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I. INTRODUCTION

Photosynthetic systems contain a variety of large photoactive pigment-protein complexes (PPCs) that

carry out important functions necessary for maintaining the life cycle of photosynthetic organisms (e.g.,

light-harvesting, quinone redox reactions and ATP synthesis). Being involved in electron and electronic ex-

citation transfer processes PPCs have been the subject of numerous experimental and theoretical studies [1].
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In PPCs the photoactive pigment molecules are held in well defined spatial configuration and orientation

by a scaffold of proteins. At physiological temperature the dynamics of the protein matrix are governed

mainly by classical physics and, therefore, can be studied by means of molecular dynamics (MD) simula-

tions provided that a sufficiently high resolution molecular structure of the system is available. However,

key to photosynthesis is the interaction of light with the electronic degrees of freedom of the pigment mole-

cules which is quantum mechanical in nature. In general, the properties of PPCs are determined by the

chemical nature of the pigment, the electronic interactions between the pigment molecules, and the inter-

actions between pigment molecules and their environment (e.g., protein, lipid and solvent molecules). In

photosynthetic organisms PPCs function at physiological temperature and, therefore, their electronic and

optical properties are strongly affected by thermal fluctuations which represent the main source of dynamic

disorder in these systems. Thus, the theoretical description of thermally disordered PPCs is a complicated

stochastic quantum mechanics problem that requires to determine and characterize the quantum states of the

interacting pigment molecules in the presence of a fluctuating environment. Even in the simplest theoretical

models of PPCs the simultaneous treatment of the electronic coupling between the pigments and the effect

of thermal disorder can be done only approximately [2–5]. Most of the currently used theoretical approaches

for calculating the electronic transfer rates and optical spectra of PPCs are based on empirical stochastic

models in which several fitting parameters are adjusted to simulate the corresponding experimental results

[6].

In this chapter a general approach for predicting and characterizing charge transfer, spectral and optical

properties, e.g., linear absorption (OD) and circular dichroism (CD) spectra, of PPCs is presented [7, 8]. The

approach that combines MD simulations, quantum chemistry (QC) calculations and quantum many-body

theory is based solely on atomic-level crystal structure information. The conformational dynamics of the

protein matrix embedded into its natural environment (a fully solvated lipid bilayer) are followed by means

of classical MD simulations. Next, for each pigment molecule, modeled as a quantum two level system, the

energy gap (and, in case of optical spectra, the transition dipole moment) time series are determined along a

properly chosen segment of the MD trajectory by means of QC calculations. Finally, the transfer rate and/or

optical spectra are determined in terms of a lineshape function which, within the cumulant approximation,

can be calculated from the sole knowledge of the energy gap time series. The authors made every effort

to present the material in a manner that is accessible to the general biophysics readership, including both

theorists and experimentalists.

The chapter is organized as follows. In the first part the theoretical background of the combined MD/QC

method for calculating optical spectra and electron transfer rates is presented by following the same general

strategy. The relationship of the presented method to the polaron model and spin-boson model calculations
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is also clarified. To make the presentation self contained, a brief description of the considered model

systems, i.e., the light harvesting complex LH2 from Rs. molischianum (for calculting OD and CD spectra),

and the photosynthetic reaction center from Rb. sphaeroides (for calculating electron transfer rates) is

provided. In the second part of the chapter the presented theory is demonstrated by calculating the optical

spectra of the LH2 and the electron transfer rate in the reaction center.

II. OPTICAL TRANSITIONS AT FINITE TEMPERATURE

Following their crystal structure determination, LH2 complexes from Rs. molischianum [10] and

Rsp. acidophila [11] have been extensively studied both experimentally [12–19] and theoretically [7, 14,

17, 19–26]. LH2 from Rs. molischianum (Fig. 1) is an octamer of αβ -heterodimers arranged in a ring-like

structure [27, 28]. Each protomer consists of an α- and a β -apoprotein which binds non-covalently one

BChl-a molecule that absorbs at 800 nm (referred to as B800), two BChl-a molecules that absorb at 850 nm

(referred to as B850) and at least one carotenoid that absorbs around 500 nm. The total of 16 B850 and 8

B800 BChls form two circular aggregates, both oriented parallel to the surface of the membrane. The exci-

tonic coupling between the B800s is negligible because of their large spatial separation (∼ 22 Å). Therefore,

the optically active Qy excited electronic states of the B800s are almost degenerate. On the other hand, the

tightly packed B850s (with and average Mg−Mg distance of ∼ 9.2 Å within the αβ−heterodimer and

∼ 8.9 Å between the neighboring protomers) are strongly coupled and the corresponding Qy excited states

form an excitonic band in which the states that carry most of the oscillator strength are clustered about

∼ 850 nm (1.46 eV). Another important difference between the two BChl rings is that while the B800s

are surrounded by mostly hydrophilic protein residues the binding pocket of the B850s is predominantly

hydrophobic [10]. Thus, although both B800s and B850s are chemically identical BChl molecules their

specific spatial arrangement and the nature of their protein environment shape differently their spectral and

optical properties. For example, it is quite surprising that the two peaks, due to the B800 and B850 BChls,

in the experimental OD spectrum of LH2 from Rs. molischianum at room temperature [22, 30] have com-

parable widths although, as mentioned above, the B800 levels are almost degenerate while the B850 levels

form a ∼ 0.2 eV wide excitonic band.

In order to calculate the linear optical absorption of a PPC one assumes that the electronic properties of

individual pigment molecules can be described in terms of a two-level system, formed by the ground state

and the lowest excited singlet state (e.g., the Qy state in the case of BChl) involved in the optical absorp-

tion process. Neglecting for the moment the direct interaction between the pigments (e.g., by assuming a

sufficiently large spatial separation between them as in the case of the B800s in LH2), one denotes these
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FIG. 1: Left: Side view of the LH2 complex from Rs. molischianum (entry code 1LGH in Protein Data Bank) embeded

in a fully solvated POPC lipid bilayer. The transmembrane helices of the apoprotein subunits are shown as cylinders

(cartoon representation) and are colored by residue type; dark (light) colors represent hydrophilic (hydrophobic)

residues. For clarity only the BChl macrocycles and the back half of the lipids are shown. The clearly visible B800

(B850) ring is surrounded mostly by polar and charged (nonpolar) protein residues. Right: Tilted side view of the

quantum system formed by the optically active B800 and B850 rings. Graphics rendered with the program VMD [29].

two states for pigment n = 1, . . .N, as |0〉 ≡ |0n〉 and |n〉 ≡ |1n〉, respectively. Once the interaction between

the pigment and its environment composed of the protein matrix, lipid membrane and solvent molecules is

taken into account these two levels transform into still well separated energy bands |0;λ0〉 = |0〉|λ0〉 and

|n;λn〉= |n〉|λn〉. Here the quantum numbers λ0 and λn specify the state of the nth pigment on the ground-

and excited-state potential energy surface, respectively. Because the exact quantum mechanical treatment

of the eigenstates |0;λ0〉, |n;λn〉 and of the corresponding energy eigenvalues E0,λ0 , En,λn is out of ques-

tion, usually the quantum numbers λ0 and λn are associated with the vibronic states of the PPC that can be

modeled within the harmonic approximation as a phonon heat bath. An alternative approach is to follow

the dynamics of the nuclear degrees of freedom of the PPC by all-atom MD simulations, and determine the

energy gap time series ∆En(t) = En(t)−E0(t) at each MD time step by means of QC calculations. The main

assumption of this approach is that the obtained energy gap time series ∆En(t) can be used to calculate ap-

proximately equilibrium quantities (such as energy gap density of states and time autocorrelation functions)

of the original system without the knowledge of the exact energy gap spectrum ∆En,λn,λ0 = En,λn −E0,λ0 .

In the absence of the excitonic coupling between the pigment molecules, the Hamiltonian of the system

can be written as H = H0 +H, where

H0 = ∑
λ0

|0;λ0〉E0,λ0〈0;λ0|, (1)
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and

H = ∑
n

Hn = ∑
λn

|n;λn〉En,λn〈n;λn| . (2)

The electric dipole moment operator through which the incident light field couples to the nth pigment mole-

cule is given by

µ̂n = ∑
λn,λ0

dn,λn,λ0 |n;λn〉〈0;λ0|, (3)

where the transition dipole moment (TDM) matrix element dn,λn,λ0 in the Condon approximation [3] can be

written

dn,λn,λ0 ≈ dn〈λn|λ0〉. (4)

Here dn = 〈1|µ̂n|0〉 is the real TDM vector whose time series can be determined from the same combined

MD/QC calculations as ∆En(t). Note that while 〈1|0〉 = 0, in general the Franck-Condon factors 〈λn|λ0〉

are finite [3].

A. Linear absorption and lineshape function

Because, in general, the wavelength of the incident light is much larger than the size of PPCs, in lead-

ing approximation, the electric component of the light field can be regarded as being uniform throughout

the system. Thus, according to standard linear response theory, the corresponding OD spectrum I(ω) is

proportional to the dipole-dipole correlation function [3, 4]

I(ω) ∝ ω ∑
n,m

Re
[∫

∞

0
dteiωt

〈
µ̂

†
m,i(0)µ̂n,i(t)

〉]
, (5)

where µ̂n,i(t) = e−iHt µ̂n,i(0)eiH0t is the i∈ {x,y,z} component of the time dependent electric dipole operator,

and 〈. . .〉= Tr
{

Z−1
0 exp(−βH0) . . .

}
with β = 1/kBT the usual temperature factor and Z0 the corresponding

partition function. To simplify notation, throughout this paper we use units in which h̄ = 1, and apply the

convention of implicit summation over repeated indices. By employing Eqs. (1),(2) and (3), the quantum

dipole correlation function in Eq. (5) can be expressed as〈
µ̂

†
m, j(0)µ̂n,i(t)

〉
= dn,idm, jδnm

〈
eiH0te−iHnt〉 , (6)

where δnm is the usual Kronecker delta symbol. With Eq. (6) the OD spectrum of an aggregate of noninter-

acting pigments in their native environment can be written in terms of the lineshape function

An(ω)≡ Re
∫

∞

0
dteiωt 〈eiH0te−iHnt〉 (7)
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as

I(ω) ∝ ω ∑
n

d2
nAn(ω). (8)

The main difficulty in calculating the quantum time correlation function in Eq. (7) is due to the fact that

the Hamiltonians H0 and Hn do not commute. If they would, then the lineshape function could be expressed

in terms of the energy gap density of states (DOS). Indeed, in this case
〈
eiH0te−iHnt

〉
≈ 〈exp(−i∆Hnt)〉, with

∆Hn = Hn−H0, and by calculating the time integral in Eq. (7) would follow

An(ω)≈ πN (ω) , (9)

N (ω)≡ 〈δ (ω −∆Hn)〉 ≈ 〈δ (ω −∆En(t))〉, (10)

where the density of states N (ω) is approximated by the binned histogram of the energy gap fluctuations

∆En(t) obtained from combined MD/QC calculations [7–9]. In general, Eqs. (9)-(10) overestimate the

broadening of the lineshape function. Indeed, the Fourier transform of the exact spectral representation of

the correlation function 〈
e−iH0teiHt〉 = ∑

λ0,λn

ρλ0 |〈λ0|λn〉|2e−i(En,λn−E0,λ0
)t , (11)

where ρλ0 = Z−1
0 exp(−βE0,λ0) is the statistical matrix of the electronic ground state, yields

A(ω) = 2π ∑
λ0,λn

ρλ0 |〈λ0|λn〉|2δ (ω −∆En,λn,λ0) , (12)

which can be regarded as a Franck-Condon weighted and thermally averaged density of state[31]. By setting

the Franck-Condon factors 〈λ0|λn〉 equal to unity in (12) one obtains Eqs. (9)-(10). Since it is not possible

to determine all these factors, it is often convenient to use Eqs. (9)-(10) as a rough estimate of An(ω) for

calculating the OD spectrum.

A systematic way of calculating the correlation function in (7) is the cumulant expansion method [3, 32,

33]. Within the second order cumulant approximation that is often used in optical spectra calculations[4]

one has 〈
eiH0te−iHnt〉 =

〈
T exp

[
−i

∫ t

0
dτ∆Hn(τ)

]〉
≈ exp

[
−i〈∆Hn〉t−

∫ t

0
dτ(t− τ)Cn(τ)

]
,

(13)

where T is the time ordering operator, ∆Hn(t) = eiH0t∆Hne−iH0t , Cn(t) = 〈δHn(t)δHn(0)〉, and δHn(t) =

∆Hn(t)−〈∆Hn〉. The quantum statistical averages in Eq. (13) can be be approximated by the corresponding

classical ones, involving the energy gap time series ∆En(t), as follows

〈∆Hn〉 ≈ 〈∆En(t)〉 ≡ ωn, (14)
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Re[Cn(t)]≈Cn(t)≡ 〈δEn(t)δEn(0)〉 , (15)

where δEn(t) = ∆En(t)− 〈∆En〉. It should be noted that although the approximation of the real part of

a quantum time correlation function by the corresponding classical correlation function as in Eq. (15) is

generally accepted [9, 34, 35], other approximation schemes have also be used and tested [36].

Next, by invoking the fluctuation dissipation theorem [4], C̃n(−ω) = exp(−βω)C̃n(ω), where C̃n(ω) =∫
∞

−∞
dt Cn(t)exp(iωt) is the Fourier transform of Cn(t), the quantum correlation function in terms of the real

spectral density

Jn(ω) =
1
2

[
C̃n(ω)− C̃n(−ω)

]
=

1
2

(
1− e−βω

)
C̃n(ω) (16)

can be written as

Cn(t) = C ′
n(t)− iC ′′

n (t) (17)

=
∫

∞

0

dω

π
Jn(ω) [coth(βω/2)cosωt− isinωt] .

By identifying the real part of Eq. (17) with Eq. (15) one can determine both the spectral density and the

imaginary part of the quantum correlation function, i.e.,

Jn(ω) = 2tanh(βω/2)
∫

∞

0
dt Cn(t)cosωt, (18)

and

C ′′
n (t) =

∫
∞

0

dω

π
Jn(ω)sinωt. (19)

Thus, the lineshape function within the second cumulant approximation is

An(ω)≡ An(ω −ωn) =
∫

∞

0
dt e−φn(t) cos[(ω −ωn) t +ϕn(t)], (20)

where the broadening and frequency shift functions are given by

φn(t) =
∫ t

0
dτ (t− τ)Cn(τ) , (21)

and

ϕn(t) =
∫

∞

0

dω

π
Jn(ω)

ωt− sinωt
ω2 . (22)

Formally Eq. (20) and (8) for the lineshape function and the OD spectrum remain valid in the case of N

excitonically coupled pigment molecules as well provided that the site index n is replaced with the excitonic

index J. In principle the energies EJ,λJ and TDMs dJ of the excitonic states |J;λJ〉, J = 1, . . . ,N, ought to
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be determined from QC calculations by considering all N pigments as a single quantum system. Since

such computational approach is still prohibitively expensive a practical alternative is to use an effective

Hamiltonian for determining the time series ∆EJ(t) = EJ(t)−E0(t) and dJ(t) from ∆En(t) and dn(t) of the

individual pigments. Assuming that the latter interact via a point dipole-dipole interaction

Vnm =
1

4πε0εr

[
dndm

r3
nm

−3
(dn · rnm)(dm · rnm)

r5
nm

]
, (23)

where εr is the relative dielectric permitivity of the medium, rn is the position vector of pigment n, and

rnm = rm− rn, the eigenvalue equation one needs to solve at every MD timestep is

∑
m

[(∆Enδnm +Vnm)−∆EJδnm]c(J)
m = 0 . (24)

In term of the coefficients c(J)
n = 〈J|n〉 the excitonic TDMs are

dJ = ∑
n
〈J|n〉dn . (25)

Next, by rewriting the Hamiltonian (2) in diagonal form (i.e., in terms of noninteracting excitons) H =

∑J HJ = ∑J,λJ |J;λJ〉EJ,λJ 〈J;λJ|, it follows〈
µ̂

†
m, j(0)µ̂n,i(t)

〉
= ∑

J
〈J|n〉dn,idm, j〈m|J〉

〈
eiH0te−iHJt〉 , (26)

and

∑
n,m

〈
µ̂

†
m, j(0)µ̂n,i(t)

〉
= ∑

J
dJ,idJ, j

〈
eiH0te−iHJt〉 . (27)

Inserting Eq. (27) into Eq. (5) one obtains the desired OD spectrum of the excitonic system

I(ω) ∝ ω ∑
J

d2
J AJ(ω) , (28)

where

AJ(ω) = Re
∫

∞

0
dteiωt 〈eiH0te−iHJt〉 . (29)

B. Polaron model

An alternative approach for calculating the OD spectrum of a PPC at finite temperature is based on

the so-called polaron model, according to which the excitonically coupled pigment molecules (excitons)

interact with the vibronic modes (phonons) of the system [7, 25]. The corresponding model Hamiltonian
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[37], in the second quantized, site representation reads

H = Hex +Hph +Hint , (30)

Hex = ∑
n

εn B†
n Bn + ∑

n6=m
Vnm B†

n Bm = ∑
J

EJB†
J BJ , (31)

Hph = ∑
n,α

ωα b†
nα bnα , (32)

Hint = ∑
nα

gαωα B†
n Bn (b†

nα + bnα) . (33)

In the exciton Hamiltonian Hex the operator B†
n (Bn) creates (destroys) an electronic excitation εn on the nth

pigment (modeled as a two level system), while Vnm describes the excitonic coupling between the pigments n

and m. The eigenstates of Hex are excitons (delocalized electronic excitations) characterized by the creation

(annihilation) operator B†
J (BJ) and energy EJ . The index J = 1, . . . ,N labels the excitonic states upon

increasing energy. Similarly, the operator b†
nα (bnα ) in the phonon Hamiltonian Hph creates (annihilates)

a vibronic mode ωα at site n. Finally, Hint describes the interaction between excitons and phonons. For

simplicity one assumes that both the phonon spectrum ωα and the exciton-phonon coupling constant gα are

site independent. The stationary states corresponding to (31) are excitons “dressed” with a phonon cloud

and are referred to as polarons. The parameters in the polaron model, i.e., εn, Vnm, gα and ωα , ought to be

determined either empirically or from combined MD/QC simulations.

To illustrate the calculation of the OD spectrum within the framework of the polaron model, for simplic-

ity, one assumes that all pigments are identical (i.e., εn and the TDMs dn are the same for each pigment).

Formally, by replacing the site index n with J, the OD spectrum is given by Eqs. (7),(8) and (13), with

∆HJ = Hex +Hint . Using Eq. (31) one finds

〈∆HJ〉= EJ ≡ ωJ , (34)

and

CJ(t) = 〈δHJ(t)δHJ(0)〉= 〈Hint(t)Hint(0)〉= ∑
n,α

g2
αω

2
α 〈ρn(t)ρn(0)〉〈Anα(t)Anα(0)〉 , (35)

where, by definition, the electronic excitation number operator ρn(t) = eiHextB†
nBne−iHext , and the phonon

field operator Anα(t) = b†
nαeiωα t + bnαe−ωα t . In terms of the Bose-Einstein distribution function, N(ω) =

1/(eβω −1), the (site independent) phonon field correlation function in Eq. (35) can be expressed as [4, 7,

31]

Dωα
(t)≡ 〈Anα(t)Anα(0)〉= [N(ωα)+1]e−iωα t +N(ωα)eiωα t

= coth(βωα/2)cos(ωαt)− isin(ωαt) .
(36)
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The excitonic factor in the correlation function (35) can also be readily calculated with the result

FJ(t) = ∑
n
〈ρn(t)ρn(0)〉= ∑

J′
ei(EJ−EJ′ )t ∑

n
| 〈n|J〉 |2|

〈
n|J′

〉
|2 . (37)

In general, |FJ(t)| < 1 and this factor is responsible for the so-called exchange narrowing of the lineshape

function. In the absence of excitonic coupling between pigments, i.e., Vnm ≈ 0, the index J in (37) identifies

with a particular site index m = 1, . . . ,N, resulting in FJ=m(t) = 1, i.e., as expected, there is no exchange

narrowing. Next, by introducing the phonon spectral density

J(ω) = π ∑
α

g2
αω

2
αδ (ω −ωα) = πω

2
∑
α

g2
αδ (ω −ωα) , (38)

the sought quantum correlation function (35) assumes the general form

CJ(t) = FJ(t)Cn(t) , (39)

where

Cn(t) =
∫

∞

0

dω

π
J(ω) [coth(βω/2)cos(ωt)− isin(ωt)] . (40)

As mentioned before, in the absence of excitonic coupling FJ(t) = 1, and Eqs. (39)-(40) formally coincides

with Eq. (17), thus suggesting that in this case the polaron model approach and the correlation function

method described in Sec. II A for calculating OD spectra are equivalent. However, in principle, the latter

approach is more general than the former because it treats the environment beyond the harmonic heat bath

approximation, albeit within the cumulant approximation. The determination of J(ω) from Eq. (38) requires

the seemingly unattainable knowledge of the energies ωα of all phonons, together with their corresponding

coupling constants gα . This problem is similar to the spin-boson model description of the coupling between

protein motion and electron transfer processes [38] that can be solved by evaluating the spectral function

from the energy gap fluctuations δEn(t) as described in the previous sections. On the other hand, Eq. (38)

provides a simple physical interpretation of the spectral function. Indeed, if one regards the environment

in a PPC as an equivalent harmonic-phonon heat bath then one can interpret the magnitude of the spectral

functions as a measure of the coupling strength to phonons of that particular frequency. In general, the

complex structure of the spectral function (determined from the combined MD/QC calculations according

to Eq. (18); see also Fig. 5b) indicates that all inter and intra molecular vibronic modes within a wide range

of frequencies will contribute to the lineshape function. Hence, attempts to use simplified model spectral

functions appear to be unrealistic even if these may lead to absorption spectra that match the experimental

results.
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C. Circular dichroism

By definition, the CD spectrum ICD(ω) is the difference between IL(ω) and IR(ω), the OD spectra for

left and right circularly polarized light, respectively. Unlike in the case of the OD spectrum, the calculation

of ICD(ω) even within the leading order approximation requires taking into account the spatial variation of

the light field across the PPC as well as the excitonic coupling between the pigment molecules regardless

how small this may be [16]. The sensitivity of the CD spectrum to geometrical and local details of the PPC

makes it a quantity difficult to predict by theoretical modeling. The CD spectrum is given by[5]

ICD(ω) =
1
4
[IL(ω)− IR(ω)] ∝ ω Re

∫
∞

0
dt eiωt

×∑
n,m

π

λ
εi jk(rn)k

〈
µ̂

†
m,i(0)µ̂n,i(t)

〉 (41)

where λ is the wavelength of the incident light and εi jk is the unit antisymmetric tensor of rank 3. Inserting

Eq. (26) into (41) and making use of Eq. (29), one obtains

ICD(ω) ∝ ω ∑
J

RJAJ(ω) , (42)

where

RJ =
π

λ
∑
n,m
〈J|n〉[rn · (dn×dm)]〈m|J〉 (43)

is the so-called rotational strength of the excitonic state J. It should be noted that in the absence of the

excitonic coupling all RJ = 0 (because for a given J only one coefficient 〈J|n〉 is nonzero) and the CD

spectrum vanishes. The rotational strength plays the same role for the CD spectrum as the TDM strength

for the OD spectrum. Specifically, RJ gives the coupling between the TDM of the excitonic state J and the

orbital magnetic moment of the other excitons. The coupling to the local magnetic moment is assumed to

be small (Cotton effect) and usually is discarded [16, 39].

III. ELECTRON TRANSFER AT FINITE TEMPERATURE

Another important class of quantum processes in PPCs involves electrons switching between two states.

Two examples are electron transfer reactions in PPCs when an electron moves from an orbital on the donor

moiety D to an orbital on the acceptor moiety A and bond formation or bond breaking in an enzyme when

electrons shift from a non-bonding state to a bonding state or vice versa. Here only the electron trasfer

processes will be considered. An ideal PPC system for studying the electron transfer process is the pho-

tosynthetic reaction center (PRC) in photosynthetic bacteria. For quite some time high resolution crystal
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FIG. 2: Left: Structure of the PRC of Rb. sphaeroides (entry code 1PCR in Protein Data Bank). For clarity only

the backbone of the protein subunits L, M and H are shown. The protein helices are represented by cylinders. The

cofactors are labeled, and for clarity their phytyl tails are not shown. Right: Spatial distribution of the cofactors in

the PRC. The path of the electrons through the PRC is indicated by the arrows. Graphics rendered with the program

VMD [29].

structures are available for PRCs from several species of photosynthetic bacteria, such as Rhodobacter

(Rb.) sphaeroides [40] shown in Fig. 2. In general, PRCs are formed by three protein subunits, denoted

L, M and H. The H subunit is located on the cytoplasmic side of the cell membrane and is anchored to

it by a single transmembrane helix. The homologous L and M subunits have five transmembrane helices

and display a quasi-twofold rotational symmetry. Several photoactive pigment molecules (termed as co-

factors or prosthetic groups) are bound by the L and M subunits in a symmetric fashion and being labeled

A and B, respectively. These cofactors, which play a key role in the electron transfer processes within the

PRC, consist of (Fig. 2): two BChls that form a strongly interacting dimer called the special pair (PA, PB);

two monomeric BChls (BA, BB) located near the special pair; two bacteriopheophytins (HA, HB); a pair

of ubiquinone molecules (QA, QB); and one non-heme iron atom (Fe) [40]. The main steps involved in

photosynthetic charge separation in the PRC are as follows: (i) the special pair (the primary electron donor)

is excited through the absorption of an incident photon, and then relaxes by transferring an electron through

BA to HA in ∼ 3 ps; (ii) the electron is transferred from H−
A to QA in ∼ 200 ps; (iii) Q−

A transfers an electron

to QB in ∼ 200 µs by converting the latter into a semiquinone radical; (iv) during this time the positively

charged special pair is neutralized by extracting an electron from a monoheme c-type cytochrome (cyt c2)

on the periplasmic side of the membrane (this soluble cytochrome shuttles the electron between the cyt bc1
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complex and the PRC); (v) when another incoming photon is absorbed by the special pair, a second electron

flows to Q−
B via the same pathway; (vi) this time Q2−

B is converted into quinol (hydroquinone QBH2) by the

simultaneous uptake of two protons from the cytoplasmic side of the complex; (vii) the quinol diffuses out

of the PRC and into the cell membrane that is rich in mobile quinones; (viii) the cycle of electron transfer

is completed by the oxidation of the quinol by the cyt bc1 complex which results in the transfer of protons

across the membrane and the re-reduction of cyt c2. The transmembrane proton gradient drives the synthesis

of ATP, the universal fuel molecule, by ATP synthase.

The electron transfer process can also be formally regarded as a chemical reaction AD → A+D−, where

AD and A+D− are the reactant and product states, respectively. The energy expectation values of the two

states, E1(t) and E2(t), vary in time due to motions along a reaction coordinate, but also due to thermal

fluctuations of the remaining degrees of freedom of the PPC. Often the interaction energies which couple

the two electronic states involved in the reaction are small compared to the temporal variations of E1(t)

and E2(t). In this rather typical case the actual reaction process is confined to moments when the two

electronic states become energetically degenerate [E1(t) = E2(t)]. Such curve crossing processes in PPCs

are strongly dependent on the thermal motion of the entire system including the protein matrix, the solvent

and the lipid membrane in case of membrane bound PPCs. In a quantum mechanical description, one

defines the Hamiltonians H1 and H2 that describe the collective motion of the system in the reactant (initial)

and product (final) electronic states of the PPC. The weak coupling between the two can be described by a

tunneling matrix element V .

Just like in the case of optical absorption spectra, the effect of dynamic disorder on the electron transfer

processes in PPCs can also be determined by employing the combined MD/QC method described in the

previous section. Once the A and D moieties have been identified the time series of the electronic ground

state energies E1,2(ti), i = 0,1, . . ., of the two redox states can be determined by QC calculation for each

snapshot ti along the MD trajectory.

A. Cumulant approximation of the electron transfer rate

Assuming that the tunneling matrix element V does not change significantly due to the thermal motion of

the protein matrix (Condon approximation), within the lowest order of perturbation theory in V the electron

transfer rate kET in a PPC can be expressed as [31]

kET = |V |2
∫

∞

−∞

dt
〈
eiH1te−iH2t〉 (44)
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Similarly to Eq. (13), by employing the cumulant approximation

kET ≈ |V |2
∫

∞

−∞

dt exp
[
−i〈∆H〉t−

∫ t

0
dτ(t− τ)C (τ)

]
(45)

where ∆H ≡ H2 −H1, ∆H(t) = eiH1t∆He−iH1t , C (t) = 〈δH(t)δH(0)〉, and δH(t) = ∆H(t)−〈∆H〉. By

following the same methodology as in the derivation of the OD spectrum of a PPC [cf. Eqs. (14),(15) and

(20)] the electron transfer rate can be brought to the form

kET = 2|V |2
∫

∞

0
dt e−φ(t) cos[εt−ϕ(t)] , (46)

where ε = 〈∆H〉 ≈ 〈∆E(t)〉 is the mean energy gap,

φ(t) =
∫ t

0
dt ′ (t− t ′)C(t) , (47)

with C(t) = ReC (t)≈ 〈δE(t)δE(0)〉, and

ϕ(t) =−Im
∫ t

0
dt ′ (t− t ′)C (t ′)

=
∫

∞

0

dω

π
J(ω)

ωt− sinωt
ω2 ,

(48)

where the spectral function has the usual form

J(ω) = 2tanh(βω/2)
∫

∞

0
dt C(t)cosωt . (49)

Thus, the calculation of kET and J(ω) requires in fact only the knowledge of the energy gap time series

∆E(t) and not those of the individual energies E1,2(t). This simple observation is rather important because

most QC methods do not permit the accurate determination of individual energy levels but they can provide

energy differences with fairly high precision. A fairly good estimate of the electron transfer rate in PPCs can

also be obtained if the energy gap time series ∆E(t) are determined purely classically instead of combined

MD/QC calculations. Knowing the atomic partial charges corresponding to AD and to A−D+ one can

evaluate E1[R(t)] and E2[R(t)] along the R(t) MD trajectory as the Coulomb energies of the acceptor and

donor moieties with the protein matrix, to which one adds the redox energies of the states AD and A−D+.

In the high temperature limit, one can easily show that the expression of the electron transfer rate de-

rived in this section by applying the cumulant approximation yields in leading approximation the result

corresponding to the classical Marcus theory. To show this, one assumes that the correlation function of

the energy gap fluctuations has a simple exponential form CM(t) = ∆2exp(−t/τ), where ∆2 =
〈
δE2

〉
=〈

∆E2
〉
−〈∆E〉2 is the variance of the energy gap fluctuations and τ is the corresponding relaxation time.

Thus, the integrals in (47) and (49) can be performed exactly with the results

φM(t) = ∆
2
τ

[
t− τ

(
1− e−t/τ

)]
≈ ∆2

2
t for t � τ , (50)
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and

JM(ω) = 2tanh(βω/2)
β∆2

1+(ωτ)2 ≈
β∆2 ωτ

1+(ωτ)2 , (51)

where the high temperature limit βω � 1 has been assumed. Note that the maximum of the spectral function

JM(ω) corresponds to the energy gap

εM =
β∆2

2
. (52)

Within the same range of approximations the phase factor (48) becomes

ϕM(t)≈ t
∫

∞

0

dω

π

JM(ω)
ω

= εMt . (53)

Inserting Eqs (53),(50) into (46) and performing the Gaussian integral, one obtains the well known Marcus

formula [31, 41, 42]

kM = 2
√

2π
|V |2

∆
exp

[
−(ε − εM)2

2∆2

]
. (54)

Since in general the spectral function (49) has a complex structure [7, 8] the simple exponential approxi-

mation of the correlation function C(t) may not be justified so that differences between the electron transfer

rates calculated with the simple Marcus formula (54) and with the cumulant approximation (46) may be

expected even at high temperatures.

B. Spin-boson model of coupling to a heat bath

Electron transfer between donor and acceptor moieties in a PPC can conveniently be described in terms

of the spin–boson model. Similarly to the polaron model in the case of optical absorption in PPCs, in the

spin–boson model the electronic degrees of freedom are treated as a two state system (one for the reactants

and one for the products) and the nuclear degrees of freedom of the protein matrix are approximated by a

harmonic heat bath. The name of spin–boson model stems from the fact that the two state electron trans-

fer system is equivalent to a spin– 1
2 system while the atomic motion is described by a set of independent

bosons. Fore example, this model has been successfully applied to investigate the primary electron sepa-

ration process in the photosynthetic reaction center of Rhodopseudomonas viridis by focusing on how the

thermal oscillations of the protein atoms couple to the various transfer steps of an electron moving along

the prosthetic groups [38]. The key new aspects of the spin–boson model description of electron transfer

in PPCs is two-fold: first, all model parameters are determined from molecular dynamics simulations, thus

requiring only the knowledge of the atomic resolution crystal structure of the PPC; second, the spin–boson



16

model accounts for all vibrational modes of the PPC by means of the phonon spectral function that, sim-

ilarly to the polaron model, can be determined from the time autocorrelation function of the energy gap

corresponding to the product and reactant states. The spin–boson model may not only yield qualitatively

different predictions than models involving a small number of vibrational modes coupled to the electron

transfer, but it certainly makes the role of the medium surrounding an electron transfer reaction appear in a

new light: essentially all motions of the environment are coupled significantly to the reaction. The reason

is surprisingly simple and applies clearly to the case of a PPC: the coupling between electron transfer and

medium is due to the Coulomb interaction. This interaction, however, is long range and encompasses a very

large volume. The coupling results then from small additive contributions of many motions rather than from

a few dominant modes.

A detailed review of the theory of the spin–boson model can be found in [43]. In the case of a PPC the

electron transfer reaction is described in terms of the two–state Hamiltonian, written both in first and second

quantized forms

Ĥel = V σx −
1
2

ε σz =
2

∑
n=1

εn B†
n Bn +

2

∑
n6=m=1

V B†
n Bm , (55)

where σx,σz are the usual 2× 2 Pauli matrices, ε = ε2 − ε1 is the difference of product state ε2 and reac-

tant state ε1 energies (energy gap), V accounts for the coupling between reactant and product states (the

coupling originating from tunneling of the electron between electron donor and electron acceptor moieties),

and B1,2 (B†
1,2) are the annihilation (creation) fermionic operators of the two redox states. The medium

thermal motion is described through an ensemble of independent harmonic oscillators (phonons) with the

Hamiltonian

Hph = ∑
α

2

∑
n=1

ωα b†
nα bnα . (56)

Here bn,α (b†
n,α ) creates (destroys) a phonon (vibronic) mode with frequency ωα in the n-th redox state. The

coupling between the vibrational degrees of freedom and the two–state system is linear

Hint = ∑
α

2

∑
n=1

gαωα B†
n Bn (b†

nα + bnα) . (57)

where gα describes the strength of the coupling of the electron transfer to the α-th mode. The spin–boson

Hamiltonian is the sum of all three contributions, i.e.,

Hsb = Hel +Hph +Hint . (58)

One may worry at this point that the many parameters which appear in the spin–boson model are impos-

sible to specify uniquely and therefore, the model is either arbitrary or of limited use. However, just like in
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the case of the polaron model [7, 8] described above, the value of the spin–boson model [43] lies in the fact

that the electron transfer rate can be determined uniquely in terms of the spectral function

Jsb(ω) = πω
2
∑
α

g2
αδ (ω −ωα) , (59)

the energy gap ε and the coupling V . Note that Eq. (59) is formally identical with (38), and it can be

determined from the real time autocorrelation function C(t) ≈ Re[C (t)] of the energy gap fluctuations,

δε(t) = ε(t)−〈ε〉, by means of Eq. (18).

The energy gap time series ε(t) and the coupling V can be computed either from classical MD simu-

lations or from combined MD/QC calculations. Once C(t) and Jsb(ω) have been determined, the electron

transfer rate ksb can be readily calculated by means of Eqs. (46)-(48).

IV. SIMULATION OF OPTICAL EXCITATIONS

According to the results presented in Sec. II in order to calculate the OD and CD spectra of the B800

and B850 BChls in a single LH2 ring from Rs. molischianum first one needs to determine the time series

of the Qy energy gap ∆En(`∆t) and TDM dn(`∆t), ` = 0,1, . . . ,Nt , for all individual BChls. This requires

two steps: (1) use all atom MD simulations to follow the dynamics of the nuclear degrees of freedom by

recording snapshots of the atomic coordinates at times t` = `∆t, and (2) use QC calculations to compute

∆En and dn for each snapshot [7, 8].

A. Molecular dynamics simulations

The first MD simulation of the LH2 antenna complex from Rs. molischianum embedded in a fully sol-

vated lipid bilayer mimicking its native environment was reported in Ref. 7. A perfect 8-fold LH2 ring

was constructed starting from the crystal structure (pdb code 1LGH) of Rs. molischianum [10] (see Fig. 1).

After adding the missing hydrogens, the protein system was embedded in a fully solvated POPC lipid bi-

layer of hexagonal shape. A total of 16 Cl− counterions were properly added to ensure electroneutrality of

the entire system of 87,055 atoms. In order to reduce the finite-size effects, the hexagonal unit cell (with

side length ∼ 60Å, lipid bilayer thickness ∼ 42Å and two water layers of combined thickness ∼ 35Å) was

replicated in space by using periodic boundary conditions. The CHARMM27 force field parameters for

proteins [44, 45] and lipids [46] were used. Water molecules were modeled as TIP3P [47]. The ground state

ESP partial charges for geometry optimized BChls without phytyl tail were determined with the program

JAGUAR [48]. The force field parameters for BChls were taken from [49, 50] and for lycopenes were de-

termined using the program QUANTA [51]. After energy minimization, the system was subjected to a 2 ns
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FIG. 3: Normalized DOS, N (ω), for individual B800 BChls (solid-line), B850 BChls (dashed-line), and B850

excitons (dashed-dotted-line) in LH2 from Rs. Molischianum computed as binned histograms of the corresponding

Qy excitation energy time series obtained from combined MD/QC simulations. Whether the charge fluctuations of

the BChls’ environment are included (thick-lines) or not (thin-lines) make an important difference in N (ω) only for

B800.

long equilibration in the NpT ensemble [52] at normal temperature (T = 300 K) and pressure (p = 1 atm),

using periodic boundary conditions and treating the full long-range electrostatic interactions by the PME

method [53]. All MD simulations were preformed with the program NAMD 2 [54], with a performance of

∼ 8.5 days/ns on 24 CPUs of an AMD 1800+ Beowulf cluster. During equilibration an integration time

step of 2 fs was employed by using the SHAKE constraint on all hydrogen atoms [55]. After the 2 ns equili-

bration a 1 ps production run with 1 fs integration step was carried out with atomic coordinates saved every

other timestep, resulting in Nt = 500 MD snapshots with ∆t = 2 fs time separation. These configuration

snapshots were used as input for the QC calculations.

B. Quantum chemistry calculations

The time series of the Qy transition energies ∆En and dipole moments dn of individual BChls can be

determined only approximately from the configuration snapshots obtained from MD simulations. The level

of approximation used is determined by: (i) the actual definition of the optically active quantum system, i.e.,

the part of the system that is responsible for light absorption and needs to be treated quantum mechanically;

(ii) the actual choice of the QC method used in the calculations; and (iii) the particular way in which the

effect of the (classical) environment on the quantum system is taken into account in the QC calculations.

Because the optical properties of BChls are determined by the cyclic conjugated π-electron system of the

macrocycle the quantum system was restricted to a truncated structure of the BChl restricted to the porphyrin

plane [8, 9, 56]. Although in general the different truncation schemes yield excitation energy time series
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with shifted mean values, the corresponding energy fluctuations, which play the main role in calculating the

optical absorption properties of PPC at room temperature in their native environment, are less sensitive to

the actual size of the truncated pigment. On the other hand, however, the required computational effort can

be reduced dramatically through such truncation of the quantum system.

The preferred method for calculating the Qy excitations of the truncated BChls is Zerner’s semiempirical

intermediate neglect of differential overlap method parametrized for spectroscopy (ZINDO/S) within the

single-point configuration interaction singles (CIS) approximation [57, 58]. Because it is much faster and

more accurate than most of the computationally affordable ab initio QC methods (e.g., the Hartree-Fock

(HF) CIS method with the minimal STO-3G∗ basis set), ZINDO/S CIS has been extensively used in the

literature to compute low lying optically allowed excited states of pigment molecules [8, 22, 24, 59, 60].

The ZINDO/S method is integral part of standard QC program packages such as HyperChem [61] and

GAUSSIAN 98 [62].

The effect of the environment on the quantum system can be taken into account through the electric

field created by the partial point charges of the environment atoms, including those BChl atoms that were

removed during the truncation process. Thus, the dynamics of the nuclear degrees of freedom (described

by MD simulation) have a two-fold effect on the fluctuations of the Qy state, namely they lead to: (1)

conformational fluctuation of the (truncated) BChls, and (2) a fluctuating electric field created by the thermal

motion of the corresponding atomic partial charges. The relative importance of these two effects on the time

series ∆En(t) were estimated by performing the QC calculations both in the presence and in the absence of

the point charges [8]. For each case, a total of 12,000 (500 snapshots × 24 BChls) ZINDO/S calculations

were performed with a performance of∼ 2.3 min/CPU (∼ 0.7 min/CPU) for each calculation with (without)

point charges on a workstation with dual 3GHz Xeon EM64T CPU.

C. Energy gap density of states

The 1 ps long time series of the Qy excitation energies ∆En(t`) and TDMs dn(t`), (t` = `∆t; ` = 0, . . . ,Nt ;

Nt = 499; ∆t = 2 fs) computed with the described combined MD/QC method for both B850 (n = 1, . . . ,16 )

and B800 (n = 17, . . . ,24) BChls in a LH2 ring from Rs. molischianum are sufficiently long for calculating

the DOS of the Qy excitation energies and the corresponding OD and CD spectra [8].

Figure 3 shows the Qy energy gap DOS, N (ω) [Eq. (10)], of the individual B800 (solid-lines) and B850

(dashed-lines) BChls calculated as normalized binned histograms of the time series ∆EB800 ≡ ∆En(t`) with

n = 17, . . . ,24, and ∆EB850 ≡ ∆En(t`) with n = 1, . . . ,16, respectively. In the absence of the point charge

distribution of the environment N (ω) for B800 and B850 (thin-lines) are almost identical, having peak
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in order to overlay its B850 peak with the corresponding one in the experimental OD spectrum [30] (dashed line).
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and the corresponding error bars are expressed relative to the mean dipole moment of individual B850s.

0 50 100 150 200 250 300 350 400
t [fs]

-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0

C
(t

)/
C

(0
)

B800

B850

(a)

0.00 0.05 0.10 0.15 0.20 0.25
ω  [eV]

2
4
6
8

10
12
14

J(
ω

)  
[a

.u
.]

B800

B850

(b)

FIG. 5: (a) Normalized autocorrelation function C(t)/C(0) of the energy gap fluctuations δE(t) = E(t)−〈E〉 for

individual B800 (dashed line) and B850 (solid line) BChls, calculated using Eq. . The mean square energy gap

fluctuations are CB800(0) = 3.16×10−3 eV2 and CB850(0) = 8.68×10−4 eV2. (b) Spectral density function J(w) for

B800 (dashed-line) and B850 (solid-line) obtained according to Eq. (18).

position at 1.51 eV (817 nm) and 1.515 eV (818 nm), and full width at half maximum (FWHM) 51 meV

and 59 meV, respectively. It should be noted that essentially the same mean energy gap of 1.5 eV was

obtained in similar MD/QC calculations by Mercel et al. [9] for BChl solvated in methanol also at room

temperature. These results indicate that the thermal motion of the nuclei in individual BChls lead to Qy
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energy gap fluctuations that are insensitive to the actual nature of the nonpolar environment. Since in LH2

from Rs. molischianum the B800s (B850s) are surrounded by polar (nonpolar) residues, it is not surprising

that once the point charges of the environment are taken into account in the QC calculations N (ω) changes

dramatically only in the case of B800. Indeed, as shown in Fig. 3, in the presence of the point charges

(thick-lines) the peak of NB850(ω) is only slightly red shifted to 1.502 eV (825 nm) and essentially without

any change in shape with FWHM≈ 53 meV. By contrast, as a result of the point charges the B800 DOS is

not only blue shifted but it becomes asymmetric and almost twice as broad with FWHM≈ 100 meV. Thus,

in spite of a small blueshift to 1.528 eV (811 nm) of the peak of NB800(ω) the mean value of the energy

gap 〈∆EB800〉= 1.556 eV (797 nm) is increased considerably, matching rather well the experimental value

of 800 nm.

The excitonic energies time series ∆EJ(t`), J = 1, . . . ,16, of the B850 BChls were determined by solv-

ing for each MD snapshot, within the point-dipole approximation, the eigenvalue equation (24). In cal-

culating the matrix elements (23) rn was identified with the position vector of the Mg atom in the n-th

BChl. Consistent with the Condon approximation, the magnitude of the computed B850 TDM time series

exhibited a standard deviation of less than 4% about the average value 〈dB850〉 = 11.77 D. The latter is by

a factor of k = 1.87 larger than the experimentally accepted 6.3 D value of the Qy TDM of BChl [63].

By rescaling the TDMs from the ZINDO/S calculations to match their experimental value, and by setting

εr = 1.86, one obtains for the mean value of the nearest neighbor dipolar coupling energies between B850s

27 meV≈ 220 cm−1 within a protomer and 24 meV≈ 196 cm−1 between adjacent heterodimers. As ex-

pected, the DOS of the excitonic energies (Fig. 3, dashed-dotted-line), computed as a binned histogram of

∆EJ(t`), is not sensitive to whether the point charges of the environment are included or not in the B850 site

energy calculations.

The mean excitonic TDMs, calculated from Eq. (25) and expressed in terms of 〈dB850〉, are shown as an

inset in Fig. 4. The error bars represent the standard deviation of the time series dJ(t`). As expected, most

of the dipole strength is amassed into the lowest three excitonic states [7, 8].

According to Eqs. (8) and (9)-(10) a rough estimate of the OD spectrum of the B800 BChls and B850

excitons is given by the corresponding TDM strength weighted DOS

IDOS(ω) ∝ ω

[
∑
J

d2
J 〈δ (ω −∆EJ)〉+ ∑

B800
d2

B800〈δ (ω −∆EB800)〉

]
, (60)

where the B800 index in the last term means summation over all B800 BChls. Figure 4 shows the calculated

IDOS(ω) blueshifted by 20 eV (solid-line) in order to match the B850 peak position with the one in the

experimental OD spectrum [22, 30] (dashed-line). While the B850 band and the relative heights of the two

peaks in IDOS(ω) match rather well the experimental data, the position and the broadening of the B800
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peak do not. This result clearly shows that in general peak positions in optical spectra may be shifted

from the corresponding peak positions in the excitation energy spectrum due to correlation effects between

the ground and optically active excited states. The latter may also lead to different line broadening of the

corresponding peaks. Therefore, methods for simulating optical spectra in which the position of the peaks

are identified with the computed excitation energies (stick spectrum) are not entirely correct and using

instead more sophisticated methods that include quantum correlation effects should be preferred.

D. Linear absorption spectrum

According to Eq. (20) and (18) the lineshape functions of the individual B850 and B800 BChls is the

(classical) autocorrelation function Cn(t) = 〈δEn(t)δEn(0)〉 of the energy gap fluctuation δEn(t) = ∆En(t)−

〈∆En〉 determined from combined MD/QC calculations. Since the LH2 ring from Rs. molischianum has an

eight-fold symmetry, for best statistics one calculates a single time correlation function CB800(t) [CB850(t)]

by averaging over all B800 [B850] BChls according to the formula

Cα(t`) =
1
M ∑

m

[
1

Nt − `

Nt−`

∑
k=1

δEm(t` + tk)δEm(tk)

]
,

where M = 8, m = 17, . . . ,24 for α = B800 ,

and M = 16, m = 1, . . . ,16 for α = B850 .

(61)

The normalized correlation functions Cα(t)/Cα(0), α ∈ {B800,B850}, are plotted in Fig. 5a. Cα(0) =

〈δE2〉 represents the variance of the energy gap fluctuations with CB800(0) = 3.16 × 10−3 eV2 and

CB850(0) = 8.68× 10−4 eV2. Both correlation functions have a qualitatively similar behavior with the

following features: (i) sharp decay to negative values in the first 9 fs, (ii) a ∼ 18.5 fs period oscillatory

component with uneven amplitudes, and (iii) vanishingly small magnitude after t & 400 fs. The spectral

densities Jα(ω) for B800 and B850, determined according to Eq. (18), are shown in Fig. 5b. The prominent

peak about ωp = 0.22 eV is due to the fast initial decay of Cα(t) and it is most likely due to strong coupling

of the pigment to an intramolecular C=O vibronic mode [7, 9]. The complex structure of the spectral func-

tions indicate that all inter and intra molecular vibronic modes with frequency below ωp will contribute to

the lineshape function. Hence, attempts to use simplified model spectral functions appear to be unrealistic

even if these may lead to absorption spectra that match the experimental results.

The lineshape functions of individual B800 and B850, calculated from Eq. (20), are plotted in Fig. 6a.

The origin of the frequency axis corresponds to the mean energy gaps ωB800 and ωB850, respectively. The

highly polarized surrounding of the B800 BChls in Rs. molischianum renders AB800(ω) twice as broad

(FWHM≈ 26 meV) as AB850(ω) (FWHM≈ 13 meV). Also, the redshift of the peak of the former (∆ω ≈
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FIG. 6: (a) Lineshape functions AB800(∆ω) (dashed line) and AB850(∆ω) (solid line). (b) Computed (solid line) and

experimental (dashed line) absorption spectra (in arbitrary units) of the BChl aggregate in Rs. Molischianum LH2.

The computed spectrum has been blue shifted by 20 meV for best match.

25 meV) is more than three times larger than that of the latter (∆ω ≈ 7 meV).

Although the 1 ps long energy gap time series provide a proper estimate of the B800 and B850 lineshape

functions, the same data is insufficient to determine with reasonable accuracy the individual excitonic line-

shape functions AJ(ω). Thus, by neglecting the effect of exchange narrowing [16, 39], one can approximate

AJ(ω)≈ AB850(ω), and the OD spectrum of the LH2 BChls becomes

I(ω) ∝ ω

[
∑
J

d2
J AB850(ω −ωJ)+8d2

B800AB800(ω −ωB800)

]
, (62)

where ωJ = 〈∆EJ〉. As shown in Fig. 6b, I(ω) (subject to an overall blueshift of 20 meV) matches remark-

ably well the experimental OD spectrum, especially if we take into account that it was obtained from the

sole knowledge of the high resolution crystal structure of LH2 from Rs. molischianum [8]. The reason why

both B800 and B850 peaks of I(ω) are somewhat narrower than the experimental ones is most likely due

to the fact that the effect of static disorder is ignored. Indeed, our calculations were based on a single LH2

ring, while the experimental data is averaged over a large number of such rings. While computationally

expensive, in principle, the effect of static disorder could be taken into account by repeating the above

calculations for different initial configurations of the LH2 ring and then averaging the corresponding OD

spectra.
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FIG. 7: (a) Mean rotational strength of the excitonically coupled B800 (circle) and B850 (box) BChls as a function of

the corresponding excitonic energies. The purpose of the thin lines are to guide the eye. (b) Comparison between the

computed (solid line) and experimental CD spectrum of the BChl aggregate in Rs. Molischianum LH2.

E. Circular dichroism spectrum

Using the results from Sec. II C, the calculation of the CD spectrum of the LH2 BChls proceeds along

the following two steps [8].

First, the rotational strength of both B850 excitons and B800 BChls is determined using Eq. (43). Here,

just like in the case of the point-dipole interaction matrix elements (23), rn represents the position vector of

the Mg atom in the nth BChl. The calculation of the rotational strength of the B800 BChls requires solving

the corresponding excitonic Hamiltonian (24) regardless how small the dipole-dipole coupling is between

these BChls. The calculation does not yield either noticeable corrections to the B800 excitation energies or

admixture of the corresponding Qy states, however, it leads to sizable mean rotational strengths as shown

in Fig. 7a (filled circles). Similarly to the TDM strengths, the largest (negative) mean rotational strengths

are carried by the four lowest B850 excitonic states as shown in Fig. 7a (open squares). The second highest

excitonic state also has a sizable rotational strength and is responsible for enhancing the positive peak of the

B800 contribution to the CD spectrum.

Second, the CD spectrum is calculated from Eq. (42) where the summation index J runs over all B850

and B800 excitonic states and AJ(ω) = Aα(ω −ωJ), with α ∈ {B850,B800}. The obtained CD spectrum

is shown in Fig. 7b (solid-line) and it appears to match fairly well the experimental spectrum (dashed line)
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are centered approximately around εM .

[22]. It should be emphasized that apart from an overall scaling factor the CD spectrum was calculated from

the same MD/QC data as the OD spectrum by following the procedure described above.

V. CALCULATION OF ELECTRON TRANSFER RATES

A detailed study of electron transfer rates kET in the photosynthetic reaction center of

Rhodopseudomonas viridis by employing the spin-boson model was reported in Refs. [38, 64]. The model

parameters ∆ and τ were determined by means of all atom MD simulations. Due to large errors in calcu-

lating the mean redox energy gap ε the authors used this as a fitting parameter. The calculated kET (ε;T )

for temperatures T = 10 K and T = 300 K are shown in Fig. 8, and are compared with the corresponding

results predicted by the Marcus theory [41, 42]. As expected, at high (physiological) temperature the rate

evaluated from the Marcus theory in a wide range of ε values agrees well with the rate evaluated from the

spin-boson model at T = 300 K. However the Marcus theory and the spin-boson model differ significantly

at T = 10 K. At such low temperature the rate as a function of ε for the spin-boson model is asymmetrical.

This result agrees with observations reported in [65] which show a distinct asymmetry with respect to εM at

low temperatures. Such asymmetry is not predicted by the models of Marcus and Hopfield [66–68].

If one makes the assumption that biological electron transfer systems evolved their ε values such that

rates are optimized, one should expect that electron transfer rates in the photosynthetic reaction center

are formed through a choice of ε → εmax, such that k(εmax) is a maximum. In Fig. 9 the transfer rates

k(εmax) and k(ε;T ), corresponding for non-optimal values of ε = εM ± δ , with δ = 2.5 kcal/mol, are

shown. Experimental data of electron transfer processes in the photosynthetic reaction center show in-
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k(εmax± δ ), where δ = 2.5 kcal/mol. k(εmax;T ) represents the fastest transfer rate of the system, the rates k(εmax ±

δ ;T ) are slower since their ε values deviate from the optimal value εmax.

creases similarly to those presented in Fig. 9 [69–72]. However, Fig. 9 demonstrates also that electron

transfer at ε values slightly off the maximum position can yield a different temperature dependence than

that of k(εM;T ), namely temperature independence or a slight decrease of the rate with decreasing tem-

perature. Such temperature dependence has also been observed for biological electron transfer [72]. The

temperature dependence of the transfer rate resembles that of k(εM;T ) in photosynthetic reaction centers

of native bacteria and in (M)Y210F-mutants with tyrosine at the 210 position of the M–unit replaced by

phenylalanine. However, a replacement of this tyrosine by isoleucine [(M)Y210I-mutant] yields a transfer

rate which decreases like k(εM − δ ;T ) shown in Fig. 9. This altered temperature dependence should be

attributed to a shift of the redox potentials, i.e., εM → εM − δ .

It should be mentioned that there have been numerous similar investigations of biological electron trans-

fer in the literature [73–76].
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[27] X. Hu, A. Damjanović, T. Ritz, and K. Schulten, Proc. Natl. Acad. Sci. USA 95, 5935 (1998).

[28] X. Hu and K. Schulten, Physics Today 50, 28 (1997).

[29] W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graphics 14, 33 (1996).

[30] J.-P. Zhang, R. Fujii, P. Qian, T. Inaba, T. Mizoguchi, and Y. Koyama, J. Phys. Chem. B 104, 3683 (2000).
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