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It has been suggested that the hydrophilic side groups of proteins can form hydrogen-bonded conductors that transport
protons across biomembranes. Based on previous studies of the proton dynamics in ice, a kinetic model for such proton con-
ductors is developed. The steady-state proton current is evaluated as a function of the pH and voltage difference along the
conductor. This electrochemical potential is found to determine the mechanism by which the protons are transported. Under
acidic conditions the proton current is inversely proportional to the number of side groups composing the conductor and is

determined by the rate of injecting a L-Bjerrum orientation fault into the hydrogen-bonded conductor. For small voltages
(< 100 mV) an analytical expression for the proton flux is derived. )

1. Introduction

In 1961 Mitchell [1] put forward the hypothesis
that an active transport of protons across biomem-
branes is coupled to biological energy transduction in
mitochondria and chloroplasts. Although experimen-
tal support of his hypothesis has been obtained, for
example in the study of the light-driven proton pump
of halobacterium halobium and in photosynthesis
(for a review, see refs. [2] and [3], respectively), the
molecular mechanism for the proton transport in
these systems is still not fully understood.

Applying an analogy from proton motions in water
and ice, Onsager suggested that protons could move
through biomembranes utilizing the hydrophilic side
groups of membrane proteins [4] as shown in fig. 1:
the protein P spans the membrane and the hydrophilic
side groups labeled X, Y, Z form a one-dimensional hy-
drogen bridge network to transport protons from side
A to side B of the membrane. The group X—H, for ex-
ample, may be the hydroxyl end of serine or the car-
boxyl end of glutamic acid. For halobacterium halo-
bium this idea of proton conduction was given further
support by the calculations of Dunker and Marvin
[5,6] who determined that the pitch of two adjacent
a-helices allows such a conducting pathway to exist.
Recently Nagle and Morowitz [7—9] have suggested
that this molecular concept may be the fundamental
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Fig. 1. (a) The side groups X, Y, Z of a protein spanning a bio-
membrane form a one-dimensional proton conductor. (b) Pos-
sible ionic (Dy, Lt) and orientation (Dy, L) defects in the hy-

drogen-bonded structure.

pathway for proton exchange in many biological sys-
tems and using a simplified statistical description of
the proton dynamics, they determined the time it takes
a proton to cross a membrane once it is injected into
the network.

The motion of protons in such one-dimensional sys-
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tems can be described in roughly two ways [10]: If
the protein structure is rigid and the temperature suffi-
ciently low, then tunneling or cooperative jumping be-
tween the groups establishes the proton conduction as
had been calculated by Fischer et al. [11]. At physio-
logical temperatures, proteins are probably more fluid
like, and one can assume that transport occurs by a
combination of thermally activated processes: jump-
ing of protons between two groups or rotation of a
group XH about the single bond P—X. Given the rates
for these activated processes a statistical description
can be given to the proton conduction. It is this latter

statistical description which we will adopt in our paper.

Similar models have been suggested previously to de-

. scribe proton conduction in other one-dimensional hy-
drogen-bonded networks as in imidazole [12] and lith-
ium hydrazinium sulfate crystals [13].

In this paper we evaluate the steady-state flux of
protons through a one-dimensional passive conductor
as a function of its length and electrochemical proton
gradient across the membrane. Using the concepts de-
veloped to describe proton dynamics in ice, the kinet-
ic model for the motion in the conductor is stated in
section 2. The kinetic rates describing the transitions
between the various states of protonation of the con- -
ductor are determined in section 3. The protonation
and deprotonation rates for the conductor end groups
as a function of the solution pH are derived in section
4. Modifications of the rates upon applying an electric
field across the membrane are given in section 5. On
the basis of the steady-state proton flux through the
conductor, defined in section 7, we study in section 8
how chemical (pH) and electrical potential differences
along the conductor affect the proton transport.

The aim of this paper is to provide a general kinetic
framework for the description of proton conduction
by amino acid side groups in proteins and to discuss
the essential many-particle features of the conduction
process, i.e. the cycles of proton configurations consti-
tuting the conduction pathway. Our treatment, con-
trary to previous approaches, is not restricted to cer-
tain ranges of the rate constants for the elementary
transport processes. However, in lieu of a consistent
set of rate constants for protein systems we chose to
apply our theory to a hypothetical one-dimensional
conductor governed by the rate constants of proton
transport in ice. As this conduction is truely three-di-
mensional, our results convey only to a limited extent

information on this system. Since our theory applies
only to one-dimensional, thermally activated proton
conduction, we do not like to pursue proton conduc-
tion in ice very far. Nevertheless, we have engaged in
detailed discussions on how to abstract rate constants
for the ice system to illustrate how corresponding rate
constants may be obtained for protein side groups. In
this respect studies on biological proton conduction
certainly can gain much from the extended work on
proton conduction in ice. In fact, most of our expres-
sions employed for the rate constants governing pro-
ton transport between water molecules and ions can
be applied also to amino acid side groups.

2. Description of the model

In the following we will consider the proton con-
ductor crossing a membrane to be a linear arrangement
of groups P—XH linked by hydrogen bridges and fixed
at the protein backbone. As shown in fig. 1, we assume
all of the groups to have two binding sites and there-
fore four different states of protonation. The states of
protonation have their analogs in water or ice. For ex-
ample, P—X™ corresponds to OH™ P—XH to Hy o*,
and the two states P-XH to H,O. The states XHJ and
X" are considered to be ionic faults, and since the
faults can move only by translation of a proton to
another group, they are labeled D, and L, faults, re-
spectively (see for example, ref. [14]). Between the
conductor elements, Bjerrum type faults can exist. For
example, the absence of protons between the groups Y
and Z gives rise to a Bjerrum L-fault and the presence
of two protons between the groups X and Y establishes
a Bjerrum D-fault. These faults move by rotation of
the group YH about the P—Y bond and, hence, are la-
beled D, and L, [14,15].

For a conductor with NV groups, each with two bind-
ing sites, there are 22 possible ways (proton configu-
rations) of distributing up to 2V protons within the

-one-dimensional conductor. The dynamics of the pro-

ton motion in a linear conductor of several elements
can be described by the master equation

dP/dt=PK, @.1)

where P is a row vector of maximum dimension 22/,
The component P; is to represent the probability that
the jth proton conflguratlon occurs, e.g. the probabil-
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Fig. 2. Activation energy diagram for the first-order transition
rate constants Kjj: EA(f—>j) = EA(j~i) + ER.

ity that no proton is found in the conductor. The ele-
ments of the matrix K are the first-order rate con-
stants describing the occurrence of transitions between
the proton configurations of the conductor. For tran-
sitions involving a jump or reorientation of a proton
within the chain, the rate constants are written in the
Arrhenius form

K= Ajexp[-BE (i ~>])], (2.2)

where = 1/kT, and E Ai—>j)and Aj; are the activa-
tion energy and the pre-exponential factor for the
transition i = j, respectively (see fig. 2). Throughout
the article, a temperature T of 298 K will be assumed.
The conservation of total probability, 2 dp; /dt 0,
requires that the elements of the rate matnx satisfy
the relation

- LKy,

J#El

(2.3)

Condition (2.3) guarantees the existence of a non-triv-
ial steady-state solution of the master equation (2.1).
In order to calculate the first-order rate constants
K ij» we will make the following restrictive assumptions:
(i) the defects in the conductor do not interact with
each other, (ii) the different states of a conductor are
connected by elementary transitions which involve
only the rotation of a single group or translation of a
single proton between two adjacent groups. The first
restriction implies that the energy of a configuration
or state is equal to the sum of energies for each defect
appearing in the configuration and that the faults move
independently as long as they do not recombine. The
two states having no faults will be assigned a zero ener-
gy of formation. With the second assumption we are

neglecting concerted motions of the protons whereby
a fault migrates over more than one element in a single
transition. We do not, for example, consider the tun-
neling of an ionic D; fault. In fact, Chen et al. [16]
have indicated that proton tunneling does not play an
important role for ionic-transport in ice for not too
low temperatures.

The number of possible proton configurations for a
conductor with N components is 22V, For a short con-
ductor of three elements (length ~10 A), the transition
rates K;; between the 64 states can be analyzed in a
straightforward, but tedious manner. Since membranes
more realistically are 20—50 A wide, we developed a
computer algorithm that automatically determines the
proton configurations and the elements Kj; of the rate
matrix.

The proton configurations (labeled by integers 1)
are best represented by the binary number

D {
N, =aPa) ..a),

where the digit af,l,) gives the number of protons, O or 1,
at the mth binding site in the /th configuration. For
example, for N= 2 the configuration with all four pro-
tons is represented by N, = 1111. The transformation
of one conductor state to another by rotation, transla-
tion, uptake or release of a single proton corresponds
to changes of the integer NV,.

(2.4)

3. Evaluation of the first-order transition rates

With the foregoing simplifications, the change in
the state of the conductor resulting from the motion
of a single proton can be described by one of 10 ele-
mentary transitions: four correspond to migrations of
a single D or L fault; four to the creation of the single
faults L, or D, and the fault pairs LD, and L D,; and
two to the creation of a D; or L, fault by protonation
or deprotonation of the conductor end groups. The
migrations are denoted by D— D or L~ L and the
fault creations by 0> L,,0>D,,0>L, or 0> D,
where O refers to the initial state of the conductor (be-
fore the new fault was created). For example, the rota-
tion of the YH group in fig. 1 results in the disappear-
ance of a D, fault, i.e. is written L D, - 0.

Every element K;; of the rate matrix will describe
one of these 10 transitions. To evaluate K,-j, the acti-
vation energies for each type of transition must be
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Table 1
Energy of formation and activation of pair defects in ice at
263 K (in eV)

Bjerrum (L;Dy) Ionic (L{Dy)
defect defect
energy of 0.68 [17] 0.96 [17]
. formation 0.72 [21] 1.0 [21})
activation 0.235 [17] ~0.02 {20} -
energy of 0.24 [21] 0.05,0.10 [18] @)
diffusion 0.10 [19] ©)

a) Activation energies for L and D¢ migration measured in
doped ice.

b) Activation energy of recombination of Lt and Dy faults
(neutralization) in water at 7= 298 K.

known. Unfortunately, the activation energy for fault
migration and the energies of fault formation have
been well studied only for ice and even in this case
due to experimental difficulties there is little consen-
sus as to the values of these quantities. We use the
available information for ice as our reference data, and
derive the necessary modifications to treat conductors
composed of heterogeneous hydrophilic groups.
Table 1 contains the information on the formation
and motion of the faults LD, and L,D, in ice. The ac-
tivation energy F', of diffusion corresponds to the mi-
gration of the more mobile D or L fault. On the basis
of the observed ratio of the mobilities u(L,)/u(D,)
~ 1.5 (ref. [17]), we assign in table 2 the same activa-
tion energies of migration (E)) to the Bjerrum L and
D faults.

Since the activation energies of migration of the
ionic faults, D; = H30% and L, = OH™, are extremely
small, the ratio of the mobilities could only be deter-
mined to fall in the range 1 <u(H30")/u(OH™)< 10
(refs. [17,18,22]). Jaccard [20] has estimated that
Ey(Dy) is about 0.02 eV, and we arbitrarily set
Ey(Ly) at 0.04 eV.

If we liken the formation of an ionic fault pair
LD, to the autodissociation reaction of water [14],

2H,0 = H;0* +OH", (3.1)

we can define an energy of formation based on its
equilibrium constant

Keq=exp[-BER(L:D,)] = [H30%] [OH™]/ [HZO(] 2,)
3.2)

where we have taken the concentration of [H,0]

~ 55.5 mol 21 and [H30*] [OH™] = 10-14 Tt is
convenient for the later modifications in treating con-
ductors with heterogeneous hydrophilic groups to ex-
press the autodissociation reaction in terms of the com-
peting elementary dissociation processes

H;0* = H,0 +H*, pK(H;0%), (3.3)

H20 =0H™ + H+, pK(HzO). (3.4)

The equilibrium constant K, for the first reaction de-
fines pK(H;0%) = —log K|, = —1.745, the second re-
action defines pK(H,O) = 15.745. Here and through-
out the paper the pK value of a conductor group XH,
pK(XH), will be understood to refer to the equilibrium
of the reaction

Table 2
Energy of formation and activation of elementary motions of defects assymed for our one-dimensional proton conductor (in eV)
Energy Dt Lt Ll’ DtLt DILI‘
energy of 0.522) 0.522) 0.2 1.03 0.7
formation Ep 0.24) b) (0.18) b) 041)9)
activation energy of : ’
migration E)y 0.02 0.04 0.24 0.24 - -
activation energy of
destruction £p 0.02 0.04 0.24 0.24 0.02 0.24

a) Energy of formation based on water using eqs. (4.16) and (4.17) with pK(XH) = 15.745, pK(XH;) =-1.745and pH=17.
b) Energy of formation using eqgs. (4.16) and (4.17) with pK(XH) = 10, pK(XH}) = 3 and pH = 7;
¢) Energy of formation using eq. (3.11) with pK(XH) =10 and pK(XH;) =3,
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XH=X" +H*, (3.5)

where
PK(XH) = —log[X™] [H*]/[XH].

In doing so, we are suppressing the fact that our defini-

- tion of pK is based on reactions in water. The energy
of formation of the fault pair D;L, can now be ex-
ptessed as a pK difference

Eg(L,D,) = 2.3[pK(H,0) — pK(H;0*)] /8 = 1.03 eV.
(3.6)

The energy of formation of the single faults D, and L,
which appear upon protonation and deprotonation of
the conductor end groups will be defined in the follow-
ing section.

Although the energy of formation of a Bjerrum
fault pair L _D_ is known, we do not know how to
split it into contributions arising from the single faults.
The proximity of the two protons between the adja-
cent groups in the orientation fault D, (see fig. 1)
should make it considerably less stable than a L, fault.
Various approximations have been made, and in setting
Ep(D,)=0.5 eV and Ep(L,) = 0.2 eV we are probably
overestimating the latter [14,17].

To obtain activation energies of destruction for the
two fault pairs LD, and L_D,, and the two single
faults L, and D,, we assume that their disappearance is
just another example of an L or D migration. In the
case of the fault pair, it is controlled by the mobility
of the faster single fault migration

Ep(L,D,) = Eyy(D,),

Ep(L,D,) = Ey(D,) = Ey(L)), (EX)

ED(LI) = ED(Dr) = EM(LI)9

where Ep, (E)) denotes the activation energy for the
disappearance (migration) of a fault. The activation en-
ergy of a fault creation is assumed to be the sum of Ey;
and Ep

E, (0~ LD) = Ep(LD) + Ep(LD), :
‘ (3.8)
E\(0—>L)=Ep(L) + Ep(L).

The pre-exponential factor A;; appearing in eq. 2.2)

is taken to be the same for all the transitions in table 2.
The rate of dissociation of H, O has been determined

inice to be 3.2 X 10~9 s~ at 263 K (ref. [17]). By
virtue of the activation energy for the formation of an
ionic fault pair given in table 2 and of eq. (2.2), we ob-
tain 4 = 5.1 X 1010 s—1, For simplicity we have
adopted the value

AU = 1011 S—l (3.9)

throughout the paper. With this value of the pre-expo-
nential factor, the rate constants for migration of an
ionic D, fault and a Bjerrum L, fault are 5 X 1010 s-1
and 7 X 106 =1 respectively.

The assumption of identical frequency factors A,-j
for L, Bjerrum fault and D, ionic defect transport is
rather arbitrary and neglects the difference in entropic
contributions between these processes. It appears that
in ice these contributions counteract the difference in
activation energies and bring about rate constants
which are close in value. The effect of such behavior
will be discussed briefly in section 8. For proton con-
duction in proteins one may expect that sterical effects
slow down the rotation processes. On the other hand,
proton translation between the amino acid side groups
in proteins may also be governed by sterical effects
(alignment of the groups) such that the rate constants
for L, defect migration may be slowed down to be-
come close in value to the rate constants for L fault
migration,

‘When the conductor is composed of heterogeneous
hydrophilic groups, we assume that only the activation
energies for ionic faults in table 2 must be modified.
The transitions involving movement of an orientation
fault L, or D, are supposed to be uneffected by the
heterogeneity. The energy of formation for an ion
fault pair D:[L)tc can be estimated from the proton
transfer reaction

XH+YH¢X‘+YH;.

Following the same procedure used above to determine
Ep(L,D,) for water [(cf. egs. (3.1) to (3.6)], we can
again express Ex by a pK difference

Eg(L¥DY) =23 [pK(XH) — pK(YHD] /8. ~ (3.11)

For the calculations presented in section 8, we have
considered the conductor components to be homoge-
neous with values typical for protein side groups [23]

PK(XH}) = 3 rather than pK(H;0") = —~1.745,
PK(XH) = 10 rather than pK(H,0) = 15.745.

(3.10)

’(3.12)
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Employing these values in eq. (3.11), one obtains
EF(L{(DtY) =0.41 eV indicated in parentheses in table

Modifications of the activation energies of migra-
tion Dz( -> DtY can be estimated by considering the
proton transfer reaction

XHj + YH = XH + YH;, (3.13)

where K., =10~ [PKXH)~PKOYHD] | Whep the
groups X and Y are not the same, or rather when
pK(XH‘ZL) # pK(YH;), the migration potentials are no
longer symmetric. We allow for this asymmetry by
modifying only one of the activation barriers. If
pK(XH3) > pK(YH}) then

E,(YH; > XH}) =E, (D) - DX)=0.02¢V,

E,(XH} ~ YH})=E, (DY -+ D¥) (3.14)

+2.3 [pK(XH;) — pK(YH3)] /8.

Similar logic is used to make corrections for the L,
fault migrations. If pK(XH) < pK(YH)

E, (Y~ »X7)=E,(LY »1¥)=0.04eV,

E,(X™>Y7)=E,(LY -~ LX) 61s)
+2.3 [pK(YH) — pK(XH)] /6. -

4. Protonation and deprotonation rates

The end groups B of the proton conductor interact
with an aqueous solution. In this section we will con-
sider the injection and ejection of protons at the end
groups, e.g. the creation of D, and L, faults described
for example by the reactions

HX HB + H,0% = HX HBH" + H,0
and
XHBH + OH™ = XH B~ +H,0.

Because of their bimolecular character these processes
are governed by the concentration and diffusion of
H30%, H,0 and OH™ species and should also depend
to some extent on electrostatic interactions at the
membraneous surface around the end groups. We will
assume that a proton from the solution cannot be in-

troduced into an interstitial site and, consequently,
that the protonation and deprotonation of the end
group B can lead only to the formation or removal of
an jonic defect. In principle, also the formation of L,
faults, e.g.

HX HB == HX BH

should be affected by the interaction with the aqueous
solution. For the sake of simplicity, we will assume,
however, that these processes, which are mainly of
monomolecular character, can be described by the
same rate constants as intrastitial L fault migration.

The rate constants for the uptake and release of
protons by the conductor will depend on the pH val-
ues of the solution and the pK’s of the conductor end
components. The end group B, for example, can be
protonated by the species H;0* and H,O and depro-
tonated by the species OH™ and H, O according to the
pair of parallel reactions:

Ky
B+H,0" = BH'+ H,0, (4.1a)
K
Ky
B+H,0 = BH" +OH™, (4.1b)
K-,

where B represents either the state P—X~ or P—XH.
The first-order rate constants of protonation Kp and
deprotonation K}, describing the overall reaction

Kp
B = BH* (4.2)
Kp

are
K, =K, [H;0%] +K,[H,0],

(4.3)
K=K _;[H,0] +K_,[OH"].

To obtain the second-order rate constants K, ; and

K, ,, we have to consider reactions (4.1) in greater de-
tail. Both reactions can be represented by the general
reaction scheme

kg ks kas . _

B+HA = [B..HA] = [BH..A] = BH'+A-,
kis  Ci ka1 C2  kaq

(4.4)

which includes the reactant and product intermediate
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states, C; and C2. HA denotes either the proton donor
H;0* or H,0. The bimolecular forward rate constant

k¢ (K or K,) and the backward rate constant ky, (K _;
or K_,) can now be expressed approximately as

ke=kiq912, 4.5)

Ky = kpa0a1 (4.6)

wh_ere‘kid is the bimolecular diffusion controlled reac-
tion rate constant. (Our treatment holds as long as k{4
and k54 are small compared to the other rate con-
stants.) For neutral species k;4 is [24]

k;;= 4nD;r;. (4.7)
id i'i

D; is the relative diffusion coefficient and r; the dis-
tance between the centers of the reacting species in
the encounter complex. ¢, (¢,1) is the probability
that the encounter complex C; (C,) goes to the en-
counter complex C,(C;) and breaks apart to give the
products on the right (left).

If we treat the products and reactants as neutral
species with the same relative diffusion constant D, so
that ky =k, = kg, then ¢, and ¢,; have the simple
forms '

012 = [1+(kyy +klkpp] 71,

gy = 1+ (kyp + k171

Furthermore, in this case the rates kiz and k,; have a
simple relationship to the equilibrium constant K, eq
Koq = kefky = 612/921 =k12/kp1 - ' (4.9)

Expressing the K eq for reaction (4.4) by pK differ-
ences we can write

+
k12/k21 = 10[PK(BH )-pKHA)]

(4.8)

(4.10)

In applying the above treatment to eq. (4.1a) [eq.
(4.1b)] the expression pK(AH) should be equated
with pK(H;0%) [pK(H,0)] . In applying eq. (4.10) to
biological systems, it must be realized that pK values
can be altered considerably by local protein and mem-
brane environments. (This remark applies, of course,
to all pK values entering the formulas in this paper.)
The maximum of X, and k,; will be the rate con-
stant for the migration of a D; fault between the sol-
vent and the chain end. The value for Ey;(D,) in table
2, and the pre-exponential factor given in section 3 (4
=101 s-1) yield

(4.11)

We take this value also as a measure for the rate of sep-
aration of the encounter complex, i.e.

max(ky,, kyy) =5 X 1010 s~1,

kS =max(k12,k21). (4.12)

For values typical of proton exchange reactions,
eg D=5X10"5cm—2slandr=10A4,

kg=4X 1010 mol-1s-1,

(4.13)
Assuming kg > min(k;;, k;;) in eq. (4.8), a condition
fulfilled for the pK values adopted [i.e. eq. (3.12)],
we can derive the following expressions for the proton-

ation and deprotonation rates in (4.3)

Kp =2[1010-PH 4 10pKBH")—4] (4.14)

Kp =2[1010-PK@BH") 4 1gpH~4], (4.15)

Aslong as pH < 14 — pK(BH?), the rates of proton up-
take and release are primarily determined by the reac-
tion in (4.1a). When pH = pK(BH*), Kp and KT, be-
come identical. More general expressions which take
into account the electrostatic interactions of the react-
ing species can be derived easily, but the simple formu-
las above contain the salient pH and pK dependences.

- For lack of information concerning the solvent—chain

electrostatic interactions, all protonation and depro-
tonation processes have been evaluated according to
egs. (4.14) and (4.15), respectively, i.e. assuming free
diffusion of the reactants. In particular, this simple
treatment also neglects the increase in electrostatic en-
ergy required to take a proton from bulk water to the
interior of a membrane protein with low dielectric con-
stant. The concomitant reduction of the protonation
rate may be counteracted (not under steady-state con-
ditions) by a negative surface potential which attracts
protons and, thereby, increases the effective proton
concentration at the surface. The protonation and de-
protonation of the conductor end group B = XH gives
rise to the single ionic faults D,(XH3) and L (X ™). We
use reaction (4.2) and the rates Kp and Ky to define
energies of formation for these faults. For the reactions
XH + H;0* == XH} + H,0 and XH + H,O0 == XH}

+ OH™ we obtain at pH =7

+
Kp/Kp, = 10°PKOH2) =T = exp[pE(D)],  (4.16)

and for the reactions X~ + H30* == XH + H,O and
X~ +H,0 = XH + OH™
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Kp/Kp =107 -PKX®) = exp[BEL(L,)].  (4.17)

The energies of L, and D, formation appearing in table
2 are derived from these expressions. g

5. Influence of an electric field

The transition rates and, consequently, the steady-
state proton flux can be changed by applying an elec-
tric field across the membrane. The field will accelerate
translations and rotations that move a proton in the di-
rection of the field and slow down those that move it
against the field. Assuming a homogeneous field inside
the membrane, the potential at a distance x from the
membrane surface will be

U(x)=Up +x(Ug — Up)/d, (5.1)

where d is the width of the membrane, and U A and
Uy are the electric potentials at the surfaces A and B,
respectively.

To move a charge g from X1 to x, requires the ener-
gy Au(Ug — Uy)/d, where Au= q(xy —xy)isthe
change of dipole moment connected with the charge
movement. It is important to realize that the charge of
a conducted proton is not confined to the actual posi-
tion of the proton, but rather is shared between the
proton and the protonated site, i.e. the oxygen in case
of ice and the amino acid side groups in case of pro-
teins. For this reason the motion of the proton from
x1 to x, either by rotation or by translation is not ac-
companied by Au = e(x, — x;), but by rather differ-
ent changes of dipole moment K, and u,, respectively.
Although [x, — x| is larger for a rotation than for a
translation one has y /u, = 0.56 [25] ¥

The conduction of a proton across the entire mem-
brane corresponds to Ay = ed. For a conduction with
N groups we consider this dipole moment to be parti-
tioned

ed =Ny, + (N - u,.

Assuming the minima of the transition potentials are
symmetrically located about the potential maximum,
the free energy of activation for rotations and transla-

(5.2)

* This value of Hrlut correspolnds to the ratio eg/ef in ref,
[25] and strictly applies only to the three-dimensional ice
structure.

tions moving H* against (with) the field E Slect (E‘Xle‘:t)
will exhibit an increase (decrease)

ES*t=E, +plU, - Ugl/2d,
I-elect 3)
EQ=E, —ulU, - Uyl)2d.

Here y represents the change of dipole moment accom.-
panying the respective transitions. By virtue of (5 2)
one finds for a translation

ue=ed [N(1+ufu) —1]71 (5.4
and for a rotation
My = (g /iy, (5.5

i.e. only a knowledge of the ratio My /iy is being re-
quired. The rates ¥ ; Will be altered correspondingly -

1“<‘g_lect = Kij exp[—-BulU, — Uyl/2d],
Telect (5:6)
Kji =K].l.exp[ﬁleA - Ugl/2d].

We assume that the electric field has no effect on the
protonation and deprotonation reactions in egs. (4.14)
and (4.15), i.e. the potential of the solution A is the

‘same as the potential of the membrane surface A. Fur-

thermore, only electric field strengths that give rise to
field corrections fu|U A — Ugl/2d smaller than the
smallest activation energy £ A = 0.02 eV will be con-
sidered.

6. Selection of proton configurations

In order to keep for the sake of numerical effort
the number of proton configurations small, three selec-
tion criteria have been employed against those configu-
rations which do not contribute significantly to the
proton conduction. Configurations are neglected
(1) if they entail more than either one L.,D;, L;or

L, L, fault;

(2) if the number of protons they contain deviates
from the number of groups N of the conductor by
more than one;

(3) if their energy of formation is larger than EF¥
=0.38 eV.

The criteria are redundant in that, for example, Ep
=0.38 eV corresponds to the energy of formation of
an L, L, fault (see table 2). The Ef'** value may be
used to eliminate configurations allowed by the first
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two criteria. With these restrictions, the dimension of
the rate matrix K can usually be reduced from 22V to
(V +1)2. In section 8 we will show under which pH
conditions calculations employing the above restric-
tions reproduce those calculations accounting for all
configurations.

7. Steady-state flux

The steady-state condition dP/d¢ = O reduces the
master equation (2.1) to a homogeneous system of
algebraic equations

P’k =0. (7.1)

The flux of protons into the B end of the conductor
Jp» a can be determined from the steady-state solu-
tion PO by means of

JB_,A =KB'P0, (7.2)
where KB is the vector with components
Kl.B = iK,.].‘if there exists a j such that

= (0 otherwise.

In writing eq. (7.3) we have taken advantage of eq.
(2.4) which assigns the protonation states onthe right
hand binding side in contact with solution B the binary
digit a,y, i.e. removal of a proton from B lowers the
configuration label N, by 1, adding a proton to B in-
creases NV, by 1. Under steady-state conditions the flux
at the A end of the conductor evaluated corresponding-
ly must equal J_, 5 . This equality was used as a non- -
trivial test of our computations.

8. Results and discussion

The steady state proton flux Jp_, o as defined in eq.
(7.2) has been calculated for a one-dimensional conduc-
tor with a maximum of seven equal components assum-
ing various external pH values and electric potentials.
The transition rate constants K,-]- as given by egs. (2.2)
and (5.6) were evaluated using the activation energies
of table 2 for conductor groups with pK(XHE) =3 and
pK(XH) = 10, and 4;; = 1011 s~1, As discussed in sec-
tion 3, the assumption of identical frequency factors

7ab
I
= 34 2ab
(]
5 - 10a
=
9{
2 24 2¢
‘*‘ Tc
@ 10b
- o
7,
1- 4
//
e 10c
I.f..
0 T T T T T T T T T T

pHA-PHg

Fig. 3. Steady-state proton flux JA through a conductor of
two groups as a function of pHA — pHp at pHR=2,7, 10.
The proton configurations included in the calculations are
those of the graphs in figs. 4a and 4b (—), in fig. 4b except
the configuration 0000 (— —-), and in fig. 4c (..)-

for rotation and translation processes gives rise to rate
constants which differ by four orders of magnitude for
these two processes. At the end of this section, we will
discuss the situation when frequency factors are such
that these rate constants are comparable in magnitude.
Figs. 3 to 5 represent for a conductor with 2 groups
(N = 2) the evaluated proton flux from solution B to
solution A as a function of the pH of the solutions on

" either side of the membrane (see fig. 1). In fig. 3 the

flux resulting from calculations accounting for all 16
possible proton configurations (curve a) is compared to
the flux predicted by calculations with the number of
proton configurations reduced by a fault or energy cri-
terion (curves b and c). The transitions connecting all
16 configurations are shown in fig. 4a. The energy cri-
teria with EfF®* = 0.38 eV (only either one Dy, L,,L,,
or L,L, fault allowed) and with EfF® =0.24 ¢V (only
either one D;, L;, or L, fault allowed) result in 9 and

7 proton configurations, respectively, as indicated in
figs. 4b and 4c. Fig. 3 demonstrates that the flux re-
sulting from the reduced configuration graph of fig. 4b
(with the 0000 configuration excluded, however) ap-
proaches the flux as predicted by the complete calcula-
tion only as long as pHg <7. Agreement with the lat-
ter flux for a calculation based on the configurations in
fig. 4¢ is found only for pHg <7 and pH, <9. The
energetically more unfavourable configuration 0000
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which entails three faults L,L,L, opens a new conduc-
tion pathway important at large pH. Inclusion of this
configuration in a calculation according to the graph in
fig. 4b yields the same flux as the full calculation over
the entire pH range. This indicates that the most prob-
able configurations for the conductor are those deviat-
ing by only two or three faults from either of the two
“no fault” equilibrium configurations. In reality the en-
ergy of the proton configuration 0000 is too large (due
to the L,—L, fault interaction) to play a significant
role. However with increasing length of the conductor
(V> 4) this configuration is replaced by configurations
with one L, and two L, faults, the L, faults being sepa-
rated by one or more conductor groups such that the
L,—L, interaction is small. When both solutions be-
come basic [pH > pK(XH)], configurations entailing a
negative ionic fault L, at both conductor ends contrib-
ute to the proton transport. For longer conductors
there exist many such states, but since they contribute
only at high pH, calculations performed on larger sys-
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(c)

Fig. 4. (a) Graph representing the possible transitions between
all 16 proton configurations for a conductor with two groups.
(b) Graph representing the possible transitions between the
10 proton configurations with at most (except 0000) either
one Ly, Dt, Dy or LtL; fault. This graph provides a proper
description of the steady-state flux of all pH values as well as
for small electric fields (AU < 0.1 V). The letters r, t and p
denote the type of transition, i.e. rotation, translation and
protonation or deprotonation of the conductor end groups,
respectively. (c) Graph as in (b) representing the possible
transitions between 7 proton configurations. Cycles 1 and 2
provide a proper description of the steady-state flux for

PHB < 7 and pHp < 9.

JBA /protons ms-1

Fig. 5. Steady-state proton flux Jg-. A through a conductor
with two groups (W = 2) as a function of pH4, at PHB
=0,2,4,7,9, 11. The calculations employed all the 16 pos-
sible proton configurations in fig. 4a.
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tems with pHp < 7 may include only configurations
with a maximum of two faults.

To rationalize the flux curves in fig. 3, it is illumi-
nating to consider in detail the proton configurations
involved in the conduction process. The transport of
protons from B to A is achieved by closed cycles in
the configuration graph. There are five such cycles
which contribute to the N =2 chain transport and can
be followed in fig. 4b. In the binary number represen-
tation they are:
cycle 1: 0101 - 1001 - 1010~ 1011 - 1101 -» 0101,
cycle 2: 0101 - 1001 - 1010~ 0010 - 0100 - 0101,
cycle 3: 0101 - 1001 - 0001 - 0010 - 0100 - 0101,
cycle 4: 0001 - 0010 - 0100 ~ 1000 -~ 1001 — 0001,
cycle 5: 0001 - 0010 - 0100 - 1000 - 0000 - 0001.

(8.1)

The proton concentrations in solutions A and B,
i.e. pH, and pHp, determine the contribution of each
cycle to the transport. Obviously, cycle 1 is important
when both solutions are acidic, whereas cycles 2 to 5
are important when the solutions are basic.

The proton flux from solution B to solution A over
a large pH range as predicted by a calculation account-
ing for all 16 proton configurations of a N = 2 chain is
presented in fig. S. As long as B is acidic, the proton
flux increases in two steps resembling a titration curve.
The first step occurs when cycle 1 in (8.1) is com-
pleted as the deprotonation at A 1101 - 0101 be-
comes possible at pH, = pK(XH3) = 3. Cycle 1 and 2
both pass through the L fault 1001 which has an acti-
vation energy of 0.44 eV (see table 2 and fig. 2) and a
formation rate

J

max

8.2)

Since the activation energies of all the other transi-
tions are smaller, the transition sequence 0101 - 1001
-> 1010 is rate limiting for the proton flux through
cycles 1 and 2. However, as the configuration 1001 de-
cays with equal probability to 1010 and 0101, the
maximum proton flux is only J ., /2. This value'is
reached at the first plateau of the flux curves in fig. 5.
The second step of the flux curves occurs when cy-
cle 3 is completed as the proton configuration 1001
starts to decay through 0001 at pH, = pK(XH) = 10
rather than through 1010 as in cycle 1 and 2. In cycle
3 the formation of the L fault 1001 is still rate limit-

= KOIO]."].OOl =3.61 proton ms—l .

ing. At high pH , however, the decay of this configura-

tion is preferentially to 0001 and, as a result, the pro-
ton flux assumes the full value J,;,,, as shown in fig. 5.

When solution B is basic, the first plateau of the
flux curve disappears and the height of the second
plateau diminishes since now a portion of the flux
goes through cycles 4 and 5 which are not as efficient
as cycle 3. The maximum possible flux through cycles
4 and 5 is also determined by the rate of a 0 - L, tran-
sition, i.e. 0100 - 1000. However, both cycles entail
the transition sequence 0001 - 0010 - 0100 - 1000
with the configurations 0010 and 0100 connected by
a very fast proton translation. There is then equal op-
portunity at these configurations that the cycle ends
up at the forward configuration 1000 or at the back-
ward configuration 0001. Therefore, the maximum
possible flux is reduced to J,,. /2. This feduction of
the flux is observed in fig. 5 for pHg = 11 in which
case the protons flow predominantly through cycles 4
and 5. At still larger values of pHg, the proton flux
will cease totally as the protonation rate Kp becomes
too small.

Calculations for conductors with more than two
elements (N > 2) have been performed accounting
only for (N + 1)2 proton configurations. The configu-
rations were selected by limiting their energy of forma-
tion by Ef'®* = 0.38 eV. With this criterion all configu-
rations which contain any double faults, except L, L,
faults, were neglected. Calculations for N = 2, 3 have
shown us that with this limitation, the steady-state pro-
ton flux is accurately described for pHg < 7, at all pos-
sible pH values, and for small electric potential gradi-
ents |Ug — U, | <0.1 eV. For pHg > 7 the proton
flux does not depend on the length of the conductor,
i.e. for this pHy range the N = 2 calculations above en-
tail the desired information.

Fig. 6 presents the proton flux across conductors
of various lengths as a function of pH, — pHp, for
pHy = 0 and pHy = 7. The flux curves exhibit qualita-
tively the same features as discussed earlier for N = 2.
However, the height of the first plateau,J; (V) de-
creases with V according to

J{(N) =T /N (8.3)

To understand this behaviour one needs only to con-
sider the configuration graph in fig. 7 which in the pH-
region of the first step suffices to describe the proton
conduction. Since translations are much faster than ro-
tations, the latter are normally rate determining. The
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Fig. 6. Steady-state proton flux Jg_, A through conductors of
length V' = 2, 4, 7 as a function of pHA — pHp at pHg =0
and pHB = 7. The calculations accounted for only a reduced
number of proton configurations satisfying Elgmx =0.38eV
(see text).

probability for an initial rotation creating a L, fault at
a conductor end is very small compared to the migra-
tion of a L, fault from one end of the conductor to
the other. The dynamics of the motion of a L, fault
can be considered a Gambler’s Ruin problem, i.e. a
one-dimensional random walk on a discrete grid of N
— 1 points between two absorbing walls. The probabil-
ity Po_,g(NV, s) that a L fault created at end A of the
conductor migrates to end B is [26]

Py gV, 5)=( - 1N — 1)1, (8.4)

where s is the ratio of the probability that the fault L,
rotates toward A to the probability that it rotates to-
ward B. The flux at the first plateau J; (V) can then
be expressed

T (V) =JmaXPA_,B(N, 5), (8.5)

where J ... has to be taken from eq. (8.7). In the limit
s => 1 (rotations to the left or right are equally prob-
able), we obtain eq. (8.3). Under acidic conditions,

the longer the conductor the less efficiently it trans-
ports protons across the membrane. When at least one
or both sides of the membrane are basic, pH > pK(XH),
the length is no longer important since a L, fault once
created at the A end moves directly to the B end.

We like to consider now the influence of an applied
electric potential on the flux of protons. In fig. 8 the
proton flux for conductors of varying length is pre-
sented as a function of the electric potential differ-

N-1
translations

P @ P

00®0® O ®O0 0®0®O®--00
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®O®OQ 00 rom:?ons -0®0®0@-0®
P ® p
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®®0®0® 08

®OBORO@® -
) translations

Fig. 7. Graph of proton configurations employed in the calcu-
lation of fig. 6 for pHR < 7 and pHp, < 9. The graph contains
3N + 1 configurations and is a generalization of fig. 4¢ to arbi-
trary N,

ence |Ug — U, | for pH, = pHp = 7. The curves ex-
hibit a linear dependence of the flux on Ug - U,,
i.e. they reflect Ohm’s law for proton conduction:
Jpa =R(WN)~1(Ug —U,). One can then attribute a
resistance R(V) to the whole chain and a resistance
Ry to its individual elements. The corresponding re-
sistance values R(V) are given below fig. 8. The values
fit the expression

1.6
N=2

-~ 124 3
0
1 4
[2]
5 8 >
e 7
o
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{4
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Fig. 8. Electric potential dependence of the steady-state pro-
ton flux Jg.., A through conductors of length N=2,3,4,5,7
at pHp = pHp = 7. The calculations accounted for all proton
configurations which entail at most either one L, Dy, Ly, or
LtL fault. The linear approximation Jg-» A = R™1(V) (U

= Up) yields for Ug — Up < 30 mV the resistance values (in
mV ms protons™1) 54.7, 69.3, 83.9, 98.4 and 127.5 for N
=2, 3,4, 5and 7, respectively.
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Fig. 9. Steady-state proton flux Jg—, A through a conductor
with 7 groups as a function of pHp — pHp at pHg =2 and
pHp = 7 with a retarding electrical potential Ug — Up =0,
—40, ~100 mV. The calculations accounted only for proton
configurations entailing at most either one L¢, D¢, Ly, or LL;
fault,

R(N)=NRg +R,, (8.6)

where Rg = 14.5 mV ms protons~! and R = 26.0
mV ms protons—1, Rd accounts for a contact resis-
tance between the solvent and the membrane conduc-
tor independent of the length of the conductor. R, is
pH dependent and has a maximum value at pH ="7.

Fig. 9 shows the proton flux evaluated for a conduc-

tor with V=7 elements as a function of pH under the
influence of a retarding electric potential U. The po-
tential gradient causes an overall reduction, but does
not change the qualitative behaviour of the proton
flux. Since the maximum flow of protons is deter-
mined by the rate of formation of an L, fault, we can
use egs. (5.4) and (5.5) to calculate the reduction
upon applying an electric gradient across the mem-
brane’

;;elect(o > L,)=k(0~>L,)exp[—Bu(Ug — Uy)/2d].
(8.7)

According to egs. (5.4) and (5.5) u/d assumes the val-
ue 0.056 for N =7 and the rates are

Z"lec‘(o - L,) = 3230 protons s~1
for U — U, =0.1V,
= 3450 protons s—1 (8.38)

for lUB et UAI =0.04 V,
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Fig. 10. Steady-state proton flux Jg-, A through a conductor
of length N = 3 for rotational frequency factors 4 = 1011 57!
(—, case ) and 4 =5 X 1013 571 (———, case II). The calcu-
lation accounted for all proton configurations.

in good agreement with the numerical values of J .,
in fig. 9.

The proton flux corresponding to the first plateau
can be determined from egs. (8.4) and (8.5) with

s=exp[—Bu lUg ~ Uyplld]

and J .. taken from eq. (8.8). For the potential gradi-
ents 0.1 V and 0.04 V, the flux Jg_, 5 is 217 and 373
protons s—1, respectively.

Finally we like to discuss the possibility that the
rate constants for rotation and translation processes
are of comparable magnitude. For this purpose, we as-
sume a 500-fold increase of the frequency factor 4;;
for L, and D, fault migration. Fig. 10 presents the pro-
ton flux for a conductor with N = 3 predicted for case
I of the old frequency factors and that predicted for
case IT of the new frequency factors. In our calcula-
tion we have included all possible proton configura-
tions. For a comparison of case I and II to be meaning-
ful the fluxes II have been rescaled by the factor 0.002.
This factor represents the ratio of the rate constants
for L, fault formation

Imax = K010101~100101>

which is rate limiting for the overall conduction pro-
cess (see above). ‘

Fig. 10 demonstrates that the “titration” behaviour
of the flux curves, indicating transitions between con-
duction cycles, as discussed above, does not change
qualitatively in going from case I to case II. However,



228 E.-W. Knapp et al. [Iroton conduction in linear hydrogen-bonded systems

the titration steps are shifted to higher p| I values and
the flux values are suppressed relative to J nax- The pH
shift is due to the fact that the conductioy ;;rocess has
to pass through the deprotonation step a/ sige 4 de-
scribed by

Kp =Ki01001-101000 ¥ 2 X 107, pH, =11,

~2 X 109, pH, =13
and is counteracted by the rotation procesy described
by ‘

k: =Kio01001-1010100 ¥ 107 571, case 1,

~4X 107 s case 1.

In case I1Kp >k, already at pHy =11, any, hence,
the flux approaches its maximum value fo pH, > 11.
In case II, however, Ky, <k atpHp =11 and only at
pH, =13 one has K ~ k_, i.e. larger pl L\ values are
needed to bring about the maximum protuy flow.

The general suppression of the proton flux relative
to J 1.« is readily explained by noting that the forma-
- tion of the L, fault 101010 - 101001 is s fast in
case I (k; =J 5 = 2 X 106 s~1) that it ix no longer
absolutely rate limiting for the overall conduction cy-
cle at medium pH values

K Ky Ky Kp
101010 - 101001 - 100101 - 010101 .. 110101

- 101101 - 101011 — 101010.

In fact, one has Kp, =2 X 107 s~1 for pH, <11,

i.e. one expects at pHy = 2 a slight decrease of the pro-
ton current below the J .. /3 value. At PHy =7 one
has Kp =2 X 1010-PHB s-1 =2 X 103 s-1_ 4 rate con-
stant which is much smaller than k; and, hance, Kp

will determine the proton current.

9. Conclusion

To determine the steady-state proton fIux across a
membrane along the one-dimensional conéctor sche-
matically drawn in fig. 1, not all degrees or wrotona-
tion need be considered. Only those conﬁg«;;mtions in
which the conductor deviates slightly fronz wither of
the equilibrium configurations are required 1o describe
the various pH dependent transport mechainisms. Using
the data from kinetic studies of the proton Iransport

in ice, we determined that the maximum flux possible
from such a conductor is limited by the rate of injec-
ting an L-Bjerrum like defect into the system. The val-
ueJp,.« = 3.61 protons ms—! compares well with the
proton pump rate in halobacterium halobium [2], and
while its pump cycle is a problem of dynamic and not
passive transport, the appearance of an L-Bjerrum de-
fect, i.e. group rotation, is necessary to bring the sys-
tem back to its original state. If the protons are really
transported along a hydrogen-bonded network, the
study of the passive transfer of protons across the
membrane will also be useful in determining what
mechanisms will be important in the dynamic trans-
port. For example, the configurations in cycle 1 of fig.
4b are just those employed by Nagle and Morowitz [9]
to study the dynamic relaxation of the hydrogen-
bonded conductor once an excess proton (D fault) is
injected by the ATP mechanism at one end. If the solu-
tions A and B become very basic, cycle 2 of fig. 4¢
along with the cycles corresponding to those num-
bered 3, 4 and § in fig. 4b would be necessary to treat
the dynamics.

Perhaps the most serious criticism of such models
for the proton transport is the special physical require-
ment of a protein assuming the proper geometry and
its specialization to the transport of only protons and
no other positive ions. The X-ray structure work of
Dunker and Marvin [6] has shown that the required
protein alignment occurs in many membranes, and that
by slight distortions their amino acid side groups could
be aligned to form a hydrogen-bonded pathway. The
recently obtained complete sequence of the protein
bacteriorhodopsin of halobacterium halobium and first
attempts to deduce its tertiary structure encourage the
notion of a proton channel formed by a continuous
chain of hydrogen bonds as considered in this paper
[27].

Finally, we would like to emphasize that it is by no
means clear that the rate constants describing proton
conduction in proteins resemble those of ice-like sys-
tems. Group rotations may be considerably faster in
proteins than in ice, whereas proton translation could
be rather slow as biological proton conductors should
prefer groups with pK values near the physiological
pH values in order to reduce the free energy require-
ment of injecting L-Bjerrum like defects, i.e. injecting
or withdrawing protons. The agreement of proton con-
duction rates of ice-like systems and that of bacterio-
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rthodopsin, if the latter involves at all a hydrogen

bridge network, may be fortuitous. One may rather ex-
pect that proton conduction through proteins exhibits’
rather different, possibly much faster, rates and is rate-
limited by other proton configurations and conduction
cycles than those discussed above. In this respect we -
have outlined, however, a suitable theoretical frame-
work for appropriate future descriptions.
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