free particle Green’s function,
Eq. (37) can be written [cf. Eq.(B.3)]

u (r′) = − ik
2

∮
Γ

ds(r) cosφ (r′, r)H(1)
1 (k|r′ − r|) u(r) , (39)

where

cosφ (r′, r) ≡ ν(r′) · r′ − r
|r′ − r| (40)

is the cosine of the angle between the exterior normal vector to Γ at r′ and the
unit vector corresponding to r′ − r. Note that for r = r′ the above scalar product
vanishes and, actually, cancels the singularity due to the Hankel function in the
integrand of the BIE (39).
For a billiard with arbitrary boundary, the above functional determinant cannot

be calculated analytically and one needs to resort to a numerical solution. For this
purpose, one employs the same strategy as in case of Method II. After discretizing
the boundary Γ, one can replace the BIE (39) by the BEE [cf. Eq.(32)]

uj = − ik
2

N∑
i=1

ui∆si
∫ 1

2

− 1
2

dξ cosφ (rj , ri + ξ∆si)H
(1)
1 (k |rj − ri − ξ∆si|) , (41)

where the notations are the same as in the case of Method II. Since the integrands
on the RHS of the above equation are well behaved for all i, j = 1, 2, . . . , N , one
can approximate the corresponding integrals by the trapezoidal rule. As a result
one obtains the system of linear equations

N∑
j=1

Cij(k)uj = 0, (42)

where
Cij(k) ≡ δij +

ik

2
∆sj cosφijH

(1)
1 (krij) , (43)

cosφij = νi · rij

rij
, rij = ri − rj . (44)

The (approximate) energy eigenvalues can be determined as the roots of the deter-
minant of Cij

det [Cij(k)] = 0 . (45)

3.2. Numerical Algorithm for Solving the BEE

Based on the computational methods introduced we have written a FORTRAN 77 pro-
gram which implements the necessary algorithmic steps using the SLATEC Com-
mon Mathematical Library24. For all three methods one can employ a common
algorithmic framework containing (i) a function det(k) which, for an input wave
vector k, returns the complex value of the determinant of the corresponding system
matrix, i.e., Aij , Bij or Cij ; (ii) a routine solve which calculates approximately the
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Fig. 3. Plot of abs det(k) (open circles) for the circle billiard, corresponding to 60 and 300
discretization points (dp) of the boundary, by using Method III. The positions of the minima
approximate the sought eigenvalues kn. While the values of the minima depend strongly on the
degree of discretization of the boundary, the actual positions of the minima do not.

roots of the equation det(k) = 0. Once the function det(k) and the correspond-
ing root finder solve are available one can scan the interval of k values of interest
(between zero and the cut-off wave vector Kc) to determine the zeros kn of det(k)
and, hence, the energy eigenvalues En. The algorithm may fail in practice when the
separation between two consecutive eigenvalues is smaller than the scanning step
∆k, i.e., when eigenvalues are nearly degenerate. The only way to avoid this error
is to use the smallest affordable ∆k.

Table 1. The first 18 distinct eigenvalues kn corresponding to the circle billiard of unit radius

obtained by using Methods I, II and III. The eigenvalues corresponding to Method I represent the
zeros of the integer Bessel functions Jj(k) and should be regarded as exact solutions. In case of
Method II (III) the boundary was discretized by employing 60 (300) equally spaced points along
the circle. The relative error for each approximate solution is less than 0.1%.

Method I Method II Method III Method I Method II Method III
2.40482 2.4077 2.4053 8.77148 8.7800 8.7720
3.83170 3.8360 3.8320 9.76102 9.7720 9.7615
5.13562 5.1415 5.1360 9.93611 9.9440 9.9375
5.52007 5.5265 5.5206 10.17347 10.1855 10.1745
6.38016 6.3871 6.3806 11.06471 11.0760 11.0655
7.01558 7.0233 7.0160 11.08637 11.0945 11.0865
7.58834 7.5960 7.5888 11.61984 11.6335 11.6200
8.41724 8.4265 8.4175 11.79153 11.8055 11.7920
8.65372 8.6640 8.6545 12.22509 12.2320 12.2265

The actual form of det(k) depends on the method chosen. In case of Method I,
each matrix element Aij is given by a two-dimensional integral [see Eq.(27)] with
singular and oscillatory integrand such that the evaluation of det(k) would be com-
putationally extremely demanding and would require special integration routines.
Hence, we did not pursue an implementation of det(k) for Method I. In the case of
Methods II and III the function det(k) consists of the following three parts
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(i) The subroutine discretize which takes as input the data necessary to define
the actual form of the billiard boundary and the number of discretization
points N of the billiard boundary; discretize returns as output the vectors
ri, si (i = 1, . . . , N) [see Fig. 2] and other useful quantities based on them,
such as the matrix rij = ri − rj , the vectors ∆si = si+1 − si, ∆si = |∆si|,
νi = ẑ ×∆si/∆si (i.e., the external unit vector to the boundary at ri), etc.
If one does not want to change the degree of discretization of the billiard
boundary during the successive evaluations of det(k), subroutine discretize
should be run only once, namely during the first call of the function det(k).

(ii) The subroutine sys mat which evaluates the complex valued matrix elements
Bij and Cij in case of Method II and III, respectively. The Bij are evaluated
according to Eq.(34) employing two SLATEC24 (more preciselyQUADPACK24)
quadrature routines, namely DQAGS, for calculating the non-diagonal matrix
elements, and DQAWS, for calculating the diagonal matrix elements in which
the integrand has a logarithmic singularity at ξ = 0. The Cij are evaluated
according to Eqs.(43-44) in a straightforward way. In both cases the Hankel
functions can be expressed in terms of the corresponding Bessel and Neumann
functions for which the double precision SLATEC routines DBESJ0, DBESJ1
and DBESY0, DBESY1, respectively, are called.

(iii) The function det(k) which evaluates the determinant of Bij and Cij , re-
spectively. For this purpose one employs the SLATEC subroutines24 ZGEFA
(factors a complex matrix by using Gaussian elimination) and ZGEDI (calcu-
lates the determinant and the inverse of a complex matrix by using the factors
from ZGEFA).

The function det(k) is complex-valued and, therefore, its real roots kn (the
sought eigenvalues) must be simultaneously zeros of both real and imaginary parts
of this function. Due to the finite discretization of the boundary, the numerical solu-
tions of the equation det(k) = 0 will be complex with a (hopefully) small imaginary
part. In fact, the magnitude of the imaginary part of the “complex eigenvalue” k̃n
can be used to characterize the accuracy of the energy eigenvalues thus determined
through the real part of k̃n. To the best of our knowledge, there exists no public
domain subroutine which calculates automatically the roots of an arbitrary complex
function of one complex variable, and as a result one can make little or no progress
at all in the endeavor of constructing a robust kn eigenvalue finder algorithm based
on the above straightforward approach. However, there is a relatively simple solu-
tion to this problem which seems to be widely used by practitioners of the BIM11,21.
One notes that the zeros of det(k) are also absolute minima for the square of the
absolute value of this function, i.e., of abs det(k) ≡ Re[det(k)]2 + Im[det(k)]2.
Strictly speaking, the minima should assume zero values. The discretization of the
boundary (or equivalently, the truncation of the original functional determinant)
introduces errors such that the numerically evaluated minima of abs det(k), are
small, but not zero; the magnitude of each minimum can be used to distinguish a
real root of det(k) from a local minimum of abs det(k). Since, numerically, it is
much easier to determine the (local) minima of a real function of a real variable than
to determine the roots of a complex function of a complex variable the suggested
approach is much more convenient for our purpose. Accordingly, solve determines
actually the local minima of abs det(k) by going through a given interval of wave
vectors kmin ≤ k ≤ kmax in steps of ∆k. Once a minimum is bracketed, its actual
value can be calculated with any desired accuracy (for a given degree of discretiza-
tion of the billiard boundary) by employing, for example, a double precision version
of the function brent from Ref. 25.
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3.3. Numerical Results

As a test of the algorithms described in the previous section and their numerical im-
plementation we determine the spectrum of a circular billiard. In this case Method I
yields the exact energy eigenvalues kn [cf. Eq.(30)] as the roots of the integer Bessel
functions (these roots are in fact tabulated; see, e.g., Ref. 23). The first 18 distinc-
t eigenvalues kn were also determined by means of Methods II and III described
in Sec. 3.1 and are compared in Table 1 with the results of Method I. In case of
Method II (III) 60 (300) equally spaced discretization points of the circular bound-
ary have been employed. The locations of the minima of the function abs det(k)
have been determined by scanning the 2 ≤ k ≤ 13 interval with a step ∆k = 0.004.
Figure 3 illustrates the k-dependence of abs det(k), evaluated in the framework of
Method III for two different discretizations of the boundary. An increase of the
number of discretization points from 60 to 300 changes significantly the values, but
not the positions of the minima and, hence, does not affect significantly the values
kn.
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Fig. 4. The stadium billiard is formed by two semicircles of radius R connected through two parallel
linear segments of length L. The two symmetry axes of the stadium are labeled H (horizontal)
and V (vertical), and the corresponding four symmetry classes of the energy eigenfunctions are
shown.

Table 1 demonstrates that the results of both Methods II and III reproduce the
exact eigenvalues to at least three significant digits for k ≤ Kc [cf. Eq.(36)]. In
case of Method III, we have found that 300 discretization points lead to a precision
of better than 1% for the 150 lowest eigenvalues of the circular billiard (with unit
radius) corresponding to k < 35. For larger k values the density of eigenvalues
increases and, in order to separate adjacent minima of abs det(k), one needs to
reduce the step size ∆k. The method breaks down for k ∼ L/N , i.e., when the
distance between two consecutive discretization points of the boundary becomes
comparable with the de Broglie wavelength of the particle, and the only remedy is
to increase N .
The program implementing Methods II, III allows one to calculate the spectra

of billiards of arbitrary shapes, for which purpose one needs to solely alter the
coordinates of the discretization points of the billiard boundary. As an example,
we choose the Bunimovich stadium billiard depicted in Fig. 4 which consist of two
semi-circles (of radius R = 1) connected by two parallel linear segments (of length
L) . We seek to calculate the lowest few hundred energy eigenvalues of both the
circle and the stadium billiard.
The circle billiard constitutes an integrable system, i.e., the number of constants

of motion (energy and angular momentum) is equal to the number of degrees of
freedom . Its energy eigenstates can be classified according to symmetry, i.e., by an
orbital quantum number m, which counts the nodal lines through the center, and a
principal quantum number n, which counts the nodes of the radial wave function,
i.e., the nodal circles8. In contrast, the stadium billiard, regardless of how small
L is, constitutes a non-integrable, i.e., (strongly) chaotic, system4,27. The study of
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Fig. 5. Spectral staircase N(k) for the lowest 50 (70) energy levels of the (a) circle and (b) stadium
billiard. In (a) the dashed line corresponds to the leading semiclassical Weyl term (Sk2/4π)/2,
where the extra factor of 1/2 accounts for the double degeneracy of the energy eigenvalues with
m �= 0. The solid line is obtained by taking into account the perimeter (next to the leading) term
in the Weyl formula which for the circle billiard is given by ∆N = k/4. In (b) the solid line
corresponds to the asymptotic Weyl formula with the perimeter correction term.

quantum systems for which the underlying classical motion is chaotic is a relatively
new and still widely open field of study28,29. Since it is beyond the scope of the
present article to provide an introduction to quantum chaos, we will content our-
selves with considering without explanation one characteristic which distinguishes
the spectra of non-chaotic (e.g., of a circle billiard) and of chaotic (e.g., of a stadium
billiard) quantum systems, namely the so called (energy) level spacing distribution
P (s). By definition30,31, P (s)ds is the probability that, given an energy level at
E, the nearest neighbor energy level is located in the interval ds about E + s. Ac-
cording to Random Matrix Theory31,32 (RMT), applicable due to a quasi-random
character of the Hamiltonian matrix, quantum systems, as far as the statistics of
their energy spectrum is concerned, in general can be classified into four univer-
sality classes, with well defined and distinct P (s) level spacing distributions30,31.
Integrable systems are described by the Poisson distribution with

Po(s) = e−s . (46)

The energy levels of classically chaotic systems, which do not break time reversal
symmetry, (e.g., the stadium billiard) form a Gaussian Orthogonal Ensemble (GOE)
with

PGOE(s) =
π

2
s exp

(
−πs

2

4

)
. (47)

Further universality classes are the Gaussian Unitary Ensemble (GUE) and the
Gaussian Symplectic Ensemble (GSE); classical chaotic systems which break time
reversal symmetry, e.g., ellipse or stadium billiards in an external magnetic field,
belong to the GUE, while classical chaotic systems which preserve time reversal
symmetry, but break spin rotational symmetry, e.g., a chaotic billiard in the pres-
ence of spin-orbit interaction, belong to the GSE.
Poisson and GOE distributions are distinguished most clearly near s = 0, since

Po(0) = 1 constitutes the maximum of Po while PGOE(0) = 0 constitutes the mini-
mum of PGOE ; neighboring energy levels are likely to attract (repel) each other in
the case of integrable (chaotic) systems. We want to show that the level spacing
distribution evaluated by means of the BIM for circle and stadium billiards satisfies
the Poisson and GOE distribution, respectively. For this purpose one needs to cal-
culate at least a few hundred of the lowest energy levels without actually missing any
energy levels since such misses would distort the energy level spacing distribution.
The quality of the calculations, in particular in the case of the stadium billiard,
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Fig. 6. Histogram of the energy level spacing distribution P (s) for the (a) circle and (b) stadium
billiards. In (a) the histogram is constructed from the lowest 1,200 energy levels of the circle
billiard. The solid line corresponds to the Poisson prediction for the level spacing distribution. In
(b) the lowest 600 energy levels have been used to construct the histogram. The dotted (dashed)
line represents the Poisson (GOE) prediction for P (s). The histogram is best approximated by
the superposition of 4 independent GOE distributions (solid line) which correspond to the same
number of distinct symmetry classes of the energy eigenstates in a stadium billiard.

can be judged from a comparison of the obtained (energy) staircase function N (E)
(which gives the number of quantum states with energy less or equal to E) with the
corresponding Weyl-type formula31,33

〈N (E)〉 = 1
4π

(
S E − L

√
E + C

)
, (48)

where S and L are the area and perimeter of the billiard, and C is a constant related
to the geometry and topology of the billiard boundary. Presently, we employ units
in which h̄2/2m is equal to one; thus, e.g., E = k2. Also, in the numerical results
reported below we have chosen L = R = 1 (see Fig. 4).
Strictly speaking Eq.(48) is valid only in the semi-classical (E → ∞) limit, but

in practice it turns out that one can apply Weyl’s formula even at the lower end of
the energy spectrum. Our results for the staircase function N (k), corresponding to
the first 50 (70) distinct energy levels of the circle (stadium) billiard, are presented
in Fig. 5. In the case of the circle billiard a complication arises due to the fact
that all the energy levels with angular momentum m �= 0 are doubly degenerate.
A simple remedy to this problem is to assume that the fraction of energy levels
corresponding to m = 0 is negligible in comparison to those with m �= 0, and that
the double degeneracy can be accounted for by dividing the RHS of Eq.(48) by two.
Based on the good agreement between N (E) and 〈N (E)〉 shown in Fig. 5, one

may conclude that all energy levels have been accounted for. A similar analysis for
the first 600 energy levels showed that at most a few percent of the energy levels
might been missed. This conclusion is independent of the method chosen, i.e., of
Methods II and III.
For a proper analysis of the energy level statistics we linearly scale the set of ener-

gy eigenvalues such that for the resulting sequence the mean level spacing is uniform
and equal to unity. This transformation, known as “unfolding the spectrum”30,31,
is commonly achieved by replacing the original set of eigenenergies En = k2

n by

Ẽn = 〈N (En)〉 . (49)

The unfolded spectrum now can be used to calculate the nearest level spacings
sn = Ẽn+1 − Ẽn, which fluctuate about their mean value equal to one. Finally, a
normalized histogram of the sn series gives a rough representation of the distribution
function P (s). The resulting distributions P (s) for the circle and stadium billiards
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Table 2. Wave vector eigenvalues kn (< 10) for (a) quarter-, (b) horizontal half-, (c) vertical
half- and (d) full stadium billiards. The quarter stadium has only odd-odd energy eigenstates, the
horizontal (vertical) half stadium has both odd-odd and odd-even (even-odd) eigenstates, while
the full stadium has eigenstates which belong to all four symmetry classes. The symmetry of
each eigenstate of the (full) stadium billiard can be identified based on this table as explained in
the text. The dash in each column indicates that the corresponding eigenvalue is absent for that
system.

quarter horizontal half vertical half full quarter horizontal half vertical half full
stadium stadium stadium stadium stadium stadium stadium stadium

– – 2.7784 2.7785 7.5231 7.5238 7.5238 7.5240
– 3.4037 – 3.4037 – 7.6642 – 7.6640
– – – 3.7211 – – – 7.9760

4.0564 4.0565 4.0565 4.0566 – – – 8.0945
– – 4.6786 4.6785 – – 8.3192 8.3200
– 4.8800 – 4.8800 – 8.3989 – 8.3985
– – – 4.9223 8.4639 8.4642 8.4639 8.4640
– – 5.4931 5.4935 – – 8.5200 8.5200
– – – 5.6360 – – 9.0100 9.0105

5.7456 5.7456 5.7456 5.7455 – – – 9.0600
– – – 6.2714 9.2641 9.2650 9.2650 9.2655
– 6.4387 – 6.4385 – 9.2890 – 9.2895
– – 6.5743 6.5751 – – – 9.3200
– 6.6493 – 6.6495 – 9.5900 – 9.5895

6.9526 6.9531 6.9526 6.9528 – – 9.8281 9.8280
– – 7.1350 7.1352 9.9481 9.9481 9.9481 9.9480
– – – 7.4815 – – – 9.9720

are shown in Fig. 6. In the case of the circle billiard the obtained histogram agrees
very well with the expected Poisson distribution Eq.(46). However, in the case of
the stadium billiard the P (s) histogram does not resemble a GOE distribution, in
particular, the distribution exhibits a clear absence of level repulsion, i.e., P (s) does
not vanish for s→ 0.
The deviation of P (s) from a GOE distribution arises due to the fact that the

stadium billiard, even though it is chaotic, exhibits a geometrical symmetry with
two symmetry planes34, as shown in Fig. 4. Accordingly, the stationary states fall
into four distinct symmetry classes, according to their parity (i.e., either odd or
even) with respect to reflection at the two planes. As a result, the stadium billiard
spectrum is composed of four independent family of states, each of which is expect-
ed to conform to a GOE distribution. A general expression for the level spacing
distribution function P (N)(s) corresponding to the superposition of N independen-
t spectra with GOE statistics is derived in Appendix D. Thus, the level spacing
distribution corresponding to the full stadium billiard is given by Eq.(D.6) with
N = 4, i.e.,

P (4)(s) =
∂2

∂s2

[
erfc

(√
πs

8

)]4

=
3
4
exp

(
−π s

2

32

) [
erfc

(√
π s

8

)]2

+
π

32
exp

(
−π s

2

64

) [
erfc

(√
π s

8

)]3

, (50)

where erfc(z) is the complementary error function23. Comparison of the numerically
determined P (s) with the distribution (50) in Fig. 4 is indeed satisfactory. The
small values of P (s) for small s-values, i.e., values below the prediction by (50), are
likely due to an omission of “nearly degenerate” eigenvalues by our spectrum finder
routine (see also below).
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Fig. 7. Histogram of the energy level spacing distribution P (s) for the (a) quarter- and (b) half-
stadium billiards. The level spacing distribution for a quarter- (half-) stadium is well approximated
by the GOE (two independent sequences of GOE) distribution function.

In order to check the assertion made about the symmetry classes of the energy
eigenstates, and about the corresponding level spacing distributions, we have calcu-
lated and analyzed also the energy spectrum of a quarter stadium, and of the upper
(horizontal) half and right (vertical) half stadium billiards, as well. The results
are shown in Fig. 7. Indeed, the P (s) histogram for the quarter stadium, which
accommodates all the eigenstates with odd–odd symmetry (see Fig. 4) conforms to
a GOE distribution. On the other hand, for each of the two half stadiums, with
eigenstates which belong to two distinct symmetry classes, namely odd–odd and
odd–even (even–odd) in the case of horizontal (vertical) half stadiums, the level
spacing distribution histogram is in good agreement with the theoretical predic-
tion of the superposition of two independent GOE’s as described by Eq.(D.6) with
N = 2, i.e.,

P2(s) =
∂2

∂s2

[
erfc

(√
πs

4

)]2

(51)

=
1
2
exp

(
−π s

2

8

)
+
π s

8
exp

(
−π s

2

16

)
erfc

(√
π s

4

)
.

It should be noted that one can also identify the symmetry of each energy level
of the stadium billiard. For this purpose one needs the energy spectrum of the
full-, quarter-, horizontal half- and vertical half stadiums. These eigenenergies,
corresponding to kn < 10, are listed in a convenient way in Table 2. The odd–odd
eigenvalues can be simply read out from the column which contains the spectrum
of the quarter billiard. Obviously, this eigenvalues belongs also to the other three
billiards under consideration. The odd–even (even–odd) eigenvalues can be obtained
from the spectrum of the horizontal (vertical) half stadium by removing from the
corresponding spectrum all the already known odd–odd eigenvalues. Finally, all
the energy levels of the full stadium which have not been accounted for so far have
even–even parity.
We conclude this section with a few comments on the distribution function

[Eq.(D.6)]

P (N)(s) =
∂2

∂ s2

[
erfc

(√
π

2
s

N

)]N

describing the superposition of N GOE distributions. For N = 1 one recovers the
GOE distribution function (47) wich is normalized and yields a mean level spacing
equal to one. In the limit N → ∞, by using the the series expansion23 erfc(z) = 1−
(2/

√
π) z+O (

x3
)
and the definition23 exp(−x) = limN→∞(1−x/N)N , one arrives
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at P (∞)(s) = exp (−s), which is exactly the Poisson distribution (46). This result
is a particular case of the theorem according to which the level spacing distribution
of the superposition of infinitely many independent spectra (with arbitrary level
spacing distributions) is always Poisson like30,31.
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Fig. 8. (a) Geometrical construction of the deformed billiard (N = 3), starting form the unit circle
billiard. (b) The stadium billiard as an N = 2 deformed billiard. (c) Deformed billiard for N = 5.
The highlighted regions correspond to “elementary sectors” for which simple GOE level spacing
distribution is expected.

Inspired by the billiard stadium problem, we propose a closely related numerical
experiment which tests the appearance of the distribution P (N)(s) (D.6). For this
purpose we determine the energy levels corresponding to a deformation of the circle
billiard involving an N -fold symmetry axis. Let us consider N equidistant points
Ai, i = 1, ..., N on the unit circle, with center O. Bi is the midpoint of the arc
of circle AiAi+1. We construct then points Ci and Di by translating Bi with the
vectors ε ·OAi+1 and ε ·OAi, respectively. The parameter ε controls the degree of
the deformation. The deformed billiard is defined by the linear segments DiCi and
the arcs of circle CiDi+1 with unit radii. The new billiard, for N = 3 and ε = 1,
is illustrated in Fig. 8a. In the limit ε → 0 one recovers the original circle billiard.
For N = 2, the new billiard is actually the stadium billiard, as shown in Fig. 8b.
For N > 2, the billiards can be regarded as a generalization of the stadium billiard;
this is illustrated for another case, N = 5, in Fig. 8c.
For a givenN , the deformed billiard possessesN symmetry planes and, therefore,

the corresponding stationary states fall into 2N distinct symmetry classes, according
to their parity with respect to reflection at these N planes. Proceeding as in the case
of the stadium billiard, one can divide the deformed billiard into 2N elementary
sectors (see the highlighted regions in Fig. 8). The energy levels of a single sector
should have an energy spectrum with GOE statistics. This is, indeed, born out of
a BEM calculation as shown by the corresponding match with a GOE distribution
in Fig. 9a in case of a single N = 5 sector. A billiard formed by attaching n
(n ≤ 2N) such elementary sectors should exhibit a level spacing distribution given
by P (n)(s), while the level spacing distribution corresponding to the full deformed
billiard should conform to P (2N)(s). The level spacing distribution of an N = 5
billiard conforms well to the distribution P (10)(s) as seen in Fig. 9b.
In the limit N → ∞ the deformed billiard becomes a circle of radius 1+ ε as one

can infer readily from the construction presented in Fig. 8. The suggested billiards
produce then level spacing distributions which, due to limN→∞ P (N)(s) = Po(s),
conform to a Poisson distribution. This is to be expected, of course, since this
distribution governs the spectrum of a circle billiard. One can recognize in Fig. 9b
that already in the case N = 5 the level spacing distribution resembles the Poisson
distribution.
Many further billiards can be constructed in a similar way. For the case of

classical systems, a family of billiards which exhibit chaotic as well as mixed chaotic
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Fig. 9. Histogram of the energy level spacing distribution P (s) corresponding to N = 5 for
(a) an elementary sector, and (b) full deformed billiards. The level spacing distribution for the
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distribution

function (solid line). P (s) for the full billiard differs only slightly from the Poisson distribution
(dashed line).

and regular motion have been studied in Ref. 35. The application of the BEM to
determine level statistics as well as wave functions for the mixed system might reveal
some surprising behavior.

4. Other Examples

In this section we wish to present two other examples in which the BIM can be
applied. Both examples exhibit the features mentioned at the end of Sec. 2: (i) the
corresponding Green’s function is known analytically; (ii) the boundary condition
at Γ assumes a simple form. Due to lack of space we shall only outline the BIM
treatment of these examples. The interested reader is encouraged to work out
further details, including the statistical analysis of the obtained data, in analogy to
the quantum billiard case presented in the previous section.

4.1. Finite Potential Well

As a first example let us consider a particle trapped inside a two-dimensional po-
tential well defined by a finite potential increase at the boundary, described by the
potential

V (r) =
{
0 , for r ∈ Di

Vo , for r ∈ Do .
(52)

Here Di/o represents the inner/outer region determined by a closed boundary Γ of
arbitrary shape. The depth of the potential well is Vo (> 0). The energy spectrum
for this system has a discrete part for En < Vo, and a continuous part for E > Vo.
The quantum billiard studied in the previous section can be regarded as a limiting
case of the present case corresponding to Vo → ∞.
For the purpose of calculating the discrete energy eigenvalues of the system one

applies the BIM presented in Sec. 2 for both inner (Di) and outer (Do) regions.
As a result one obtains a set of two coupled BIE’s; the two unknown functions are
the wave function ψn and its outward (with respect to the inner region Di) normal
derivative ∂νψn along Γ.
For D ≡ Di, in analogy to Eq.(15), the corresponding BIE reads

ψ(i)
n (r′) =

h̄2

m
P

∮
Γ

ds(r)
[
ψ(i)

n (r)∂νG
(i) (r, r′;En)−G(i) (r, r′;En) ∂νψ

(i)
n (r)

]
,

(53)
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with the Green’s function

G(i) (r, r′;En) = − im
2h̄2H

(1)
0 (kn |r − r′|) , kn =

√
2mEn/h̄ . (54)

The “exterior problem” D ≡ Do requires a more careful treatment due to the
fact that Do is unbounded. One can circumvent this difficulty by considering instead
a finite region Dρ delimited by Γ inside and by a circle Cρ with a very large radius
ρ outside, the center of the later located somewhere inside the region Di; evidently,
limρ→∞ Dρ = Do. Thus, when we apply Green’s formula to obtain the BIE an extra
term results in (15) due to the circle Cρ. However, this extra term vanishes in the
limit ρ→ ∞ because for bound states (the only ones we are interested in) both the
wave function ψ(o)

n and its gradient ∇ψ(o)
n vanish exponentially at infinity. Hence,

the corresponding BIE becomes

ψ(o)
n (r′) = − h̄

2

m
P

∮
Γ

ds(r)
[
ψ(o)

n (r)∂νG
(o) (r, r′;En)−G(o) (r, r′;En) ∂νψ

(o)
n (r)

]
,

(55)
with the Green’s function (which is finite for |r− r′| → ∞)

G(o) (r, r′;En) = − im
2h̄2H

(1)
0 (iqn |r − r′|) = − 1

π
K0 (qn |r − r′|) ,

qn =
√
2m (Vo − En)/h̄ . (56)

Here K0(z) is a Bessel function of imaginary argument23 (see also Appendix A).
Note the minus sign on the RHS of Eq.(55) which accounts for the opposite orien-
tation of the exterior normal unit vectors corresponding to Di and Do.
Since the wave function and its normal derivative must be continuous across Γ,

i.e.,

ψ(i)
n (r) = ψ(o)

n (r) ≡ ψn(r) , (57)

∂νψ
(i)
n (r) = ∂νψ

(o)
n (r) ≡ ∂νψn(r) , (58)

Eqs.(53-56) form a set of coupled BIE’s with respect to the unknown functions ψn
and ∂νψn.
The numerical calculation of the energy levels of a particle in a finite two-

dimensional potential well proceeds similarly as in the case of a quantum billiard.
The steps to be filled in are the same as those discussed in Secs. 3.1,. Note, howev-
er, that due to the simultaneous presence of both ψn and ∂νψn in the BIE’s, only
Method II can be applied in this particular case.

4.2. Quantum Billiard in a Magnetic Field

As a second example, let us consider a charged particle confined to a two-dimensional
billiard with Vo → ∞ [cf. Eq.(52)], in the presence of a uniform magnetic field B
perpendicular to the plane of motion. The Hamiltonian for such quantum billiard
in a magnetic field is given by [cf. Eq.(6)]

Ĥ =
1
2m

(p− qA)2 + V (r) , (59)

where p = −ih̄∇ is the momentum operator, q is the electric charge of the particle,
A(r) is the vector potential (B = ∇×A) and V (r) is the scalar potential as given
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by Eq.(52). The energy spectrum of the system can be determined by solving
the Schrödinger equation (1) subject to the Dirichlet boundary condition (18). To
derive the corresponding BIE we rewrite the Hamiltonian (59), recalling that for a
static magnetic field ∇ ·A = 0,

Ĥ = − h̄
2

2m
∇2 +

q2A2

2m
− i qh̄

m
A · ∇ , (60)

and define the Green’s function G(r, r′;E) as the solution of[
E − Ĥ∗(r)

]
G (r, r′;E) = δ (r − r′) , (61)

where Ĥ∗ is the complex conjugate of the Hamiltonian (60). Note that Ĥ∗ �= Ĥ ,
which implies that the magnetic field breaks time reversal symmetry30.
Using the same strategy as in Sec. 2, one can derive the following BIE

ψn(r′) =
h̄2

m
P

∮
Γ

ds(r) [ψn(r)∂νG (r, r′;En)−G (r, r′;En) ∂νψn (r)]

+ i
2qh̄
m

∮
Γ

ds(r)Aν (r)G (r, r′;En)ψn(r) , (62)

where Aν ≡ ν · A. Since the wave function ψn vanishes along the boundary of the
billiard Γ [cf. Eq.(18)] the last term in Eq.(62) can be dropped. As a result, we ob-
tain formally the same BIE as in the field-free case, namely Eq.(19), or equivalently
Eq.(38). Hence, the energy levels of a quantum billiard in a magnetic field can be
determined as described in Sec. 3. The only difference is that, instead of the free
particle Green’s function, the Green’s function of a charged particle in magnetic
field needs to be used36. Here we assume a vector potential corresponding to the
symmetric gauge (i.e., A = B × r/2)

G (r, r′;En) = ei(x
′y−y′x)/2�

(
− m

2πh̄2

)
Γ

(
1
2
− ε

)
e−z/2 U

(
1
2
− ε, 1, z

)
, (63)

3 =
√
h̄/mω is the so-called magnetic length, ω = qB/m is the cyclotron frequency,

ε = E/h̄ω, z = (r − r′)2/232, Γ(x) is the Gamma function23 and U(a, b, x) is
the logarithmic confluent hypergeometric function23. The derivation of Eq.(63) is
beyond the scope of this article; the reader is referred to Ref. 36.
The above Green’s function can be evaluated numerically by employing the

double precision SLATEC subroutines24 DGAMMA, for the function Γ(x), and DCHU,
for U(a, b, x). Since the evaluation of the Green’s function and its normal derivative
(which can be expressed analytically) is very time consuming in the presence of a
magnetic field, it is recommended to apply Method III for determining the energy
spectrum of the system.

5. Conclusion
In this article we have attempted to provide a self-contained, tutorial like introduc-
tion to the Boundary Integral Method for calculating single particle energy spectra
in two-dimensional nano-devices. The BIM is suitable whenever (i) a Green’s func-
tion G is available analytically and (ii) the boundary condition at the boundary of
the device is fairly simple. The method applies to arbitrary shapes of the boundary.
As we have shown, the BIM can be successfully applied to calculate the energy

spectrum of quantum billiards, allowing one to investigate the quantum signatures
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of chaos in these systems. The numerical accuracy of the BIM strongly depends on
the degree of discretization of the billiard boundary. Unfortunately, by increasing
the number of discretization points along the billiard boundary, the needed compu-
tational resources seem to increase more rapidly than the accuracy of the calculated
energy levels. Since the number of the needed discretization points along the bil-
liard boundary scales linearly with the cutoff wave vector Kc [see Eq.(36)], one
can conclude that, in fact, the BIM allows one to calculate the lowest few hundred
energy levels of any quantum billiard. The determination of higher energy levels,
in general, becomes computationally too expensive. Needles to say, the other exist-
ing numerical methods for solving the Schrödinger equation present similar or even
more stringent limitations and altogether they perform worse than the BIM.
In conclusion, we would like to mention a few experimental confirmations of the

energy level fluctuations of quantum billiards described in this article. The revived
interest in studying billiard spectra, in the context of quantum chaos, has resulted
in beautiful microwave experiments37,38 designed to test the theoretical predictions,
based mainly on random matrix theories. These experiments exploit the analogy
between the Schrödinger wave equation of a quantum particle in an infinite two-
dimensional potential well and the Helmholtz equation of the electromagnetic field
in a resonant cavity. Thus, by microwave measurements in the range of 0-25 GHz
frequency in quasi two-dimensional cavities shaped, e.g., in the form of a quarter
stadium billiard, up to few thousands eigenfrequencies were measured in Refs. 37,38,
and found in agreement with spectra obtained by employing the BIM. Microwave
measurements39,40 resulted also in the direct observation of the eigenfunctions in
microwave cavities of different shapes; the eigenfunctions were also found to be
in agreement with descriptions by means of the BIM. A very recent microwave
(“photon”) billiard measurement41 allowed for the first time the direct experimental
study of the energy level statistics in the presence of broken time reversal symmetry;
the level spacing distribution was found to conform to a GUE form.
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Appendix A

In this appendix we derive the expression of the free particle Green’s function
G (r, r′;E) in two spatial dimensions. The corresponding expression in d-dimensions
can be obtained in a similar fashion.
The free particle Green’s function is defined as the solution of the equation [cf.

Eq.(7)] (
E +

h̄2

2m
∇2

r

)
G (r, r′;E) = δ (r − r′) ,

or (∇2
r + k

2
)
G (r, r′; k) =

2m
h̄2 δ (r− r′) , (A.1)

where k ≡
√
2E/mh̄2 is the wave vector of the particle of energy E, and we have

replaced the energy variable in the Green’s function with k, i.e., G(k) ≡ G(E).
By changing variables R = r − r′, which is equivalent to moving the origin of the
coordinate system to the point r′, the above equation becomes

(∇2
R + k

2
)
G(R; k) =

2m
h̄2 δ(R) , (A.2)

whereG(R; k) ≡ G(R, 0; k). The fact that Eq.(A.2) does not contain r′ and depends
only on R is the consequence of translational symmetry.
One can solve (A.2) by of Fourier transform. Inserting the Fourier representa-

tions

G(R; k) =
∫

d2q
(2π)2

G̃(q; k) exp(iqR) , (A.3)

and

δ(R) =
∫

d2q
(2π)2

exp(iqR) (A.4)

in Eq.(A.2), and identifying the Fourier coefficients on both sides of the resulting
equation, one arrives at

(−q2 + k2)G̃(q; k) =
2m
h̄2 . (A.5)

Inserting G̃ from (A.5) into (A.3) results in

G(R; k) =
2m
h̄2

∫
d2q
(2π)2

exp(iqR)
k2 − q2 . (A.6)

The two-dimensional integral is evaluated by using polar coordinates q = (q, θ) as
follows

G(R; k) =
m

πh̄2

∫ ∞

0

qdq

k2 − q2
1
2π

∫ 2π

0

dθ exp(iqR cos θ) . (A.7)

The second integral on the right hand side is identified as one of the integral rep-
resentations of the 0-th order Bessel function J0(qR) [cf. formula 8.4111. in Ref.26]
and one obtains

G(R; k) = − m

πh̄2

∫ ∞

0

dq
qJ0(qR)
q2 − k2

. (A.8)
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The integral on the RHS of (A.8) is ill defined due to the singularity of the
integrand at q = ±k. However, the integral can be regularized by adding to k
an infinitely small, positive imaginary part, i.e., k → k + iε. In this case k2 →
(k + iε)2 = −(ε − ik)2, and according to the formula 6.5324 of Ref.26 the integral
in (A.8) is equal to K0((ε − ik)R), where K0 is the MacDonald (modified Bessel)
function, which is finite as R→ ∞. After taking the limit ε→ 0+, one obtains then

G(R; k) = − m

πh̄2K0(−ikR) . (A.9)

Note that for ε < 0 the above integral would be divergent for R→ ∞. However, as
long as we are not concerned with the R→ ∞ behavior of G(R; k), the infinitesimal
ε can be chosen either positive or negative. The choice ε > 0 is equivalent to the
so-called Sommerfeld radiation condition42.
Finally, by using the identity K0(z) = (iπ/2)H

(1)
0 (iz) [formula 8.4071 in Ref.26],

where z is an arbitrary complex number and H(1)
0 is the 0-th order Hankel function

of the first kind, one arrives at the expression of the free particle Green’s function
given by (17).

Appendix B
In order to calculate the LHS of Eq.(14), consider first the case when the potential
energy V (r) is zero and, therefore, the relevant Green’s function is given by (17).
For ε ≡ |r − r′| → 0 one can replace the Hankel function in the above equation by
its limiting form for small arguments43

G (r, r′;En) ∼ − m

πh̄2 ln(kε) , ε→ 0 . (B.1)

Next, we parameterize the arc of circle Cε through the angle ϕ (see Fig.1) formed
by the tangent AT1 to Γ at A∈ Γ (of position vector r′) and the vector ε. The angle
ϕ assumes values between zero and θ(r′) = ̂T1AT2, i.e., the exterior angle made by
the two tangents to Γ at A. If the contour Γ is smooth then the tangents coincide
and θ(r′) = π. The arc element along Cε is ds(r) = εdϕ. Since both ψn and ∂νψn
are finite, in the limit ε → 0 the quantities can be replaced in (14) by their values
at r = r′; one obtains then

lim
ε→0

h̄2

2m

∫
Cε

ds(r)G (r, r′;En) ∂νψn(r) = − 1
2π
lim
ε→0

[ε ln(kε)] θ(r′)∂νψn(r′) = 0 .

(B.2)
The integral containing ∂νG in (14) can be calculated in a similar fashion. Ac-

cording to Eqs.(12) and (17) one can write successively

∂νG (r, r′;En) = ν(r) · ∇r

[
− im
2h̄2H

(1)
0 (k|r− r′|)

]
(B.3)

=
imk

2h̄2

[
ν(r) · r − r′

|r − r′|
]
H

(1)
1 (k|r − r′|) ,

where we used dH(1)
0 (z)/dz = −H(1)

1 (z) [cf. formula 9.1.30 in Ref.23]. On the arc
of circle Cε the dot product in (B.3) is equal to one (see Fig.1); taking into account
the limiting form of H(1)

1 for small arguments43, one can write

lim
ε→0

h̄2

2m

∫
Cε

ds(r)ψn(r)∂νG (r, r′;En)
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=
h̄2

2m
ψn(r′) lim

ε→0

∫ θ(r′)

0

εdϕ

(
imk

2h̄2

) (
− 2i
πkε

)
=
θ(r′)
2π

ψn(r′) . (B.4)

For a smooth boundary Γ, where θ(r′) = π, Eqs.(B.2-B.4) provide the result given
in (14).
For a finite potential energy V (r), in general, there is no simple analytical ex-

pression for the Green’s function G and the validity of Eq.(14) is questionable.
However, by assuming on physical grounds that V (r) is finite for all r ∈ D, one can
realize that the result (14) holds in this case too. Indeed, when ε is small the poten-
tial energy is almost constant in the vicinity of r′ (point A in Fig.1) and, therefore,
one can approximate the Green’s function with the corresponding expression valid
for a constant V ≡ V (r′). The approximation becomes exact in the limit ε → 0.
But G for a constant potential energy has essentially the same form as for a free
particle [Eq.(17)] and, therefore, it has the same type of logarithmic singularity at
r = r′. Since the actual value of the integral (14) is determined solely by the type
of this singularity of the Green’s function one may conclude that the result derived
in this appendix holds in general.

Appendix C

In this appendix we solve analytically the BIE (22) for a circular billiard of unit
radius. For the unit circle L = 2π and, according to Eq.(24), one finds Kj = j, with
j = 0,±1, . . .. By using the Fourier representation (23) for u(s), the BIE becomes

∞∑
j=−∞

uj

∫ 2π

0

dsG (s, s′; k) exp(ijs) = 0 . (C.1)

The expression (A.6) of the free particle Green’s function, in the present case, can
be written

G (s, s′; k) =
2m
h̄2

∫
d2q
(2π)2

exp{iq[r(s)− r(s′)]}
k2 − q2

=
m

πh̄2

∫ ∞

0

qdq

k2 − q2
1
2π

∫ 2π

0

dθ exp[iq cos(s− θ)] exp[−iq cos(s′ − θ)] , (C.2)

where q and θ are the polar coordinates of the 2D vector q. Inserting (C.2) in (C.1)
one obtains (the irrelevant constant factor 2m/h̄2 can be dropped)

∞∑
j=−∞

uj

∫ ∞

0

qdq

k2 − q2
1
2π

∫ 2π

0

dθ exp[−iq cos(s′ − θ)]

× 1
2π

∫ 2π

0

ds exp[iq cos(s− θ)] exp(ijs) = 0 . (C.3)

By taking into account the integral representation of the integer Bessel function
[formula 8.4111. in Ref.26], the integral over s in (C.3) can be evaluated exactly as
follows

1
2π

∫ 2π

0

ds exp[iq cos(s−θ)] exp(ijs) =
[
1
2π

∫ 2π

0

ds exp{i[q cos(s− θ) + j(s− θ)]}
]

× exp(ijθ) = ijJj(q) exp(ijθ) . (C.4)
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Similarly, the integral with respect to θ in (C.3) gives

1
2π

∫ 2π

0

dθ exp[−iq cos(s′ − θ)] exp(ijθ) = (−i)jJj(q) exp(ijs′) . (C.5)

With the last two results, Eq.(C.3) becomes

∞∑
j=−∞

uj exp(ijs′)
∫ ∞

0

dq
q [Jj(q)]

2

k2 − q2 = 0 . (C.6)

By employing formulas 6.535, 8.4061 and 8.4071 in Ref.26, the integral with respect
to q can also be calculated exactly as follows

∫ ∞

0

dq
q [Jj(q)]

2

k2 − q2 = −
∫ ∞

0

dq
q [Jj(q)]

2

q2 + (ik)2

= −Ij(−ik)Kj(−ik) = −π
2
Jj(k)H

(1)
j (k) . (C.7)

Here Ij and Kj are imaginary argument Bessel functions.
Finally, the BIE for the circle billiard of unit radius can be written as

∞∑
j=−∞

uj exp(ijs′)Jj(k)H
(1)
j (k) = 0 , (C.8)

Since exp(ijs), j = 0,±1 . . ., form a complete orthonormal set, the above equation
tells us that the expansion coefficients should be all equal to zero. The eigenenergies
correspond to those k values for which non trivial uj ’s exist. Recalling that the
Hankel functions have no real roots, one obtains the same eigenenergy equation
(30) as in Sec. 3.1.
By taking the Fourier transform of Eq.(C.8) with respect to s′, one can see that

the matrix Aij(k) defined by (27) is indeed diagonal and

Aij(k) ∝ Jj(k)H
(1)
j (k) δij . (C.9)

Appendix D

In this appendix we derive the level spacing distribution function P (N)(s) corre-
sponding to the superposition of N independent spectra with GOE level spacing
distribution. In general, P (s) can be expressed30

P (s) =
∂2E(s)
∂ s2

, (D.1)

where E(s), the so-called gap probability, gives the probability that the energy in-
terval (E,E + s) lacks energy levels.
Let us consider N independent (i.e., uncorrelated) sets of energy levels with

GOE level spacing distribution

Pi(s) =
π

2
s

N2
exp

[
−π
4

( s
N

)2
]
, i = 1, . . . , N (D.2)
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The probability density (D.2) is normalized as follows∫ ∞

0

dsPi(s) = 1 , 〈si〉 ≡
∫ ∞

0

ds s Pi(s) = N . (D.3)

Note that the choice 〈si〉 = N for each set of levels leads to a unit mean level spacing
〈s(N)〉 for the spectrum comprising all N energy spectra.
According to Eqs.(D.1)-(D.2), the individual gap probabilities can be expressed

as

Ei(s) =
1
N

∫ ∞

s

dx

∫ ∞

x

dy Pi(y) (D.4)

=
2√
π

∫ ∞
√

π s
2N

dt exp
(−t2) = erfc

(√
π s

2N

)
,

where erfc(z) is the complementary error function23. Since the energy spectra are
uncorrelated, the gap probability of the combined spectrum is given by

E(N)(s) =
N∏

i=1

Ei(s) =
[
erfc

(√
π

2
s

N

)]N

, (D.5)

and, according to (D.1), the desired level spacing distribution function becomes

P (N)(s) =
∂2

∂ s2

[
erfc

(√
π

2
s

N

)]N

. (D.6)

Note that the above method of calculating P (s) is rather general and applies
also when the independent spectra have arbitrary statistics. For example, one could
calculate the level spacing distribution of the superposition of an arbitrary number
of spectra, some of them obeying Poisson statistics and the rest GOE statistics. For
further details the reader is referred to Refs. 31,32.


