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Summary

With the widespread availability of high performance computer clusters and effi cient parallel molecular modeling 
software,  molecular dynamics (MD) simulations became an indispensable tool for the study of the structure-
function relationship in proteins with known crystal structures. However, understanding at atomic level the 
functioning of membrane bound pigment-protein complexes (PPCs), which in photosynthetic organisms convert 
the energy of the absorbed light into electronic excitations and electrochemical potential gradients, continues 
to remain a challenging problem. Indeed, the theoretical description of PPCs at physiological temperature in 
their native environment is a complicated stochastic quantum mechanics problem that requires determining and 
characterizing the quantum states of the interacting pigment molecules in the presence of thermal fl uctuations. 
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Until recently most theoretical approaches for calculating the optical spectra and the electronic transfer rates 
of PPCs were based on empirical stochastic models in which several fi tting parameters are adjusted to simulate 
the corresponding experimental results. In this chapter a general approach, which combines MD simulations, 
quantum chemistry (QC) calculations and quantum many-body theory, for predicting and characterizing charge 
transfer, spectral and optical properties (e.g.,  linear absorption and  circular dichroism spectra) of PPCs is pre-
sented. The method requires only atomic-level crystal structure information and consists of three major steps: 
(i) the conformational dynamics of the protein matrix embedded into a fully solvated lipid bilayer is followed 
by means of classical MD simulations; (ii) the lowest energy quantum states of each pigment molecule are de-
termined along the MD trajectory by means of QC calculations; and (iii) the transfer rate and/or optical spectra 
are determined in terms of a  lineshape function which, within the  cumulant approximation, can be calculated 
from the results of the QC calculations. To demonstrate its features, the combined MD/QC method is applied 
to calculate the linear optical spectra of the light harvesting complex LH2 from Rhodospirillum molischianum 
and the  electron transfer rates in photosynthetic reaction center from Rhodobacter sphaeroides.

Abbreviations: CD – circular dichroism; DOS – density of states; 
LH2 – light-harvesting complex II; MD – molecular dynam-
ics;  OD – optical density (linear absorption); PPC – pigment 
protein complex;  QC – quantum chemistry; Rb. – Rhodobacter; 
Rps. – Rhodopseudomonas; Rs. – Rhodospirillum; TDM – transi-
tion dipole moment

I. Introduction

Photosynthetic systems contain a variety of large 
photoactive pigment-protein complexes (PPCs) that 
carry out important functions necessary for maintain-
ing the life cycle of photosynthetic organisms (e.g., 
light-harvesting, quinone redox reactions and ATP 
synthesis). Being involved in electron and electronic 
excitation transfer processes PPCs have been the 
subject of numerous experimental and theoretical 
studies (Renger et al., 2001). In PPCs the photoactive 
pigment molecules are held in well defi ned spatial 
confi guration and orientation by a scaffold of pro-
teins. At physiological temperature the dynamics of 
the protein matrix are governed mainly by classical 
physics and, therefore, can be studied by means of 
molecular dynamics (MD) simulations provided that a 
suffi ciently high resolution molecular structure of the 
system is available. However, key to photosynthesis is 
the interaction of light with the electronic degrees of 
freedom of the pigment molecules which is quantum 
mechanical in nature. In general, the properties of 
PPCs are determined by the chemical nature of the 
pigment, the electronic interactions between the pig-
ment molecules, and the interactions between pigment 
molecules and their environment (e.g., protein, lipid 
and solvent molecules). In photosynthetic organisms 
PPCs function at physiological temperature and, 
therefore, their electronic and optical properties are 
strongly affected by thermal fl uctuations which rep-

resent the main source of dynamic disorder in these 
systems. Thus, the theoretical description of thermally 
disordered PPCs is a complicated stochastic quantum 
mechanics problem that requires determining and 
characterizing the quantum states of the interacting 
pigment molecules in the presence of a fl uctuating 
environment. Even in the simplest theoretical models 
of PPCs the simultaneous treatment of the electronic 
coupling between the pigments and the effect of 
thermal disorder can be done only approximately 
(Mukamel, 1995a; Chernyak et al., 1998; May and 
Kühn, 2000; van Amerongen et al., 2000). Most of 
the currently used theoretical approaches for calculat-
ing the electronic transfer rates and optical spectra 
of PPCs are based on empirical stochastic models 
in which several fi tting parameters are adjusted to 
simulate the corresponding experimental results 
(Koolhaas et al., 2000).

In this chapter a general approach for predicting 
and characterizing charge transfer, spectral and 
optical properties, e.g., linear absorption (OD) and 
circular dichroism (CD) spectra, of PPCs is presented 
(Damjanovic et al. 2002a,b; Janosi et al., 2006). The 
approach that combines MD simulations, quantum 
chemistry (QC) calculations and quantum many-
body theory is based solely on atomic-level crystal 
structure information. The conformational dynamics 
of the protein matrix embedded into its natural envi-
ronment (a fully solvated lipid bilayer) are followed 
by means of classical MD simulations. Next, for 
each pigment molecule, modeled as a quantum two 
level system, the  energy gap (and, in case of optical 
spectra, the  transition dipole moment) time series 
are determined along a properly chosen segment 
of the MD trajectory by means of QC calculations. 
Finally, the transfer rate and/or optical spectra are 
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determined in terms of a  lineshape function which, 
within the  cumulant approximation, can be calculated 
from the sole knowledge of the  energy gap time 
series. The authors made every effort to present the 
material in a manner that is accessible to the general 
biophysics readership, including both theorists and 
experimentalists.

The chapter is organized as follows. In the fi rst part 
the theoretical background of the combined MD/QC 
method for calculating optical spectra and  electron 
transfer rates is presented by following the same 
general strategy. The relationship of the presented 
method to the  polaron model and  spin-boson model 
calculations is also clarifi ed. To make the presentation 
self contained, a brief description of the considered 
model systems, i.e., the  light harvesting complex 
LH2 from Rhodospirillum (Rs.) molischianum (for 
calculating OD and CD spectra), and the photo-
synthetic reaction center from Rhodobacter (Rb.) 
sphaeroides (for calculating  electron transfer rates) 
is provided. In the second part of the chapter the 
presented theory is demonstrated by calculating the 
optical spectra of the LH2 and the electron transfer 
rate in the reaction center.

II. Optical Transitions at Finite 

Temperature

Following their crystal structure determination, LH2 
complexes from Rs. molischianum (Koepke et al., 
1996) and Rps. acidophila (McDermott et al., 1995) 
have been extensively studied both experimentally 
(Somsen et al., 1996; Beekman et al., 1997; Wu et 
al., 1997; Sundström et al., 1999; Scholes and Flem-
ing, 2000; Yang et al., 2001; Georgakopoulou et al., 
2002; Hu et al., 2002) and theoretically (Meier et al., 
1997; Hu et al., 1998b; Linnanto et al., 1999; Ray and 
Makri, 1999; Sundström et al., 1999; Ihalainen et al., 
2001; Yang et al., 2001; Damjanovic et al., 2002a; He 
et al., 2002; Hu et al., 2002; Jang and Silbey, 2003). 
LH2 from Rs. molischianum (Fig. 1) is an octamer of 
αβ-heterodimers arranged in a ring-like structure (Hu 
and Schulten, 1997; Hu et al., 1998a). Each protomer 
consists of an α- and a β-apoprotein which binds 
non-covalently one BChl-a molecule that absorbs at 
800 nm (referred to as B800), two BChl-a molecules 
that absorb at 850 nm (referred to as B850) and at 
least one carotenoid that absorbs around 500 nm. The 
total of 16 B850 and 8 B800 BChls form two circular 
aggregates, both oriented parallel to the surface of the 

membrane. The  excitonic coupling between the B800s 
is negligible because of their large spatial separation 
(~22 Å). Therefore, the optically active Qy excited 
electronic states of the B800s are almost degenerate. 
On the other hand, the tightly packed B850s (with 
and average Mg–Mg distance of ~9.2 Å within the 
αβ-heterodimer and ~8.9 Å between the neighboring 
protomers) are strongly coupled and the correspond-
ing Qy excited states form an  excitonic band in which 
the states that carry most of the oscillator strength 
are clustered about ~850 nm (1.46 eV).

Another important difference between the two 
BChl rings is that while the B800s are surrounded 
by mostly hydrophilic protein residues the binding 
pocket of the B850s is predominantly hydrophobic 
(Koepke et al., 1996). Thus, although both B800s and 
B850s are chemically identical BChl molecules, their 
specifi c spatial arrangement and the nature of their 
protein environment shape differently their spectral 
and optical properties. For example, it is quite sur-
prising that the two peaks, due to the B800 and B850 
BChls, in the experimental OD  spectrum of LH2 from 
Rs. molischianum at room temperature (Zhang et al., 
2000; Ihalainen et al., 2001) have comparable widths 
although, as mentioned above, the B800 levels are 
almost degenerate while the B850 levels form a ~0.2 
eV wide  excitonic band.

In order to calculate the linear optical absorption 
of a PPC one assumes that the electronic properties 
of individual pigment molecules can be described in 
terms of a two-level system, formed by the ground 
state and the lowest excited singlet state (e.g., the 
Qy state in the case of BChl) involved in the opti-
cal absorption process. Neglecting for the moment 
the direct interaction between the pigments (e.g., 
by assuming a suffi ciently large spatial separation 
between them as in the case of the B800s in LH2), 
one denotes these two states for pigment n = 1…N, 
as |0〉 ≡ |0n〉 and |n〉 ≡ |1n〉, respectively. Once the in-
teraction between the pigment and its environment 
composed of the protein matrix, lipid membrane 
and solvent molecules is taken into account these 
two levels transform into still well separated energy 
bands |0;λ0〉 ≡ |0〉| λ0〉 and |0;λn〉 ≡ |n〉| λn〉. Here the 
quantum numbers λ0 and λn specify the state of the 
nth pigment on the ground- and excited-state potential 
energy surface, respectively. Because the exact quan-
tum mechanical treatment of the eigenstates |0;λ0〉, 
|n;λn〉 and of the corresponding energy eigenvalues 
E0,λ0

, En,λn
 is out of question, usually the quantum 

numbers λ0 and λn are associated with the vibronic 



448 Ioan Kosztin and Klaus Schulten

states of the PPC that can be modeled within the 
harmonic approximation as a  phonon heat bath. An 
alternative approach is to follow the dynamics of the 
nuclear degrees of freedom of the PPC by all-atom 
MD simulations, and determine the  energy gap time 
series ΔEn(t) = En(t) − E0(t) at each MD time step by 
means of QC calculations. The main assumption of 
this approach is that the obtained energy gap time 
series ΔEn(t) can be used to calculate approximately 
equilibrium quantities (such as energy gap density 
of states and time autocorrelation functions) of the 
original system without the knowledge of the exact 
 energy-gap spectrum ΔEn,λn,λ0

 = ΔEn,λn
 − ΔEn,λ0

.
In the absence of the  excitonic coupling between 

the pigment molecules, the Hamiltonian of the system 
can be written as H = H0+H ,́ where

H E
0 0 0 0

0

0
0 0= | ; 〈 ; |∑ 〉 ,

λ
λλ λ

 
(1)

and

′ = = | ; 〉 〈 ; |∑ ∑ ,H H n E n
n

n n n n

n

n
λ

λλ λ
 

(2)

The electric  dipole moment operator through which 
the incident light fi eld couples to the nth pigment 
molecule is given by

n n n

n

n
nμ̂ λ λ

λ λ
λ λ= | ; 〉〈 ; |

,
, ,∑

0

0
0

0
d

 
(3)

where the  transition dipole moment (TDM) matrix 
element dn,λn,λ0

 in the  Condon approximation (May 
and Kühn, 2000) can be written

d d
n n nn, , ≈ 〈 | 〉λ λ λ λ

0 0  (4)

Here dn = 〈1|µ̂n|0〉 is the real TDM vector whose time 
series can be determined from the same combined 
MD/QC calculations as ΔEn(t). Note that 〈1|0〉 = 0, 
while in general the  Franck-Condon factors 〈λn|λ0〉 
are fi nite (May and Kühn, 2000).

A. Linear Absorption and Line Shape 
Function

 Because, in general, the wavelength of the incident 
light is much larger than the size of PPCs, in leading 
approximation, the electric component of the light 
fi eld can be regarded as being uniform throughout the 
system. Thus, according to standard linear response 
theory, the corresponding  OD spectrum I(ω) is pro-
portional to the  dipole-dipole correlation function 
(Mukamel, 1995a; May and Kühn, 2000)

Fig. 1. Left: Side view of the  LH2 complex from Rs. molischianum (entry code 1LGH in Protein Data Bank) embedded in a fully sol-
vated POPC lipid bilayer. The transmembrane helices of the apoprotein subunits are shown as cylinders (cartoon representation) and are 
colored by residue type; dark (light) colors represent hydrophilic (hydrophobic) residues. For clarity only the BChl macrocycles and the 
back half of the lipids are shown. The clearly visible B800 (B850) ring is surrounded mostly by polar and charged (nonpolar) protein 
residues. Right: Tilted side view of the quantum system formed by the optically active B800 and B850 rings. Graphics rendered with 
the program VMD (Humphrey et al., 1996). See also Fig. 1, Color Plate 7.
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I dte t
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where µ̂n,i(t) = e–iH´tµ̂n,i(0)eiH0t is the i ∈ {x,y,z} compo-
nent of the time dependent electric  dipole operator, 
and 〈…〉 = Tr{Z0

−1exp(−βH0)…} with β = 1/kBT the 
usual temperature factor and Z0 the corresponding 
partition function. To simplify notation, throughout 
this paper we use units in which � = 1, and apply 
the convention of implicit summation over repeated 
indices. By employing Eqs. (1), (2) and (3), the 
quantum  dipole correlation function in Eq. (5) can 
be expressed as

m j n i n i m j nm

iH t iH tt d d e e n

, , , ,
−=†

ˆ ˆ( ) ( )μ μ δ0 0

 
(6)

where δnm is the usual Kronecker delta symbol. With 
Eq. (6) the  OD spectrum of an aggregate of non-in-
teracting pigments in their native environment can 
be written in terms of the  lineshape function

A dte e e
n

i t iH t iH tn( )ω ω≡
∞ −∫Re

0

0

 
(7)

as

I d A
n

n n
( ) ( )ω ω ω∝ ∑ 2

 
(8)

The main diffi culty in calculating the quantum time 
correlation function in Eq. (7) is due to the fact that 
the Hamiltonians H0 and H n do not commute. If they 
would, then the lineshape function could be expressed 
in terms of the  energy gap density of states (DOS). 
Indeed, in this case 〈e iH0te−iHnt 〉 ≈ 〈exp(−iΔHnt)〉, with 
ΔHn = Hn − H0, and by calculating the time integral 
in Eq. (7) would follow

An(ω) ≈ πN (ω) (9)

N (ω) ≡ 〈δ(ω − ΔHn)〉 ≈ 〈δ(ω − ΔEn(t)) 〉 (10)

where the density of states N(ω) is approximated by 
the binned histogram of the energy gap fl uctuations 
ΔEn(t) obtained from combined MD/QC calculations 
(Mercer et al., 1999; Damjanovic et al., 2002a; Janosi 
et al., 2006). In general, Eqs. (9) and (10) overestimate 
the broadening of the lineshape function. Indeed, the 

Fourier transform of the exact spectral representation 
of the correlation function

e e eiH t iH t
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Where ρλ0
 = Z0

−1exp(−βE0,λ0
) is the statistical matrix 

of the electronic ground state, yields

A E
n

nn n
( ) ( )ω π

λ λ
λ λ λρ λ λ δ ω= | 〈 | 〉 | − Δ

,
, ,∑2

0

0 00
2

 
(12)

which can be regarded as a Franck-Condon weighted 
and thermally averaged density of state (May and 
Kühn, 2000). By setting the  Franck-Condon factors 
〈λ0|λn〉 equal to unity in (12) one obtains Eqs. (9) and 
(10). Since it is not possible to determine all these 
factors, it is often convenient to use Eqs. (9) and 
(10) as a rough estimate of An(ω) for calculating the 
OD spectrum.

A systematic way of calculating the correlation 
function in (7) is the  cumulant expansion method 
(Mahan, 1990; Mukamel, 1995b; May and Kühn, 
2000). Within the second order  cumulant approxima-
tion that is often used in optical spectra calculations 
(Mukamel, 1995a) one has

e e i d HiH t iH t t

n
n0

0

− = − Δ⎡
⎣⎢

⎤
⎦⎥∫T exp ( )τ τ

exp ( ) ( )≈ − 〈Δ 〉 − −⎡
⎣⎢

⎤
⎦∫i H t d t

n

t

n0
τ τ τC ⎥⎥

 (13)

where T is the time ordering operator, ΔHn(t) = 
eiH0 tΔHn e

−iH0 t, Cn(t) = 〈δHn(t)δHn(0)〉, and δHn(t) = 
ΔHn(t) − 〈ΔHn〉. The quantum statistical averages in 
Eq. (13) can be approximated by the corresponding 
classical ones, involving the energy gap time series 
ΔEn(t), as follows

〈ΔHn〉 ≈ 〈ΔEn(t)〉 ≡ ωn (14)

Re[Cn(t)] ≈ Cn(t) ≡ 〈δEn(t)δEn(0)〉 (15)

where δEn(t) = ΔEn(t) − 〈ΔEn〉 . It should be noted that 
although the approximation of the real part of a quan-
tum time correlation function by the corresponding 
classical correlation function as in Eq. (15) is gener-
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ally accepted (Schulten and Tesch, 1991; Makri, 1999; 
Mercer et al., 1999;), other approximation schemes 
have also be used and tested (Egorov et al., 1999).

Next, by invoking the fl uctuation dissipation 
theorem (Mukamel, 1995a), C

~

n(−ω) = exp(−βω) 
C
~

n(ω), where C
~

n(ω) = ∫
∞

−∞ dtCn(t)exp(iωt) is the Fourier 
transform of Cn(t), the quantum correlation function 
in terms of the real spectral density
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can be written as
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By identifying the real part of Eq. (17) with Eq. 
(15) one can determine both the spectral density 
and the imaginary part of the quantum correlation 
function, i.e.,

J dt C t t
n n
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∫2 2
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Thus, the  lineshape function within the second 
 cumulant approximation is

A A dt e
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where the broadening and frequency shift functions 
are given by
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Formally Eqs. (20) and (8) for the lineshape func-
tion and the  OD spectrum remain valid in the case of 
N excitonically coupled pigment molecules as well 
provided that the site index n is replaced with the exci-
tonic index J. In principle the energies EJ,λJ and TDMs 
dJ of the   excitonic states |J;λJ〉, J = 1,…,N, ought to 
be determined from QC calculations by considering 
all N pigments as a single quantum system. Since 
such computational approach is still prohibitively 
expensive a practical alternative is to use an effective 
Hamiltonian for determining the time series ΔEJ(t) 
= EJ(t) − E0(t) and dJ(t) from ΔEn(t) and dn(t) of the 
individual pigments. Assuming that the latter interact 
via a point  dipole-dipole interaction

V
r rnm

r

n m
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n nm m nm
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4
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where εr is the relative dielectric permitivity of the 
medium, rn is the position vector of pigment n, and 
rnm = rm − rn, the eigenvalue equation one needs to 
solve at every MD timestep is

m
n nm nm J nm m

JE V E c∑ Δ + − Δ =[( ) ] ( )δ δ 0
 

(24)

In term of the coeffi cients cn
(J) = 〈J|n〉 the  excitonic 

TDMs are

d d
J

n
n

J n= 〈 | 〉∑
 

(25)

Next, by rewriting the Hamiltonian (2) in diagonal 
form (i.e., in terms of noninteracting  excitons) H´ = 
∑J HJ = ∑J,λJ

 |J;λJ〉EJ,λJ
 〈 J;λJ| , it follows

m j n i
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n i m j
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Inserting Eq. (27) into Eq. (5) one obtains the 
desired OD spectrum of the excitonic system

I d A
J

J J
( ) ( )ω ω ω∝ ∑ 2

 
(28)
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where

A dte e e
J

i t iH t iH tJ( )ω ω=
∞ −∫Re
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0

 
(29)

B. Polaron Model

An alternative approach for calculating the  OD 
spectrum of a PPC at fi nite temperature is based on 
the so-called  polaron model, according to which the 
excitonically coupled pigment molecules ( excitons) 
interact with the vibronic modes ( phonons) of the 
system (Meier et al., 1997; Damjanovic et al. 2002a). 
The corresponding model Hamiltonian (Holstein, 
1959), in the second quantized, site representation 
reads

H = Hex + Hph + Hint (30)

H B B V B B E B B
ex

n
n n n

n m
nm n m

J
J J J

= + =∑ ∑ ∑
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In the exciton Hamiltonian Hex the operator B†
n (Bn) 

creates (destroys) an electronic excitation εn on the 
nth pigment (modeled as a two level system), while 
Vnm describes the  excitonic coupling between the pig-
ments n and m. The eigenstates of Hex are excitons 
(delocalized electronic excitations) characterized 
by the creation (annihilation) operator B†

J (BJ) and 
energy EJ. The index J = 1,…,N labels the excitonic 
states upon increasing energy. Similarly, the opera-
tor b†

nα (bnα) in the phonon Hamiltonian Hph creates 
(annihilates) a  vibronic mode ωα at site n. Finally, 
Hint describes the interaction between excitons and 
phonons. For simplicity one assumes that both the 
 phonon spectrum ωα and the  exciton-phonon coupling 
constant gα are site independent. The stationary states 
corresponding to (31) are excitons ‘dressed’ with a 
phonon cloud and are referred to as polarons. The 
parameters in the polaron model, i.e., εn, Vnm, gα and 
ωα, ought to be determined either empirically or from 
combined MD/QC simulations.

To illustrate the calculation of the OD spectrum 
within the framework of the polaron model, for sim-
plicity, one assumes that all pigments are identical 
(i.e., εn and the TDMs dn are the same for each pig-
ment). Formally, by replacing the site index n with J, 
the OD spectrum is given by Eqs. (7), (8) and (13), 
with ΔHJ = Hex + Hint. Using Eq. (31) one fi nds

〈ΔHJ 〉 = EJ ≡ ωJ  (34)

and

C t H t H H t H
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J J J int int
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where, by defi nition, the electronic excitation num-
ber operator ρn(t) = e iHextB†

nBne
−iHext, and the  phonon 

fi eld operator Anα(t) = b†
nα e iωα t + bnα e−iωα t. In terms 

of the  Bose-Einstein distribution function, N(ω) = 
1/(eβω − 1), the (site independent) phonon fi eld cor-
relation function in Eq. (35) can be expressed as 
(Mukamel, 1995a; May and Kühn, 2000; Damjanovic 
et al., 2002a)
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The  excitonic factor in the correlation function (35) 
can also be readily calculated with the result
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(37)

In general, |FJ (t)| < 1 and this factor is responsible 
for the so-called  exchange narrowing of the  lineshape 
function. In the absence of excitonic coupling between 
pigments, i.e., Vnm ≈ 0, the index J in (37) identifi es 
with a particular site index m = 1,…,N, resulting in 
FJ=M(t) = 1, i.e., as expected, there is no exchange 
narrowing. Next, by introducing the  phonon spectral 
density
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J g g( ) ( ) ( )ω δπ ω δ ω ω πω ω ω
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α α α
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α α= − = −∑ ∑2 2 2 2

 (38)

the sought quantum correlation function (35) assumes 
the general form

CJ (t) = FJ (t)Cn(t) (39)

where

C t
d

J t i t
n
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∞
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ω
π

ω βω ω ω⎣⎣ ⎤⎦
 (40)

As mentioned before, in the absence of  excitonic 
coupling FJ (t) = 1, and Eqs. (39)-(40) formally co-
incides with Eq. (17), thus suggesting that in this 
case the polaron model approach and the correlation 
function method described in Sec. A for calculating 
OD spectra are equivalent. However, in principle, 
the latter approach is more general than the former 
because it treats the environment beyond the harmonic 
heat bath approximation, albeit within the  cumulant 
approximation. The determination of J (ω) from Eq. 
(38) requires the seemingly unattainable knowledge 
of the energies ωα of all  phonons, together with their 
corresponding coupling constants gα. This problem 
is similar to the  spin-boson model description of the 
coupling between protein motion and  electron transfer 
processes (Xu and Schulten, 1994) that can be solved 
by evaluating the spectral function from the energy 
gap fl uctuations δEn(t) as described in the previous 
sections. On the other hand, Eq. (38) provides a 
simple physical interpretation of the spectral function. 
Indeed, if one regards the environment in a PPC as 
an equivalent harmonic- phonon heat bath then one 
can interpret the magnitude of the spectral functions 
as a measure of the coupling strength to phonons of 
that particular frequency. In general, the complex 
structure of the spectral function (determined from 
the combined MD/QC calculations according to 
Eq. (18) (see also Fig. 5b) indicates that all inter 
and intra molecular  vibronic modes within a wide 
range of frequencies will contribute to the  lineshape 
function. Hence, attempts to use simplifi ed model 
spectral functions appear to be unrealistic even if 
these may lead to absorption spectra that match the 
experimental results.

C. Circular Dichroism

 By defi nition, the  CD spectrum ICD(ω) is the differ-
ence between IL(ω) and IR(ω), the OD spectra for left 
and right circularly polarized light, respectively. Un-
like in the case of the  OD spectrum, the calculation of 
ICD(ω) even within the leading order approximation 
requires taking into account the spatial variation of 
the light fi eld across the PPC as well as the excitonic 
coupling between the pigment molecules regardless 
how small this may be (Somsen et al., 1996). The 
sensitivity of the CD spectrum to geometrical and 
local details of the PPC makes it a quantity diffi cult 
to predict by theoretical modeling. The CD spectrum 
is given by (van Amerongen et al., 2000)

I I I dt e
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where λ is the wavelength of the incident light and 
εijk is the unit antisymmetric tensor of rank 3. Insert-
ing Eq. (26) into (41) and making use of Eq. (29), 
one obtains
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is the so-called  rotational strength of the  excitonic 
state J. It should be noted that in the absence of the 
excitonic coupling all RJ = 0 (because for a given J 
only one coeffi cient 〈J |n〉 is nonzero) and the CD 
spectrum vanishes. The rotational strength plays the 
same role for the CD spectrum as the TDM strength 
for the OD spectrum. Specifi cally, RJ gives the cou-
pling between the TDM of the excitonic state J and the 
orbital magnetic moment of the other  excitons. The 
coupling to the local magnetic moment is assumed 
to be small (Cotton effect) and usually is discarded 
(Somsen et al., 1996; Amerongen et al., 2000).
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III. Electron Transfer at Finite Temperature

Another important class of quantum processes in 
PPCs involves electrons switching between two 
states. Two examples are  electron transfer reactions 
in PPCs when an electron moves from an orbital on 
the donor moiety D to an orbital on the acceptor 
moiety A and bond formation or bond breaking in 
an enzyme when electrons shift from a non-bonding 
state to a bonding state or vice versa. Here only the 
electron transfer processes will be considered. An 
ideal PPC system for studying the electron transfer 

in photosynthetic bacteria. For quite some time high 

from several species of photosynthetic bacteria, such 
as Rhodobacter (Rb.) sphaeroides (Deisenhofer et al., 
1985) shown in Fig. 2.

units, denoted L, M and H. The H subunit is located 
on the cytoplasmic side of the cell membrane and is 
anchored to it by a single transmembrane helix. The 
homologous L and M subunits have fi ve transmem-
brane helices and display a quasi-twofold rotational 
symmetry. Several photoactive pigment molecules 
(termed as cofactors or prosthetic groups) are bound 
by the L and M subunits in a symmetric fashion and 
being labeled A and B, respectively. These cofactors, 

which play a key role in the electron transfer processes 

form a strongly interacting dimer called the  special 
pair (PA, PB) two monomeric BChls (BA, BB) located 
near the special pair; two  bacteriopheophytins (HA, 
HB); a pair of  ubiquinone molecules (QA, QB); and 
one  non-heme iron atom (Fe) (Deisenhofer et al., 
1985). The main steps involved in photosynthetic 
 char
special pair (the  primary electron donor) is excited 
through the absorption of an incident photon, and then 
relaxes by transferring an electron through BA to HA 
in ~3 ps; (ii) the electron is transferred from HA

− to 
QA in ~200 ps; (iii) Q A

− transfers an electron to QB in 
~ 200 μs by converting the latter into a semiquinone 
radical; (iv) during this time the positively charged 
special pair is neutralized by extracting an electron 
from a monoheme c-type  cytochrome (Cyt c2) on 
the periplasmic side of the membrane (this soluble 
cytochrome shuttles the electron between the Cyt bc1 

photon is absorbed by the special pair, a second elec-
tron fl ows to QB

− via the same pathway; (vi) this time 
QB

2− is converted into  quinol (hydroquinone QBH2) 
by the simultaneous uptake of two protons from the 
cytoplasmic side of the complex; (vii) the quinol dif-

is rich in mobile quinones; (viii) the cycle of electron 

by the arrows. Graphics rendered with the program VMD (Humphrey et al., 1996). See also Fig. 2, Color Plate 7.

Fig. 2. Left: Structure of the RC of Rb. sphaeroides (entry code 1PCR in Protein Data Bank). For clarity only the backbone of the 
protein subunits L, M and H are shown. The protein helices are represented by cylinders. The cofactors are labeled, and for clarity their 
phytyl tails are not shown. Right: Spatial distribution of the cofactors in the RC. The path of the electrons through the RC is indicated 

process is the photosynthetic reaction center (RC) 

resolution crystal structures are available for RCs 

In general, RCs are formed by three protein sub-

within the RC, consist of (Fig. 2): two BChls that 

ge separation in the RC are as follows: (i) the 

complex and the RC); (v) when another incoming 

fuses out of the RC and into the cell membrane that 
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transfer is completed by the oxidation of the quinol 
by the  Cyt bc1 complex which results in the transfer 
of protons across the membrane and the re-reduction 
of Cyt c2. The transmembrane proton gradient drives 
the synthesis of ATP, the universal fuel molecule, by 
ATP synthase.

The electron transfer process can also be formally 
regarded as a chemical reaction AD → A+D−, where 
AD and A+D− are the reactant and product states, re-
spectively. The energy expectation values of the two 
states, E1(t) and E2(t), vary in time due to motions 
along a reaction coordinate, but also due to thermal 
fl uctuations of the remaining degrees of freedom of 
the PPC. Often the interaction energies which couple 
the two electronic states involved in the reaction are 
small compared to the temporal variations of E1(t) 
and E2(t). In this rather typical case the actual reac-
tion process is confi ned to moments when the two 
electronic states become energetically degenerate 
(E1(t) = E2(t)). Such curve crossing processes in 
PPCs are strongly dependent on the thermal motion 
of the entire system including the protein matrix, the 
solvent and the lipid membrane in case of membrane 
bound PPCs. In a quantum mechanical description, 
one defi nes the Hamiltonians H1 and H2 that describe 
the collective motion of the system in the reactant 
(initial) and product (fi nal) electronic states of the 
PPC. The weak coupling between the two can be 
described by a tunneling matrix element V.

Just like in the case of optical absorption spectra, 
the effect of dynamic disorder on the electron trans-
fer processes in PPCs can also be determined by 
employing the combined MD/QC method described 
in the previous section. Once the A and D moieties 
have been identifi ed the time series of the electronic 
ground state energies E1,2(ti), i = 0,1,…, of the two 
redox states can be determined by QC calculation for 
each snapshot ti along the MD trajectory.

A. Cumulant Approximation of the Electron 
Transfer Rate

Assuming that the tunneling matrix element V does 
not change signifi cantly due to the thermal motion of 
the protein matrix ( Condon approximation), within 
the lowest order of perturbation theory in V the 
electron transfer rate kET in a PPC can be expressed 
as (May and Kühn, 2000)

k V dt e e
ET

iH t iH t=| |
−∞

∞ −∫2 1 2

 
(44)

Similarly to Eq. (13), by employing the  cumulant 
approximation
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where ΔH = H2  − H1, ΔH(t) = eiH1 tΔHe−iH1 t, C(t) = 
〈δH(t)δH(0)〉, and δH(t) = ΔH(t) − ΔH. By following 
the same methodology as in the derivation of the  OD 
spectrum of a PPC (cf. Eqs. (14), (15) and (20)) the 
electron transfer rate can be brought to the form
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where ε = 〈ΔH〉 ≈ 〈ΔE(t)〉 is the mean  energy gap,
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where the spectral function has the usual form

J dt C t t( ) tanh( ) ( )cosω βω ω= /
∞

∫2 2
0  

(49)

Thus, the calculation of kET and J(ω) requires in fact 
only the knowledge of the energy gap time series ΔE(t) 
and not those of the individual energies E1,2(t). This 
simple observation is rather important because most 
QC methods do not permit the accurate determina-
tion of individual energy levels but they can provide 
energy differences with fairly high precision. 

A good estimate of the electron transfer rate in 
PPCs can also be obtained if the energy gap time 
series ΔE(t) are determined purely classically instead 
of combined MD/QC calculations. Knowing the 
atomic partial charges corresponding to AD and to 
A−D+ one can evaluate E1[R(t)] and E2[R(t)] along 
the R(t) MD trajectory as the Coulomb energies of 
the acceptor and donor moieties with the protein 
matrix, to which one adds the redox energies of the 
states AD and A−D+.

In the high temperature limit, one can easily show 



455Chapter 22 Molecular Dynamics Methods

that the expression of the electron transfer rate derived 
in this section by applying the  cumulant approxima-
tion yields in leading approximation the result cor-
responding to the classical  Marcus theory. To show 
this, one assumes that the correlation function of 
the  energy gap fl uctuations has a simple exponential 
form CM(t) = Δ2exp(−t/τ), where Δ2 = 〈δE 2〉 = 〈ΔE 2〉 
− 〈ΔE〉2 is the variance of the energy gap fl uctuations 
and τ is the corresponding relaxation time. Thus, the 
integrals in (47) and (49) can be performed exactly 
with the results

φ τ τ τ
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(51)

where the high temperature limit βω << 1 has been 
assumed. Note that the maximum of the spectral 
function JM(ω) corresponds to the energy gap

ε
β

M
= Δ2

2  (52)

Within the same range of approximations the phase 
factor (48) becomes
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(53)

Inserting Eqs (53), (50) into (46) and performing 
the Gaussian integral, one obtains the well known 
Marcus formula (Marcus, 1956a,b; May and Kühn, 
2000)

k
V

M

M= | |
Δ

−
−

Δ

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⎛
⎝⎜

⎞
⎠⎟

2 2
2

2
2

2
π

ε ε
exp

 

(54)

Since in general the spectral function (49) has a 
complex structure (Damjanovic et al., 2002a,b; Janosi 
et al., 2006) the simple exponential approximation of 
the correlation function C(t) may not be justifi ed so 

that differences between the  electron transfer rates 
calculated with the simple  Marcus formula (54) 
and with the cumulant approximation (46) may be 
expected even at high temperatures.

B. Spin-Boson Model of Coupling to a Heat 
Bath

Electron transfer between donor and acceptor 
moieties in a PPC can conveniently be described 
in terms of the  spin-boson model. Similarly to the 
 polaron model in the case of optical absorption in 
PPCs, in the spin-boson model the electronic degrees 
of freedom are treated as a two state system (one 
for the reactants and one for the products) and the 
nuclear degrees of freedom of the protein matrix are 
approximated by a harmonic heat bath. The name of 
spin-boson model stems from the fact that the two 
state electron transfer system is equivalent to a spin-½ 
system while the atomic motion is described by a set 
of independent bosons. Fore example, this model has 
been successfully applied to investigate the primary 
electron separation process in the photosynthetic 
reaction center of Rhodopseudomonas (Rps.) viridis 
by focusing on how the thermal oscillations of the 
protein atoms couple to the various transfer steps of 
an electron moving along the prosthetic groups (Xu 
and Schulten, 1994). The key new aspects of the 
spin-boson model description of electron transfer 
in PPCs is two-fold: fi rst, all model parameters are 
determined from molecular dynamics simulations, 
thus requiring only the knowledge of the atomic 
resolution crystal structure of the PPC; second, the 
spin-boson model accounts for all vibrational modes 
of the PPC by means of the  phonon spectral function 
that, similarly to the polaron model, can be determined 
from the time autocorrelation function of the energy 
gap corresponding to the product and reactant states. 
The spin-boson model may not only yield qualitatively 
different predictions than models involving a small 
number of vibrational modes coupled to the electron 
transfer, but it certainly makes the role of the medium 
surrounding an electron transfer reaction appear in a 
new light: essentially all motions of the environment 
are coupled signifi cantly to the reaction. The reason 
is surprisingly simple and applies clearly to the case 
of a PPC: the coupling between electron transfer 
and medium is due to the Coulomb interaction. This 
interaction, however, is long range and encompasses 
a very large volume. The coupling results then from 
small additive contributions of many motions rather 
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than from a few dominant modes.
A detailed review of the theory of the  spin-boson 

model can be found in (Leggett et al., 1985). In the 
case of a PPC the  electron transfer reaction is de-
scribed in terms of the two–state Hamiltonian, written 
both in fi rst and second quantized forms

el x z
n

n n n
n m

n mH V B B V B Bˆ † †= − = +
= ≠ =

∑ ∑σ ε σ ε
1

2 1

2

1

2

 (55)

Where σx, σz are the usual 2 × 2 Pauli matrices, 
ε = ε2 − ε1 is the difference of product state ε2 and 
reactant state ε1 energies ( energy gap), V accounts 
for the coupling between reactant and product states 
(the coupling originating from tunneling of the 
electron between electron donor and electron ac-
ceptor moieties), and B1,2 (B

†
1,2) are the annihilation 

(creation) fermionic operators of the two redox states. 
The medium thermal motion is described through 
an ensemble of independent harmonic oscillators 
( phonons) with the Hamiltonian

H b b
ph

n
n n
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α α αω
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2
†

 (56)

Here bnα (b
†
nα) creates (destroys) a phonon (vibronic) 

mode with frequency ωα in the n-th redox state. The 
coupling between the vibrational degrees of freedom 
and the two–state system is linear

H g B B b b
int
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n n n n
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α α α αω
1

2
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Where gα describes the strength of the coupling 
of the electron transfer to the α-th mode. The spin-
boson Hamiltonian is the sum of all three contribu-
tions, i.e.,

Hsb = Hel + Hph + Hint (58)

One may worry at this point that the many pa-
rameters which appear in the spin-boson model are 
impossible to specify uniquely and therefore, the 
model is either arbitrary or of limited use. However, 
just like in the case of the  polaron model (Damjanovic 
et al., 2002a; Janosi et al., 2006) described above, 
the value of the spin-boson model (Leggett et al., 

1985) lies in the fact that the  electron transfer rate 
can be determined uniquely in terms of the spectral 
function

J g
sb

( ) ( )ω πω δ ω ω
α

α α= −∑2 2

 
(59)

the energy gap ε and the coupling V. Note that Eq. 
(59) is formally identical with (38), and it can be 
determined from the real time autocorrelation func-
tion C(t) ≈ Re[C(t)] of the energy gap fl uctuations, 
δε(t) = ε(t) − 〈ε〉, by means of Eq. (18).

The energy gap time series ε(t) and the coupling V 
can be computed either from classical MD simula-
tions or from combined MD/QC calculations. Once 
C(t) and Jsb(ω) have been determined, the electron 
transfer rate ksb can be readily calculated by means 
of Eqs. (46)–(48).

VI. Simulation of Optical Excitations

According to the results presented in Sec. II in order 
to calculate the OD and CD spectra of the B800 and 
B850 BChls in a single LH2 ring from Rs. molischi-
anum fi rst one needs to determine the time series of 
the Qy energy gap ΔEn(�Δt) and TDM dn(�Δt), � = 
0,1,…,Nt, for all individual BChls. This requires two 
steps: (1) use all atom MD simulations to follow the 
dynamics of the nuclear degrees of freedom by re-
cording snapshots of the atomic coordinates at times 
t� = �Δt, and (2) use QC calculations to compute ΔEn 
and dn for each snapshot (Damjanovic et al., 2002a; 
Janosi et al., 2006).

A. Molecular Dynamics Simulations

The fi rst MD simulation of the LH2 antenna complex 
from Rs. molischianum embedded in a fully solvated 
lipid bilayer mimicking its native environment was 
reported in (Damjanovic et al., 2002a). A perfect 8-
fold LH2 ring was constructed starting from the crys-
tal structure (pdb code 1LGH) of Rs. molischianum 
(Koepke et al., 1996) (see Fig. 1). After adding the 
missing hydrogens, the protein system was embedded 
in a fully solvated POPC lipid bilayer of hexagonal 
shape. A total of 16 Cl− counterions were properly 
added to ensure electroneutrality of the entire system 
of 87,055 atoms. In order to reduce the fi nite-size 
effects, the hexagonal unit cell (with side length 
~60 Å, lipid bilayer thickness ~42 Å and two water 
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layers of combined thickness ~35 Å) was replicated 
in space by using periodic boundary conditions. The 
CHARMM27 force fi eld parameters for proteins 
(MacKerell Jr. et al., 1998) and lipids (Schlenkrich et 
al., 1996) were used. Water molecules were modeled 
as TIP3P (Jorgensen et al., 1983). The ground state 
ESP partial charges for geometry optimized BChls 
without phytyl tail were determined with the program 
JAGUAR (Ringnalda et al., 1996). The force fi eld 
parameters for BChls were taken from (Foloppe et al., 
1992, 1995) and for lycopenes were determined using 
the program QUANTA. After energy minimization, 
the system was subjected to a 2 ns long equilibration 
in the NpT ensemble (Feller et al., 1995) at normal 
temperature (T = 300 K) and pressure (p = 1 atm), 
using periodic boundary conditions and treating the 
full long-range electrostatic interactions by the PME 
method (Darden et al., 1993). All MD simulations 
were preformed with the program NAMD2 (Phillips 
et al., 2005), with a performance of ~8.5 days/ns 
on 24 CPUs of an AMD 1800+ Beowulf cluster. 
During equilibration an integration time step of 2 fs 
was employed by using the SHAKE constraint on 
all hydrogen atoms (Miyamoto and Kollman, 1992). 
After the 2 ns equilibration a 1 ps production run 
with 1 fs integration step was carried out with atomic 
coordinates saved every other time step, resulting in 
Nt= 500 MD snapshots with Δt = 2 fs time separation. 
These confi guration snapshots were used as input for 
the QC calculations.

B. Quantum Chemistry Calculations

The time series of the Qy transition energies ΔEn 
and  dipole moments dn of individual BChls can be 
determined only approximately from the confi gura-
tion snapshots obtained from MD simulations. The 
level of approximation used is determined by: (i) 
the actual defi nition of the optically active  quantum 
system, i.e., the part of the system that is responsible 
for light absorption and needs to be treated quantum 
mechanically; (ii) the actual choice of the QC method 
used in the calculations; and (iii) the particular way 
in which the effect of the (classical) environment 
on the quantum system is taken into account in the 
QC calculations. Because the optical properties 
of BChls are determined by the cyclic conjugated 
π-electron system of the macrocycle the quantum 
system was restricted to a truncated structure of 
the BChl restricted to the porphyrin plane (Cory et 
al., 1998; Mercer et al., 1999; Janosi et al., 2006). 

Although in general the different truncation schemes 
yield excitation energy time series with shifted mean 
values, the corresponding energy fl uctuations, which 
play the main role in calculating the optical absorp-
tion properties of PPC at room temperature in their 
native environment, are less sensitive to the actual 
size of the truncated pigment. On the other hand, 
however, the required computational effort can be 
reduced dramatically through such truncation of the 
quantum system.

The preferred method for calculating the Qy excita-
tions of the truncated BChls is Zerner’s semiempirical 
intermediate neglect of differential overlap method 
parametrized for spectroscopy (ZINDO/S) within the 
single-point confi guration interaction singles (CIS) 
approximation (Ridley and Zerner, 1973; Zerner et 
al., 1980). Because it is much faster and more ac-
curate than most of the computationally affordable 

CIS method with the minimal STO-3G* basis set), 
ZINDO/S CIS has been extensively used in the 
literature to compute low lying optically allowed 
excited states of pigment molecules (Linnanto et 
al., 1999; Ihalainen et al., 2001; Damjanovic et al., 
2002a; Linnanto and Korppi-Tommola, 2004; Janosi 
et al., 2006). The ZINDO/S method is integral part of 
standard QC program packages such as HyperChem 
7.5 (HyperChem(TM), Hypercube, Inc.) and GAUSS-
IAN 98 (Frisch et al., 1998).

The effect of the environment on the quantum 
system can be taken into account through the elec-
tric fi eld created by the partial point charges of the 
environment atoms, including those BChl atoms that 
were removed during the truncation process. Thus, 
the dynamics of the nuclear degrees of freedom 
(described by MD simulation) have a two-fold effect 
on the fl uctuations of the Qy state, namely they lead 
to: (1) conformational fl uctuation of the (truncated) 
BChls, and (2) a fl uctuating electric fi eld created 
by the thermal motion of the corresponding atomic 
partial charges. The relative importance of these 
two effects on the time series ΔEn(t) was estimated 
by performing the QC calculations both in the pres-
ence and in the absence of the point charges (Janosi 
et al., 2006). For each case, a total of 12,000 (500 
snapshots × 24 BChls) ZINDO/S calculations were 
performed with a performance of ~2.3 min/CPU 
(~0.7 min/CPU) for each calculation with (without) 
point charges on a workstation with dual 3GHz Xeon 
EM64T CPU.

ab initio QC methods (e.g., the Hartree-Fock (HF) 
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C. Energy Gap Density of States

The 1 ps long time series of the Qy excitation energies 
ΔE n(t�) and TDMs dn(t�), (t� = �Δt; � = 0,…,Nt;  Nt = 
499;  Δt = 2 fs) computed with the described combined 
MD/QC method for both B850 (n = 1,…,16) and 
B800 (n = 17,…,24) BChls in a LH2 ring from Rs. 
molischianum are suffi ciently long for calculating the 
DOS of the Qy excitation energies and the correspond-
ing OD and CD spectra (Janosi et al., 2006).

Figure 3 shows the Qy  energy gap DOS, N(ω) (Eq. 
(10)), of the individual B800 (solid-lines) and B850 
(dashed-lines) BChls calculated as normalized binned 
histograms of the time series ΔEB800 ≡ ΔEn(t�) with 
n = 17,…,24, and ΔEB850 ≡ ΔEn(t�) with n = 1,…,16, 
respectively. In the absence of the point charge 
distribution of the environment N(ω) for B800 and 
B850 (thin-lines) are almost identical, having peak 
position at 1.51 eV (817 nm) and 1.515 eV (818 nm), 
and full width at half maximum (FWHM) 51 meV 
and 59meV, respectively.

It should be noted that essentially the same mean 
energy gap of 1.5 eV was obtained in similar MD/QC 
calculations (Mercer et al., 1999) for BChl solvated 
in methanol also at room temperature. These results 
indicate that the thermal motion of the nuclei in indi-
vidual BChls lead to Qy energy gap fl uctuations that 
are insensitive to the actual nature of the nonpolar 
environment. Since in LH2 from Rs. molischianum 
the B800s (B850s) are surrounded by polar (nonpo-
lar) residues, it is not surprising that once the point 
charges of the environment are taken into account in 
the QC calculations N(ω) changes dramatically only 
in the case of B800. Indeed, as shown in Fig. 3, in the 
presence of the point charges (thick-lines) the peak 
of NB850(ω) is only slightly red shifted to 1.502 eV 
(825 nm) and essentially without any change in shape 
with FWHM of ≈ 53 meV. By contrast, as a result 
of the point charges the B800 DOS is not only blue 
shifted but it becomes asymmetric and almost twice 
as broad with FWHM ≈ 100 meV. Thus, in spite of a 
small blueshift to 1.528 eV (811 nm) of the peak of 
NB800(ω) the mean value of the energy gap 〈ΔEB800〉 = 
1.556 eV (797nm) is increased considerably, matching 
rather well the experimental value of 800 nm.

The  excitonic energies time series ΔEJ(t�), J = 
1,…,16, of the B850 BChls were determined by 
solving for each MD snapshot, within the  point-di-
pole approximation, the eigenvalue equation (24). In 
calculating the matrix elements (23) rn was identifi ed 
with the position vector of the Mg atom in the n-th 

BChl. Consistent with the  Condon approximation, the 
magnitude of the computed B850 TDM time series 
exhibited a standard deviation of less than 4% about 
the average value 〈dB850〉 = 11.77 D. The latter is by 
a factor of k = 1.87 larger than the experimentally 
accepted 6.3 D value of the Qy TDM of BChl (Viss-
cher et al., 1989). By rescaling the TDMs from the 
ZINDO/S calculations to match their experimental 
value, and by setting εr = 1.86, one obtains for the 
mean value of the nearest neighbor dipolar coupling 
energies between B850s 27 meV ≈ 220 cm–1 within a 
protomer and 24 meV ≈ 196 cm–1 between adjacent 
heterodimers. As expected, the DOS of the excitonic 
energies (Fig. 3, dashed-dotted-line), computed as a 
binned histogram of ΔEJ(t�), is not sensitive to whether 
the point charges of the environment are included or 
not in the B850 site energy calculations.

The mean excitonic TDMs, calculated from Eq. 
(25) and expressed in terms of 〈dB850〉, are shown as 
an inset in Fig. 4. The error bars represent the stan-
dard deviation of the time series dJ(t�). As expected, 
most of the  dipole strength is amassed into the low-
est three  excitonic states (Damjanovic et al., 2002a; 
Janosi et al., 2006).

According to Eqs. (8) and (9)–(10) a rough es-
timate of the OD spectrum of the B800 BChls and 
B850  excitons is given by the corresponding TDM 
strength weighted DOS

Fig. 3. Normalized DOS, N(ω), for individual B800 BChls 
(solid-line), B850 BChls (dashed-line), and B850 excitons 
(dashed-dotted-line) in LH2 from Rs. molischianum computed 
as binned histograms of the corresponding Qy excitation energy 
time series obtained from combined MD/QC simulations. Whether 
the charge fl uctuations of the BChls’ environment are included 
(thick-lines) or not (thin-lines) makes an important difference in 
N(ω) only for B800.
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where the B800 index in the last term means sum-
mation over all B800 BChls. Figure 4 shows the 
calculated IDOS(ω) blueshifted by 20 eV (solid-line) 
in order to match the B850 peak position with the 
one in the experimental  OD spectrum (Zhang et al., 
2000; Ihalainen et al., 2001) (dashed-line). While 
the B850 band and the relative heights of the two 
peaks in IDOS(ω) match rather well the experimental 
data, the position and the broadening of the B800 
peak do not. This result clearly shows that in general 
peak positions in optical spectra may be shifted from 
the corresponding peak positions in the  excitation 
energy spectrum due to correlation effects between 
the ground and optically active excited states. The 
latter may also lead to different line broadening of 
the corresponding peaks. Therefore, methods for 
simulating optical spectra in which the position of 
the peaks are identifi ed with the computed excitation 
energies ( stick spectrum) are not entirely correct and 
using instead more sophisticated methods that include 
quantum correlation effects should be preferred.

D. Linear Absorption Spectrum

 According to Eq. (20) and (18) the  lineshape functions 
of the individual B850 and B800 BChls is the (clas-
sical) autocorrelation function Cn(t) = 〈δEn(t)δEn(0)〉 
of the  energy gap fl uctuation δEn(t) = ΔEn(t) − 〈ΔEn〉 
determined from combined MD/QC calculations. 
Since the LH2 ring from Rs. molischianum has an 
eight-fold symmetry, for best statistics one calculates 
a single time correlation function CB800(t) (CB850(t)) 
by averaging over all B800 (B850) BChls according 
to the formula
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where M = 8, m = 17,…,24 for α = B800, and M = 
16, m = 1,…,16 for α = B850.

The normalized correlation functions Cα(t)/Cα(0), 
α ∈ {B800,B850}, are plotted in Fig. 5a. Cα(0) = 
〈δE2〉 represents the variance of the energy gap fl uc-
tuations with CB800(0) = 3.16 × 10−3 eV2 and CB850(0) 
= 8.68 × 10−4 eV2. Both correlation functions have 
a qualitatively similar behavior with the following 
features: (i) sharp decay to negative values in the 
fi rst 9 fs, (ii) a ~18.5 fs period oscillatory compo-
nent with uneven amplitudes, and (iii) vanishingly 
small magnitude after 400 fs. The spectral densities 
Jα(ω) for B800 and B850, determined according to 
Eq. (18), are shown in Fig. 5b. The prominent peak 
about ωP = 0.22 eV is due to the fast initial decay of 
Cα(t) and it is most likely due to strong coupling of 
the pigment to an intramolecular C=O vibronic mode 
(Mercer et al., 1999; Damjanovic et al., 2002a). The 
complex structure of the spectral functions indicates 
that all inter and intra molecular vibronic modes with 
frequency below ωP will contribute to the lineshape 
function. Hence, attempts to use simplifi ed model 
spectral functions appear to be unrealistic even if 
these may lead to absorption spectra that match the 
experimental results.

The lineshape functions of individual B800 and 
B850, calculated from Eq. (20), are plotted in Fig. 
6a. The origin of the frequency axis corresponds to 
the mean energy gaps ωB800 and ωB850, respectively. 
The highly polarized surrounding of the B800 BChls 
in Rs. molischianum renders AB800(ω) twice as broad 
(FWHM ≈ 26 meV) as AB850(ω) (FWHM ≈ 13 meV). 

Fig. 4. Absorption spectrum IDOS(ω) of LH2 for Rs. molischianum 
calculated as a combined DOS of B800 BChls and B850 excitons 
weighted by the corresponding dipole strengths (solid line). IDOS(ω) 
was blueshifted by 20 meV in order to overlay its B850 peak with 
the corresponding one in the experimental OD spectrum (Zhang et 
al., 2000) (dashed line). Inset: Average transition dipole moments 
<dJ> corresponding to the J = 1,...,16 B850 excitonic states. Both 
<dJ> and the corresponding error bars are expressed relative to 
the mean dipole moment of individual B850s.
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are somewhat narrower than the experimental ones 
is most likely due to the fact that the effect of static 
disorder is ignored. Indeed, our calculations were 
based on a single LH2 ring, while the experimental 
data is averaged over a large number of such rings. 
While computationally expensive, in principle, the 
effect of static disorder could be taken into account 
by repeating the above calculations for different initial 
confi gurations of the LH2 ring and then averaging 
the corresponding OD spectra.

E. Circular Dichroism Spectrum

Using the results from Sec. C, the calculation of the 
 CD spectrum of the LH2 BChls proceeds along the 
following two steps (Janosi et al., 2006).

First, the rotational strength of both B850 excitons 
and B800 BChls is determined using Eq. (43). Here, 
just like in the case of the  point-dipole interaction 
matrix elements (23), rn represents the position vector 
of the Mg atom in the n-th BChl. The calculation of 
the rotational strength of the B800 BChls requires 
solving the corresponding  excitonic Hamiltonian (24) 
regardless how small the  dipole-dipole coupling is 
between these BChls. The calculation does not yield 
either noticeable corrections to the B800 excitation 

Fig. 5. (a) Normalized autocorrelation function C(t)/C(0) of the 
energy gap fl uctuations δE(t) = E(t) − <E> for individual B800 
(dashed line) and B850 (solid line) BChls, calculated using Eq. 
(61). The mean square energy gap fl uctuations are CB800(0) = 
3.16 × 10−3 eV2 and CB850(0) = 8.68 × 10−4 eV2. (b) Spectral den-
sity function J(w) for B800 (dashed-line) and B850 (solid-line) 
obtained according to Eq. (18). Reprinted with permission from 
the Journal of Chemical Physics. Copyright 2006, American 
Institute of Physics.

Fig. 6. (a) Lineshape functions A
–

B800(Δω) (dashed line) and 
A
–

B850(Δω) (solid line). (b) Computed (solid line) and experimental 
(dashed line) absorption spectra (in arbitrary units) of the BChl 
aggregate in Rs. molischianum LH2. The computed spectrum 
has been blue shifted by 20 meV for best match. Reprinted with 
permission from the Journal of Chemical Physics. Copyright 
2006, American Institute of Physics.

Also, the redshift of the peak of the former (Δω ≈ 25 
meV) is more than three times larger than that of the 
latter (Δω ≈ 7 meV).

Although the 1 ps long  energy gap time series 
provide a proper estimate of the B800 and B850 
 lineshape functions, the same data is insuffi cient to 
determine with reasonable accuracy the individual 
 excitonic lineshape functions AJ(ω). Thus, by neglect-
ing the effect of exchange narrowing (Somsen et al., 
1996; Amerongen et al., 2000), one can approximate 
AJ(ω) ≈ AB850(ω), and the  OD spectrum of the LH2 
BChls becomes
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Where ωJ = 〈ΔEJ 〉. As shown in Fig. 6b, I(ω) (subject 
to an overall blueshift of 20 meV) matches remarkably 
well the experimental OD spectrum, especially if we 
take into account that it was obtained from the sole 
knowledge of the high resolution crystal structure 
of LH2 from Rs. molischianum (Janosi et al., 2006). 
The reason why both B800 and B850 peaks of I(ω) 
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energies or admixture of the corresponding Qy states, 
however, it leads to sizable mean rotational strengths 
as shown in Fig. 7a (fi lled circles). Similarly to the 
TDM strengths, the largest (negative) mean rota-
tional strengths are carried by the four lowest B850 
 excitonic states as shown in Fig. 7a (open squares). 
The second highest excitonic state also has a sizable 
rotational strength and is responsible for enhancing 
the positive peak of the B800 contribution to the 
 CD spectrum.

Second, the CD spectrum is calculated from Eq. 
(42) where the summation index J runs over all B850 
and B800 excitonic states and AJ(ω) = A

–
α(ω − ωJ), 

with α ∈ {B800,B850}. The obtained CD spectrum is 
shown in Fig. 7b (solid-line) and it appears to match 
fairly well the experimental spectrum (dashed line) 
(Ihalainen et al., 2001). It should be emphasized that 
apart from an overall scaling factor the CD spectrum 
was calculated from the same MD/QC data as the 
 OD spectrum by following the procedure described 
above.

V. Calculation of Electron Transfer Rates

A detailed study of  electron transfer rates kET in the 
photosynthetic reaction center of Rps. viridis by em-
ploying the  spin-boson model was reported in Refs. 
(Xu and Schulten, 1992, 1994). The model parameters 
Δ and τ were determined by means of all atom MD 
simulations. Due to large errors in calculating the 
mean redox energy gap ε the authors used this as a 
fi tting parameter. The calculated kET(ε;T) for tem-
peratures T = 10 K and T = 300 K are shown in Fig. 
8, and are compared with the corresponding results 
predicted by the Marcus theory (Marcus, 1956a,b). 
As expected, at high (physiological) temperature 
the rate evaluated from the  Marcus theory in a wide 
range of ε values agrees well with the rate evaluated 
from the spin-boson model at T = 300 K. However 
the Marcus theory and the spin-boson model differ 
signifi cantly at T = 10 K. At such low temperature 
the rate as a function of ε for the spin-boson model 
is asymmetrical. This result agrees with observations 
reported in (Gunn and Dawson, 1989) which show a 
distinct asymmetry with respect to εM at low tempera-
tures. Such asymmetry is not predicted by the models 
of Marcus and Hopfi eld (Hopfi eld, 1974; Marcus and 
Sutin, 1985; Sumi and Marcus, 1986).

If one makes the assumption that biological elec-
tron transfer systems evolved their ε values such that 
rates are optimized, one should expect that electron 
transfer rates in the photosynthetic reaction center are 
formed through a choice of ε → εmax, such that k(εmax) 
is a maximum. In Fig. 9 the transfer rates k(εmax) and 

Fig. 7. (a) Mean rotational strength of the excitonically coupled 
B800 (circle) and B850 (box) BChls as a function of the cor-
responding excitonic energies. The purpose of the thin lines are 
to guide the eye. (b) Comparison between the computed (solid 
line) and experimental CD spectrum of the BChl aggregate in 
Rs. molischianum LH2. Reprinted with permission from the 
Journal of Chemical Physics. Copyright 2006, American Institute 
of Physics.

Fig. 8. Comparison of electron transfer rates k (ε;T) shown as a 
function of ε evaluated in the framework of the spin-boson model 
(solid lines) and by Marcus theory (dashed lines) at temperatures 
10 K and 300 K. The functions are centered approximately 
around εM.
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k(ε;T), corresponding for non-optimal values of ε = 
εM ± δ, with δ = 2.5 kcal/mol, are shown.

Experimental data of  electron transfer processes 
in the photosynthetic reaction center show increases 
similarly to those presented in Fig. 9 (Bixon and 
Jortner, 1986; Kirmaier and Holten, 1988; Martin et 
al., 1988; Nagarajan et al., 1990). However, Fig. 9 
demonstrates also that electron transfer at ε values 
slightly off the maximum position can yield a different 
temperature dependence than that of k(εM;T), namely 
temperature independence or a slight decrease of the 
rate with decreasing temperature. Such temperature 
dependence has also been observed for biological 
electron transfer (Nagarajan et al., 1990). The tem-
perature dependence of the transfer rate resembles 
that of k(εM;T) in photosynthetic reaction centers 
of native bacteria and in (M)Y210F-mutants with 
tyrosine at the 210 position of the M–unit replaced 
by phenylalanine. However, a replacement of this 
tyrosine by isoleucine ((M)Y210I-mutant) yields a 
transfer rate which decreases like k(εM −δ;T) shown 
in Fig. 9. This altered temperature dependence should 
be attributed to a shift of the redox potentials, i.e., 
εM → εM −δ.

It should be mentioned that there have been nu-
merous similar investigations of biological electron 
transfer in the literature (Warshel and Hwang, 1986; 
Wolynes, 1987; Warshel et al., 1989; Zheng et al., 
1989).
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