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Abstract.
A linear neural network is proposed for mamalian vision system in which back-

ward connections from the primary visual cortex (V1) to the lateral geniculate

nucleus play a key role. The backward connections control the flow of information

from the LGN to V1 in such a way as to maximize the rate of transfer of informa-

tion from the LGN to V1. The application of hebbian learning to the forward and

backward connections causes the formation of receptive fields which are sensitive

to edges, bars, and spatial frequencies of preferred orientations. Receptive field

types in V1 are shown to depend on the density of the afferent connections in the

LGN. Orientational preferences are organized in the primary visual cortex by the

application of lateral interactions during the learning phase. Change in the size of

the eye between the immature and mature animal is shown be an important factor

in the development of V1 organization. The orgainization of the mature network

is compared to that found in the macaque monkey by several analytical tests.

1 Introduction

The companion paper to this one may be found at http://arxiv.org/abs/q-
bio.NC/0505010.

One of the most interesting aspects of the the various areas of sensory
processing in the brain is the presence of feature maps[1, 2, 3]. It has been
found that individual neurons are generally responsive to some specific sen-
sory feature of the input received, and that the neurons are organized in a
continuous way in the cortical sheet in accordance with the features. In the
somatosensory cortex, there is a map of the body; sensations from particular
areas of the skin evoke activities at corresponding points in this area. In
auditory processing the map is in terms of the frequency of a sound and its
direction relative to the observer.

It has been found that neurons in the primary visual cortex are organized
according to their feature detecting properties[6, 7, 8]. In particular, the ori-
entational selectivity varies in a continuous way across the cortex to form a
feature map. Neurons in the feature map encode for position as well as orien-
tation, and this is reflected in the map’s being retinotopic, that is, showing a
one-to-one correspondence between positions in the two-dimensional cortex
and positions in the visual field. Because they are so large, the receptive fields
of neighboring V1 neurons overlap considerably. In fact, since by continuity
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the neurons also have similar orientational selectivity, neighboring neurons
encode almost exactly the same information. Such a redundancy in the V1
representation of the image is addressed in the model presented[9, 10].

For simple cells in the primary visual cortex (also called the V1 layer),
feature selectivity is accomplished through spatial summation of the inputs.
The receptive field, or area of response of a neuron in the visual field, is gen-
erally arranged as alternating excitatory and inhibitory regions, elongated
in a particular direction[4]. In this way, the neuron responds most strongly
to edges of a particular orientation or image components of specific spatial
frequency and orientation. The sharpness of the tuning for orientation is of
a width of about 20-40 degrees. In the foveal region, the receptive fields are
about one-quarter degree across[5]. The typical foveal simple cell’s receptive
field is a bar-detector, a thin line two minutes of arc across straddled by re-
gions of opposite response characteristic, though there are also edge detector
receptive fields containing only two regions, excitatory and inhibitory.

Various models of receptive fields and feature maps have been proposed.
In the following are summarized the three major types of models:

1.1 Models of the Receptive Field Properties Only

These models seek primarily to explain the basis of orientational selectivity
in individual V1 neurons. Orientational preference has often been thought
to come about through an alignment of geniculate inputs[4], and this idea
has received some direct experimental confirmation[8]. Most of the theories
are consistent with this and involve using Hebb’s Rule to develop feature-
detecting properties from correlations in input data, as in the present model,
arriving at connection strength arrangements which resemble the receptive
fields of V1 neurons. A partial list is refs. [11, 12, 13, 14, 15, 16, 17, 18, 19,
20, 21, 22, 23, 24, 25, 26, 27], not including related models of receptive fields
in the retina.

1.2 Low-Dimensional Models of V1 Self-Organization

In low-dimensional models, mathematical functions or algorithms are used
with outputs that imitate the functional organization of the visual cortex,
resulting in mappings of retinotopy, ocular dominance, and orientational se-
lectivity onto V1 [28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39]. The models
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are called low-dimensional because some high-dimensional quantities, such as
sets of connection strengths, are not included explicitly, but are represented
instead by single numbers which are meant to summarize an important prop-
erty of the high-dimensional set, for example, the orientational preference,
or the occularity. The models themselves are generally not meant to ex-
plain neurophysiological mechanisms, however, certain generalities of neural
organization can be discovered from their results.

1.3 High-Dimensional Models of Receptive Fields and

V1 Self- Organization

Both the development of orientational selectivity by individual neurons and
the organization of V1 into feature maps are included in these models. Recep-
tive fields are defined in terms of connection strengths between the LGN and
V1, and the connection strengths are learned on the basis of correlations in
the input data set. These are the models of von der Malsburg et al[6, 40, 41],
Linsker[42, 43, 44], Miller[45, 46, 47], and Obermeyer, et al[48]. The last is
called a competitive hebbian model by Erwin, et al[49], because the learning
is hebbian and the lateral interaction responsible for the feature map for-
mation may be interpreted as competition between V1 neurons. The former
two models, and the present work, are of the type referred to as correlation-
based learning models. The high-dimensional models are meant to be more
biologically realistic, and succeed in this to varying degrees. Below we review
a few of the other high-dimensional models.

1.3.1 von der Malsburg

In 1973, von der Malsburg performed simulations on a model for orientational
feature map development[6]. He employed hebbian learning of connections
of both excitatory and inhibitory cells, with bar-shaped inputs to the visual
field. Lateral interactions in the cortical layer were included and the weights’
growth was controlled through normalization. Though his network was small,
an orientational feature map clearly developed.
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1.3.2 Linsker

Linsker developed a feedforward model with overlapping receptive fields and
hebbian learning of connections[42, 43, 44]. He found that after six succes-
sive layers of connections developed in this way, the receptive fields were
of the center-surround type. In the seventh layer he obtained oriented bar
detectors. Random inputs were approximated by computing an expected
correlation matrix for activities in the sixth layer (ensemble averaging) and
solving a differential equation for the weight values. A saturation limit on
the weight values was imposed. Feature map formation was simulated in a
low-dimensional model by assigning to each V1 neuron an angle correspond-
ing to orientational preference and computing the effect of lateral interac-
tions by an annealing process. The lateral interaction was excitatory only.
The model does produce an orientational feature map, which is compared to
experimentally-obtained maps in ref. [49]. A correlation between cortical co-
ordinates and orientation value is seen, a phenomenon which is not observed
in experiments.

1.3.3 Miller

Miller’s model[45, 46, 47] is mathematically similar to Linsker’s final stage,
but with a more physiological interpretation. Forward connection strengths
are learned, with connections to both ON- center and OFF-center geniculate
cells. A difference-of-gaussians lateral interaction is assumed. As in Linsker’s
model, ensemble averaging is employed, and the differential equation for the
weights is solved numerically. The correlation function for the ensemble
average is assumed to be of the center-surround type and is explained as
the result of competition between geniculate cells. Weight magnitudes are
controlled by subtractive terms in the differential equation, renormalization,
and a saturation limit. The results are similar to the results of Linsker’s
model[49].

1.3.4 Obermeyer, Ritter, and Schulten

Both low-dimensional[36, 37, 38, 39] and high-dimensional[48] models were
studied, based on Kohonen’s algorithm for self-organizing feature maps[50].
Kohonen’s algorithm may be considered as an approximation to employing
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a difference-of-gaussians lateral interaction. Instead of connections, an ex-
ponential neighborhood function is used which represents the effect on neu-
ral activities that a lateral interaction would have[3]. The high-dimensional
model employs connections only to ON-center cells. Receptive fields of elon-
gated shape are used to represent orientational preference. The input set
consists of ovals of various positions and ellipticities. Retinotopicity, ocu-
lar dominance, and orientational preference and specificity were all included
in the model. The model yields good comparison to experiment on all ac-
counts, however, geniculate receptive field sizes and OFF-center cells were
not taken into account, and it is not clear what the results would be with a
more realistic input data set.

2 Realistic Theories

At this point, we would like to describe what we feel qualifies a model as
being biologically realistic. In the past, when computers were much slower
and smaller than those of today, it was impossible to execute a realistic large-
scale simulation of a brain area. As such work becomes possible, a discussion
of the standards for neurophysiological realism is in order.

In order to be biologically realistic, a model must:
1) Be high-dimensional, that is, the basic quantities of the model are

connection strengths and neural activities. Quantities such as ”orientation”,
measured as an angle, are not physical quantities, and so must be derived
from the output of the model. In the present work, it will be shown that this
approach results in a functioning model of the visual system which can be
used to process images.

2) Use plausible learning only[51]. Exotic learning rules that cannot have
a plausible implementation in brain should be avoided. Such a constraint
lies at the heart of explanatory brain modelling; the object is not to simply
show that the function can be done by some system, but to propose how
the brain actually performs the function with the physiological capabilities
that it has. When the modeler so limits his own set of tools, he is forced to
discover a method that at least has a chance of being found in nature. We
employ hebbian learning as a plausible learning mechanism.

3) Learn all but the simplest connections. ”Prewiring” of connections
should be avoided. In other words, the network should be ”self- organizing”;
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only the raw sensory inputs and the learning rule should be enough for the
network to acquire its needed properties. Some connections in the brain,
though, could be formed through other than a learning process. If they
are made, for example, by a diffusion mechanism, this process might not be
included in a neural network model.

4) Use only neuronal types and connection pathways that are suggested
by physiology. This is virtually the only degree of freedom left to the modeler,
but even this must be limited by the current state of knowledge. In fact, much
of the experimental research effort so far has gone into the exploration of these
components of neural anatomy. Therefore these studies constrain, but also
guide, the construction of theories. Nevertheless, gaps in the understanding
of the brain in this regard must be filled in by the modeler, and such proposals
constitute the contribution of the theory.

3 Description of the Theory

We have attempted to fulfill these requirements in our model. The goal of our
model is to describe the development of the receptive fields of V1 neurons ant
their organization in the visual cortex. The model incorporates many details
of the visual system which have been discovered experimentally; included
in the model are the functions of the retina, the lateral geniculate nucleus,
and the primary visual cortex. The sizes and overlapping character of the
receptive fields of neurons in the visual system are important physiological
properties which are also components of the model. While conforming to the
most important physiological constraints, the model at the same time imple-
ments the simplest possible mathematical principles in which the algorithmic
description of the dynamics of the network can be formulated. The aim is
that the performance of the network be dependent as much as possible on the
above-mentioned physiological composition, further contributing to the goal
of biological realism. In the end, powerful principles of information process-
ing emerge, such as a maximizing of the rate of information transfer through
the visual pathway, suggesting that the natural system on which the model
is based is an optimal system in regards to its function.

We choose to model the following subsystem: the X-type cells and their
projections from the retina to the lateral geniculate nucleus, as far as the
primary visual cortex (area V1), in the last of which are included simple
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cells consisting of one excitatory and one inhibitory region, e.g., oriented
edge detectors. We take as the function of this processing pathway the task of
representing a visual image by the activities of neurons in the primary visual
cortex, in a way which is compatible with their receptive field properties.

3.1 Elements of the Model

The model contains the following elements:

1. Retinal photoreceptors and their connections to retinal ganglion cells

2. Center-surround retinal ganglion cells.

3. Forward excitatory connections from the retina to the lateral geniculate
nucleus, or LGN.

4. Center-surround cells of the lateral geniculate nucleus.

5. Forward excitatory connections from the LGN to the primary visual
cortex, or V1.

6. Simple cells having orientational preference in the primary visual cor-
tex.

7. Lateral connections between cells in V1.

8. Backward inhibitory connections from V1 to the LGN.

The model’s mechanism for the development of V1 is described by the
learning of the forward and backward connection strengths between the LGN
and V1. We continue by defining the interaction of these elements and the
learning of connection strengths via mathematical equations.

3.2 Neural Activities and Learning Rules

Let xi represent the input to a photoreceptor at position i, and yj, and ak the
activities of a retinal ganglion cell at position j, and a V1 neuron at position
k, in their respective neural layers. Since projections from layer to layer are
retinotopic, the subscripts also indicate the position of the centers of their
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receptive fields in visual space. Activities are defined in terms of average
firing rates. Negative activities of a neuron are allowed and are interpreted
as values below a level of ”idling” activity. They could also be interpreted as
activities of another neuron of opposite response characteristics at the same
position.

Input images falling on the photoreceptors of the eye are filtered by center-
surround retinal ganglion cells. We put

yj =
∑

i

gijxi (1)

where gij represents the center-surround receptive field of the retinal ganglion
cell j. gij depends only on the distance of i from j in the retina, and is
modeled by a difference-of-gaussians function of average value zero. The
function is the same for every j. This convolution removes most of the broad
intensity information from the image. Information about edges remains. The
retinal ganglion cells are connected to LGN relay neurons in a one-to-one
manner and excite the LGN relay neurons. Therefore we take yj to also be
the initial activity of the LGN relay neuron whose receptive field is at position
j in the visual field. There are feedforward connections from the LGN to
V1, and lateral connections between V1 neurons. These connections are
represented by the values wjk for the feedforward connection between LGN
relay neuron j and V1 neuron k, and hkl for the lateral connection between
V1 neurons k and l. hkl is of similar form to gij; the lateral interaction is
excitatory to nearby neighbors and inhibitory to neighbors farther away. The
activity of neurons in layer V1 is given by:

al =
∑

j,k

hklwjkyj (2)

i.e., the forward and lateral interactions are applied in succession.
Reciprocal connections also exist from V1 to the LGN, and the LGN

activities are inhibited through these backward connections. The backward
connection between V1 neuron k and LGN relay neuron j has the same
strength as the forward connection. This is not an assumption of the theory,
but a conclusion, and later we will give several reasons as to why this is
reasonable result. The inhibition decreases the activity of the LGN relay
neuron:

ẏj = −

∑

k

wjkak (3)
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As will be shown later, the learning rule is such as to maximize the rate of
information transfer from the LGN to V1 while the inhibition minimizes the
activities of the LGN and V1.

The connection strengths hkl and gij are constant and the difference-
of-gaussians function defining them is an assumption of the model. The
connections wjk, both forward and backward, are learned by a hebbian rule
relating the activities of the LGN and V1 neurons:

ẇjk = ηyjak (4)

η is a decreasing function of time. The receptive fields of the V1 neurons
are determined by their connections wjk to theLGN. We can show through
simulations that orientation-specific receptive fields are acquired by the V1
neurons when the hebbian learning is implemented.

The main hypothesis of our work centers on the backward connections
from V1 to the LGN. Our theory is that the connections result from hebbian
learning (eq. 4) and are connected to inhibitory interneurons in the LGN
where they terminate. It is known experimentally that these connections are
as numerous as the forward connections, are retinotopic, and that they ter-
minate on the inhibitory interneurons in the LGN layer[52]. Since they both
learn from the same hebbian inputs, the forward and backward connections
take on the same form. Later, we propose a neural circuit which can account
for this formation.

3.3 The Computational Method

All the neural layers are modelled by square arrays of cells. We model the
foveal region by an array of photoreceptors of dimension 304 by 304. In all
layers, a movement from a cell to a nearest neighbor(one neural spacing unit)
corresponds to a movement of one pixel in the input image, or 0.01 degrees
in the visual field. Retinotopy is preserved throughout the model by having
the index of a neuron in its array also represent the position of the neuron’s
receptive field in visual space. Thus the model subtends 3.04 degrees of arc
in the visual field.

The receptive field of each retinal ganglion cell has a center radius of 8
spacing units in the difference-of-gaussians function, and a surround radius
of 10 units. See figure 2 a. The receptive field fits into a 32 by 32 array. We
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do not wish to include retinal ganglion cells whose receptive fields lie only
partially within the 304 by 304 array of photoreceptors. Therefore the size
of the array of retinal ganglion cells is 272 by 272.

The connections between the retinal ganglion cells and the cells of the lat-
eral geniculate nucleus are assumed to be one-to-one and excitatory. There-
fore the lateral geniculate nucleus is also a 272 by 272 array and we model
the initial activities of the LGN cells as a direct copy of the activities of the
retinal ganglion cells. The receptive field of a LGN neuron is the same as the
retinal ganglion cell corresponding to it.

Each V1 neuron is connected to sixteen LGN neurons, with both feed-
forward and feedback connections to the same LGN cells. The sixteen LGN
neurons are arranged in a square grid in the LGN layer with a spacing of
six neural spacing units between grid points, fig. 2 b. The size of the grid
is chosen so that the receptive field diameter approximates the actual value
(0.25 degrees[5]) for the foveal region. The connection strengths between the
LGN and V1 are initialized to random values.

For each V1 neuron, the receptive fields of the sixteen LGN neurons taken
together fit into a 48 by 48 pixel window in the visual field. In order that the
receptive field of each V1 neuron lie completely within the 304 by 304 input
image, the V1 array is of dimension 256 by 256. Neuron (0,0) of V1 has its
receptive field centered at position (24,24) in the visual field.

The development of the orientational feature map occurs primarily pre-
natally in some species such as the macaque monkey[53] and postnataly in
others. In the latter case, digitized images of natural scenes are the inputs to
the photoreceptors of the model. For prenatal development, we take as the in-
puts random noise of flat distribution in the retina, occurring as spontaneous
activity of retinal photoreceptors. This causes activity in the retinal ganglion
cells which is translated to activities of LGN neurons. These activities are
calculated according to eq. 1. An example of the resulting LGN activities
for a white- noise photoreceptor output is shown in fig 2 c . V1 cells are ex-
cited via the feedforward connections and their activities are modified by the
lateral interactions. The activities of the V1 cells are calculated according
to eq. 2. The lateral connections are modelled by a difference-of-gaussians
function, of center radius 8 neural spacing units and surround radius 11.8.
They extend 32 neural spacing units in each direction from every V1 neuron,
except at the edges of the array, where the lateral interaction stops. The
lateral interactions are iterated only once per input image.
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The backward connections serve to inhibit the activities of the LGN neu-
rons. After the input image is presented and the V1 activities calculated,
each LGN neuron’s activity is decreased by an amount proportional to the
quantity in eq. 3.

The weights are then updated by Hebb’s rule in an amount proportional
to the quantity in eq. 4. Then the above-described process is repeated
with a new image. The backward connections are assumed to also develop
by the hebbian rule, but with an inhibitory synapse. Therefore, since they
learn from the same inputs, the forward and backward weights have the same
values, but opposite sign. The weight updates occur at different places in the
brain; we assume that the neural activities change slowly enough in relation
to the learning rate that propagation delays need not be included.

4 Results of the Simulations

4.1 Orientationally Selective ReceptiveFields

Application of this algorithm over many input images will cause the weights
of each V1 neuron to converge to a configuration exemplified in fig. 2 d. The
shape represents the first principal component of the set of inputs. The first
principal component of a data set has the property that the inner product
of it with elements of the data set has a greater variance than any other
component. Since the neuron sums its inputs linearly, this just means that
the output of the neuron in V1 has a greater variance over the input data
set than with any other set of connections. Therefore the neuron’s output
encodes the maximal amount of information about the activities in the LGN.
For if one considers some finite resolution for sensing the activity of the V1
neuron, then the larger the range of the activity, the more the possible distin-
guishable values the activity can take, and therefore, according to Shannon’s
measure of information, the more information can be encoded in each activity
value.
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4.2 Dependence of Receptive Field Type on LGN Spac-

ing

The choice of spacing between the centers of LGN receptive fields connected
to a V1 neuron determines the type of receptive field that is formed. If the
spacing is small in comparison with the correlation length of LGN activities,
the receptive field takes on a circularly symmetric shape3 a. The receptive
field has a center-surround shape due to the surround portions of the LGN
receptive fields that comprise it. At greater spacings, the receptive field
has more subfields, becoming a detector of edges, bars, and finally spatial
frequencies as the spacing increases. Thus the statistical mix of densities of
LGN cells afferent to individual V1 neurons determines the statistical mix of
receptive field types found in V1.

4.3 Orientational Feature Map

Most V1 neurons’ receptive fields are of the form shown in fig. 2 d, showing
that the response of the neuron would show a preference for stimuli of a
preferred orientation. The orientation of the receptive field depends on the
lateral interactions included in the model. The orientational feature map is
shown in figure 4 a, and an iso-orientation plot of the same map is shown
in figure 4 b. An enlargement of the lower-right quadrant of the map is
shown in figure 5 a, and can be compared with a feature map obtained from
experiment in figure 5 c.

Erwin, et al[49],analysed many feature map models and arrived at a se-
ries of tests to compare simulation results to experiments for both orientation
and ocular dominance. Only the former property is considered in the present
work. For orientational column structure, the following properties are con-
sidered and the present model is compared to experiment.

4.3.1 Singular Points, Linear Zones, and Saddle Points

Orientational feature maps observed in monkey experiments show stripes
of common orientational preference. Stripes of all orientations converge at
numerous singular points scattered through the feature map. Conversely,
singular points are commonly connected by stripes of uniform orientational
preference. A region of the cortex over which all orientational preferences
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occur is called a hypercolumn. Linear zones are defined as regions in which
traversing along a straight line parallel to the cortical sheet yields a con-
tinuous linear change in orientational preference. These regions exist wher-
ever stripes of orientational preference run parallel, or nearly parallel, to
each other. These regions occur between most neighboring pairs of singular
points, when the singular points are connected by orientational preference
stripes covering a certain range of orientations. These structures can be seen
in the simulation results. Saddle points occur between linear zones and are
as defined in analytic geometry on the surface obtained by plotting the orien-
tational preference as a function of cortical position. These can be seen most
easily in the colored map of the simulation results fig. 4a as square-shaped
areas of color.

4.3.2 Specificities

Specificity is the strength of a neuron’s response to an optimally- oriented
input. Experiments have found that the specificity tends to be less near
the singular points of the map. We found this to be true for many singular
points of our map, especially early in the simulation. At early times, the low
specificity at singular points is caused by conflicting influence of neighboring
neurons due to the variety of orientations found there. Receptive fields near
the singular point are ”pulled” towards one orientation and then another,
different, one when the input changes. The effects cancel, and the receptive
field tends to resemble a shape which is independent of all the oriented recep-
tive fields. In our simulations, the receptive fields even near singular points
do eventually become stable at the typical shape. (fig. 2 d). The map’s
specificity values are shown in fig. 4 c.

4.3.3 Fractures

Fractures are lines of discontinuity in the feature maps[2]. They can be
seen as the sharp dark lines in the plot of the gradient of the orientation
distribution, fig. 4 c. A one dimensional plot of orientational preference vs
position on a line through a fracture is shown in fig. 7 b, and shows both
linear zones and the fracture.
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4.3.4 Fourier Analysis

A two-dimensional fourier transform of the feature map shows a bandpass-
type shape, nearly circularly symmetric. The squared amplitudes of the
fourier components are shown in fig. 6a. There is some strengthening of
components in the horizontal and vertical directions as an artefact of the
grid geometry. The squared amplitudes of the fourier components of the
experimentally-obtained map are shown in figure 6b. The energy spectrum
taken from an average along the diagonals is compared to a radial average
from the fourier spectrum of the feature map obtained from experiment in fig.
6c. The vertical and horizontal axes have been scaled to align the peaks of the
two plots. The high-frequency tail falls off according to a power law, which
is expected in the transform of a function which contains singularities . The
result from the simulation is close to the experimental result here, indicating
that the two data sets have similar structure near the singularities.

At lower frequencies, the plots show that the bandwidth of the simulation
results is greater than that of the experimental results. The orientational
stripes from the simulation show greater variation in their width than those
found experimentally, as can also be seen by comparing the iso-orientation
contour plots figs. 5b, 5d. This is consistent with the histogram of orientation
distributions, fig.7c, which shows more orientational preferences near the
horizontal and vertical directions. This is probably a result of the rectangular
grid used for the location of LGN neurons afferent to each V1 neuron. The
grid accommodates horizontally and vertically symmetric V1 receptive fields
more readily than those with symmetries in other directions.

4.3.5 Correlation Functions

The orientational feature map can be considered as an array of hypercolumns.
Repetition of these units occurs over the long range, but not in an ordered
manner such as repeated, duplicate units. Therefore the correlation function
of the feature map should fall off with distance.The correlation function of the
orientational feature map does show this behavior. Both the experimental
and the simulation results are shown in figure 6d. The two-dimensional
correlation function is shown in figure 7a. The correlation function is taken
as a half-diagonal of the two-dimensional function rather than integrating
about the angular coordinate because the 2-dimensional correlation function
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is not circularly symmetric.
The correlation functions have alternating positive and negative regions,

each of about half the typical distance between singular points. The positive
regions occur at distances where similar orientations can be found, and the
negative regions arise from distances where orientations differing by ninety
degrees are expected. The range of orientations is one hundred eighty degrees,
the sign of the receptive field being ignored. For purposes of comparison, the
data are scaled in the vertical axis so that the intercepts of the two plots
are equal, and in the horizontal axis so that the lengths of the alternating
regions are the same for both plots.

The figure shows that there is more medium-range order in the feature
map from the model. This is due to horizontal and vertical correlations
produced as artefacts of the use of a rectangular grid to represent the ar-
rangement of efferent connections from the LGN and to represent the cortex
itself. There was a tendency for neurons along a horizontal or vertical line
to lock onto the same orientation preference. This artifact is related to the
LGN grid described above and to the use of a rectangular array to represent
the neural layer and, consequently, the lateral connections. Specifically, the
lateral connections in the horizontal or vertical direction are more dense that
those in other directions. The effect is as high as a factor of 1.414 between
the diagonal and the vertical or horizontal. The macroscopic patterns thus
developed tend to have relatively strong horizontal and vertical components.
In addition, the stripes of the animal brains are more wavy than those of the
simulation, possibly due to influences from the presence of blood vessels or
deformations of the cortical sheet.

morphological

4.3.6 Independence of Cortical Coordinates and Orientation Pref-

erence

We found correlations between the gradient of the feature map in the ori-
entation variable and the orientation itself(fig. 7d). This means that the
orientation of a receptive field tends to be aligned parallel to the direction
of the stripe of common orientational preference it resides in. This may be
due to the overlap of similarly oriented neurons being greater when the neu-
rons are aligned in the same direction of the orientation, leading to a mutual
strengthening of the development of those neurons. It may also be indirectly
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caused by horizontal and vertical artefacts occuring in both the grid of LGN
connections and the rectangular array used for V1.

4.4 Eye Growth During Critical Period

It has been found experimentally (in cats) that the lateral extent of ennerva-
tion of LGN neurons on the retina is relatively constant, while the diameter
of the eye changes dramatically[54, 55]. This causes the receptive field size
of LGN neurons to decrease by a factor of four during development. In the
V1 layer, this translates to larger receptive fields and a greater overlap in
neighboring receptive fields during development as compared to in the ma-
ture system. We found it necesary to include this effect in our model in order
to obtain good orientational feature maps.

In previous theories, the question of the extent of receptive field overlap
was overlooked. One either had complete overlap, or the network was so
small the overlap was effectively complete. Such a situation allows one to
use algorithms such as Kohonen’s Algorithm,:

∆wr = hrr′(y −wr) (5)

where r is the index of the neuron being updated, r′ is the index of the neuron
with maximal response to the input, and hrr′ summarizes the lateral inter-
action, usually as some kind of gaussian. In this case each neuron recieves
the same input, y. This does not occur in the visual systems under study,
in which receptive fields may have considerable overlap, but do not overlap
completely. The y in eq. 5 would have to be replaced by a yr, denoting
the input into the receptive field of the specific neuron r. If yr changes too
quickly as a function of r, the algorithm of the present model does not per-
form well. In our simulations, we found that using a receptive field size for
the fully-grown eye to result in maps that typically contained only a few sin-
gular points and had broad regions of near-constant orientational preference.
This experience seems to indicate that eye growth is not only accounted for
primary visual cortex development, but plays an important role.
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5 The Neural Microcircuit Suggested by the

Model

Parvocellular neurons of the LGN terminate in Layer 4A and Layer 4Cβ of
the primary visual cortex. Magnocellular neurons terminate in layer 4Bα.
The neurons in these layers have small receptive fields and are primarily
nonoriented, though some orientation is found in 4Bα. The receptive fields
are approximately the same as those of the LGN neurons from which the
signal comes. Therefore the nonoriented cells of Layer 4Cβ are the first
layer of the proposed circuit. The second layer must also be in Layer 4Cβ.
Oriented cells of large receptive field are found in layer 5, and so this must
be the next layer of the circuit. These then feed to layer 6, which feeds back
to the LGN.

The model would be unchanged if the layer 6 neurons inhibit the neurons
of Layer 4Cβ instead of the geniculate neurons. One simply replaces the
interpretations of lgn activities with Layer 4Cβ activities everywhere. This
is possible, however, it does not explain the purpose of the dense connections
from layer 6 to the LGN and does not provide for the quenching of LGN
activity.

Orientationally selective cells in layer 4Cα might arise from connections
between Layer 4Cβ and Layer 4Cα. Since the magnocellular path seems to
be constructed for vision under low-light circumstances, the summation of
weak Layer 4Cβ activities into the 4Cα layer could enhance the signal there.
Then there would be an opportunity for orientational selectivity to form as
described above.

The algorithms proposed in this paper for the development of orienta-
tional feature maps may be implemented by a connection scheme illustrated
in figure 8. This shows the connections between an orientation column in V1
and an LGN neuron. Each V1 orientationally-selective neuron is connected
to many ON- center and OFF-center LGN neurons through replicas of this
circuit. The pattern of the ON-center and off-center LGN neuron is such as
to form a feature detector, as described previously. The microcircuit is the
same for ON-center or OFF-center LGN neurons. Other microcircuits for
the visual cortex have been proposed in refs.[56, 57].

It is known that connections from the LGN to V1 are excitatory. However,
rather than connect the geniculate cell directly to the orientationally-selective
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V1 neuron through an excitatory connection, we connect it through two
inhibitory interneurons in sequence. This allows a bimodal response for the
orientationally-selective V1 neuron. When the geniculate neuron receives a
favorable input(e.g., light for anON-center cell, and dark for an OFF-center
cell) it excites the first inhibitory interneuron, which inhibits the inhibition of
the second interneuron on the V1 cell. This results in an effective excitation
of the V1 cell. If the geniculate neuron receives an unfavorable input(e.g.,
dark for an ON-center cell, and light for an OFF-center cell)it excites the
first inhibitory interneuron less(we assume that there is some level of ”idling”
activity in all neurons) which causes less inhibition on the second inhibitory
interneuron, resulting in more inhibition on the orientationally-selective V1
neuron. The geniculate neuron is inhibited by the orientation column through
a layer 6 efferent connection to an inhibitory interneuron in the LGN. The
interpretation of negative activities as being the amount by which the activity
is below the idling value is consistent with this circuit.

The hebbian update rule used in the algorithm of the simulation was based
on correlation between the activity of the LGN neuron and the orientationally-
selective V1 neuron. Since the hebbian-learned connection is between the
LGN neuron and the first inhibitory interneuron, to be consistent with the
hebbian rule we add an excitatory connection from the orientationally-selective
V1 neuron to the first inhibitory interneuron. This correlates the activities of
the orientationally-selective V1 neuron and the first inhibitory neuron. Like-
wise, an excitatory connection from the LGN neuron to the LGN inhibitory
interneuron correlates the activities for the learning of the backwards con-
nections. These connections are illustrated by dashed lines in the figure to
show that they are active specifically during the learning stage.

How do updates occur for negative activity values? If negative activity
values are interpreted as activity levels below the idling activity, then the
hebbian learning would be less, not more. One hypothesis is that the con-
nection strengths naturally decay over time, and that the idling activity is
such as to cause learning which more or less balances the decay. Then ac-
tivities below the idling value cause learning less than required to overcome
the decay and hence the connection strength decreases. Such a decay is also
supposed to keep the connection strengths from eventually all saturating. A
reduction of the plasticity to zero after the learning stage can also accomplish
this, too.
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6 Discussion

6.1 The Effect of Retinal Preprocessing

The preprocessing by filtering through the center-surround receptive fields
of the retina is important for the function of the network described here.
The removal of the broad intensity components of the original input images
allows the V1 receptive fields to develop into edge detectors. Otherwise the
receptive fields would simply detect the overall intensity levels in the image.
We limited the network to learning only edge detectors. The same algorithm
can produce receptive fields with more periods. This would undoubtably
improve the representation, since the combining of edge detectors to make
higher frequency components would not then be necessary. Such a mixture
of detector types is found in the brain[58].

6.2 The Functional Purpose of Inhibitory Feedback

The effect in the LGN of the inhibitory feedback can be understood in an
intuitive way by noting that the receptive field of the input neuron in layer
4 of V1 is exactly matched by the field of the output neuron in layer 6.
Therefore inhibition of the layer 6 neuron takes away just that activity in
the LGN which caused the activation of the layer 4 input neuron.

The purpose of this circuit is to prevent the same information from being
repeatedly sent from the LGN to V1, which would be metabolically disadvan-
tageous. Metabolic energy available in the brain is a critical quantity. The
same mitochondria which power brain cells drive other cells of the body and
thus must be conserved for the overall benefit of the organism. Additionally,
the temperature of the brain must be controlled precisely, and the problem
here is usually on the side of overheating. Therefore it is quite plausible that
the brain employs methods to process information which minimize the use
of metabolic energy.

The result of the theory is that even for static images the neural activity
is not static; one would expect a burst of activity upon the presentation of
a new image, followed by a quick dampening. Simulations of this effect and
comparisons to experiment are shown later.

Another advantage of such processing comes about when a part of the
visual scene is moving with respect to a background. If the background is
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stationary, the resulting V1 activities become low, while a moving object
will cause high activities because the dampening effect is not immediate.
Thus the brain responds best to changes in the visual scene, which again
saves metabolic energy for those aspects which are most important to be
perceived, and at the same time highlights them.

Furthermore, image features which cannot be captured by the receptive
fields of V1 neurons cannot be cancelled by them, either, and therefore re-
main in the LGN activities. In the present context, this is known as Gibbs
phenomenon. The result of this is that such features might then be learned
through the hebbian rule strengthening the connections between the LGN
and V1 based on the high activity of this LGN pattern. Therefore there is a
way in which a natural hierarchy of feature detectors in V1 may be learned.

6.3 History of Concepts Used in this Theory

The idea that orientational selectivity is the result of an alignment of afferent
LGN cells terminating onto a V1 neuron is due to Hubel and Wiesel[4], who
also pioneered much of the neurophysiological work in the visual system.
Recently, the work of Chapman, et al. [8],has shown that each V1 neuron
typically has many afferent LGN relay cells, and for some of them the LGN
cells are arranged in a line. Our model agrees with the above hypothesis, in
that the arrangement of afferent LGN cells forms the receptive field of the
V1 neuron. Rather than modelling this LGN cluster as a line, however, in
order to model edge-detecting cells rather than cells sensitive to a bar, we
find that the LGN cells connected to an edge- detecting neuron in V1 are
arranged as a group of on-center cells on one side of the receptive field, and a
group of off-center cells on the other side. This approach is found in most of
the work cited in the introduction. In the model presented herein, we show
that this arrangement results from hebbian learning between the LGN and
V1 neurons. In the appendix, we show that the hebbian rule results from
maximizing the rate of information transfer from the LGN to V1.

The orientational feature map is less frequently modeled, especially by
the direct application of lateral interactions. To our knowledge, only von
der Malsburg applied all the interactions explicitly.We acknowledge the pre-
existing models of Linsker and Miller, et al, and for purposes of clarity would
like to describe some differences between the present work and theirs.

Both authors used an ensemble averaging approach. That is, the inputs
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to the model were expected correlation functions of the raw inputs to the
algorithms. The differential equations describing the updating of the weight
values was then solved. In the present model, all connections are modeled
explicitly.

The present model also employs inhibitory feedback. We have outlined
the functional advantages of the feedback. In the technical aspects of the
simulation, the feedback also has the effect of controlling the growth of the
weight values. In all other high-dimensional models of cortical development,
it is necesary to continously renormalize or otherwise decrease the weight
values in order to keep them from taking on large values. In the present
model, should the weight values become large, the inhibition acts to decrease
LGN activity all the more, resulting in a decrease of weight magnitudes.

The decay process is ultimately responsible for any reduction in weight
strength. We assume that learning associated with nominal activity is just
enough to balance out the decay rate. Normally, the concern with such an
assumption is that it is unstable; should the spontaneous activity fall below
the required amount, the decay of the connection would cause the activity
to become even less, and if the spontaneous activity becomes too high, the
opposite effect occurs. However, in the present model, the hebbian learning
will bring the connection strengths up to their correct value in the former
case, and the inhibitory feedback will modulate the growth of the connection
strength in the latter case. Thus, besides its utility in the efficiency of infor-
mation transfer, inhibition may in general play a role in the maintenance of
connection strengths in the presence of hebbian learning with decay.

We have used the receptive fields of LGN neurons to construct the recep-
tive fields of V1 neurons. Thus only sixteen connections between the LGN
and each V1 neuron are required to for the receptive field. This saves an
enormous amount of computational time compared to employing direct con-
nections to each input pixel, equivalent to using input receptive fields of one
pixel in size.

Thus our model could be made large enough to actually process images
of appreciable size. In a mature network, with the weight updates turned off,
a 304 by 304 input image can be presented to the retina and the subsequent
activities in the LGN and V1 can be calculated according to the equations
in the description of the model. In this way, the dynamics of cortical im-
age processing can be investigated. Results show that the time series of
V1 activities obtained bear qualitative resemblance to those obtained from
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experiment. This investigation is described in the next chapter.
Other authors have incorporated recurrent connections into neural net-

work models [59, 60, 61, 62, 63, 64, 22], although usually in an enhancement
mode for the sake of pattern recognition, the recurrent connections being
excitatory rather than inhibitory. These are models of pattern recognition
in which stored patterns feedback into the input layer so as to reinforce
matching patterns in the input. We do not necessarily disagree with these
models, except that we think that if it occurs, it probably occurs in higher
brain areas than those described in our study, areas more directly involved
in pattern recognition. But once a pattern is recognized, we feel that the
activities which caused it could well be inhibited. Even V1 or V2 activities
may be inhibited by backward connections from the inferotemporal cortex
upon recognition of the pattern that caused them.

This process of recognition results in a locus of activity that moves from
the input sensory receptors to progressively higher areas of brain function.
In the end, the consciousness is fixated on the thoughts caused by a sensory
input, rather than the input itself.

Some authors have speculated on the role of backward connections. Pece[9]
proposed inhibitory connections from V1 to the LGN. Plumbley described a
similar relation within V1. Harth has proposed a processing scheme whereby
the LGN is used as a center in which the input images are modified, perhaps
enhanced or irrelevant features subtracted as a result of processing by the
cortex. This point of view is very close to the theory presented here. How-
ever in our theory, the features represented in the LGN are not enhanced,
but rather diminished as the information about them is transferred to V1.
This prevents the same information from being sent repeatedly to V1, and
enables the activity in V1 to be focussed on aspects of the image not yet pro-
cessed, either in the case of some part of the is moving while the rest remains
stationary, or in the case in which some part of the image is more complex
than the rest and requires more time to process. Mumford[65, 66] suggested
that with the backward connections from V1 and other areas,the LGN served
as a sort of ”blackboard” to keep track of the processing already done by the
cortex. In this view, feedback from several areas of the cortex converge on
the LGN, and the results are compared to form a coherent understanding of
the input.
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6.4 Conclusion

We have shown that a linear network with lateral connections suffices to
produce orientational feature maps that compare well with experimentally-
obtained maps. We found that the filtering of the input image through the
center-surround receptive fields of retinal-ganglion cells is crucial to the for-
mation of orientated antagonistic excitatory and inhibitory receptive fields
in V1. Eye growth during development is an important factor in the devel-
opment of the feature map, as more highly-correlated inputs are needed for
the algorithms to be effective. Feedback from V1 to the LGN plays the role
of modulating growth in the connection strengths and preventing redundant
information from being transferred from the LGN to V1. As a result, all sig-
nals in the LGN and V1 are transient, even for stationary images. The model
presented here is capable of calculating time series for LGN and V1 activities
for natural images presented to the retina. With the learning turned off, a
mature network becomes a working image processing system under the other
equations presented herein, which models the working of the visual system of
the brain. Simulations of many of neurophysiological experiments have been
carried out and are described in the next chapter.

7 Deriving the Hebbian Learning Rule

Let us symbolize matrices and vectors by uppercase and lowercase bold roman
letters, respectively. Define y as a vector with components yj running over
the index j, similarly a as ak over the components k, and wk as wjk over the
index j. Let W be wjk as a matrix; it is formed by taking the vectors wk as
its rows. Then equation 2 is

a = HWy (6)

With V = HW, one can define the signal at the V1 layer by

S = a · a (7)

= Vy · a (8)
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and derive the learning rule by maximizing the signal by gradient ascent,

∆Vjl =
∂S

∂Vjl

(9)

= yjal (10)

Now,

∆V = H ∆W (11)

since H is constant. If H = I, then the hebbian rule is obtained immediately.

∆wjl = yjal (12)

In any case, H from the simulations is invertable, so multiplying 11 by H−1

we obtain

∆wjl = yj[H
−1a]l (13)

In our model, the lateral interaction H was applied to the V1 activities a

only one time, but a closer approximation to reality would be to apply H

many times, until a fixed point is reached. Then,

H−1a = a (14)

and the hebbian rule is again derived. Maximizing the signal is equivalent
to maximizing the information transfer rate

R = ln(1 +
S

N
) (15)

where N , the noise added to the signal, is a nonzero constant.
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Figure 1: Neural network used in the simulation. The network uses feed-
forward connections from the retinal photoreceptors to the retinal ganglion
cells of the center-surround type, one-to-one feedforward connections from
the retinal ganglion cells to neurons in the lateral geniculate nucleus, feed-
forward connections from the lateral geniculate nucleus to the primary visual
cortex which develop into oriented edge detectors, and feedback connections
from the primary visual cortex to the lateral geniculate nucleus which are of
the same form as the feedforward connections. The variables used for the
activities of cells in the various layers are shown below the corresponding
layer.
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(a) (b)

(c) (d)

Figure 2: a) Difference-of-gaussians function used to model center-surround
receptive field properties of retinal and geniculate cells. The actual size of
the array is 32 by 32. b) Grid of 16 LGN neurons connected to each V1
neuron. Position of grid in LGN corresponds to position of V1 neuron in V1.
Grid spacing is 6 units for feature maps analysed in this work. c) Typical
(equivalent) 320 by 320 image used as input to the LGN. Image is obtained by
convolving white noise with center-surround function. d) Typical receptive
field of V1 neuron produced by the algorithm. Actual array size is 64 by 64.
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(a) (b)

(c) (d)

Figure 3: 8 by 8 array of receptive fields developed for various arborization
densities. All neurons have 16 connections to LGN cells in a 4 by 4 grid with
spacing a) 4 units b) 6 units c) 8 units d) 10 units
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(a) (b)

(c) (d)

Figure 4: a) Orientation column arrangement after 5120 steps. The section
size is 224 × 224. Each pixel in the illustration corresponds to one orientation
column in the primary visual cortex. The orientational preference of the
column is represented by the color of the pixel. b) Iso-orientation contours
of the orientational feature map. Line spacing is 20 degrees of orientational
preference. c) Specificity of orientational preference. The specificity is the
response of the V1 neuron to an edge of optimal orientation. d) Gradient of
orientational preference. Dark narrow lines indicate fractures.
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(a) (b)

(c) (d)

Figure 5: a) Orientation column arrangement after 5120 steps. Lower right-
hand corner of full orientational feature map. Each pixel in the illustration
corresponds to one orientation column in the primary visual cortex. The
orientational preference of the column is represented by the color of the
pixel. b) Iso-orientation contours of the feature map. c) Orientation column
arrangement from experimental data of macaque monkey. The array size is
448 × 480. d) Iso-orientation contours of experimental data.
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Figure 6: a) Squared amplitudes of fourier transform of orientational feature
map. b) Squared amplitudes of fourier transform of map obtained from ex-
periment. c) Average values along along the diagonals of figure a) compared
to values from b) averaged over all angles. d) Values along along a half-
diagonal of the correlation function of orientational feature map compared
to correlation values from experimenatal results averaged over all angles.
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Figure 7: a) Two-dimensional correlation function of orientational feature
map. b) Simulation of electrode penentration measurement showing fracture
in feature map. c) Histogram of orientational preferences. Imbalance toward
preferences of horizontal and vertical directions is clearly seen. This is proba-
bly due to rectangular grid of LGN neurons used to form V1 receptive fields.
d) Histogram of intersection angle between orienational preference and di-
rection of gradient of the orientation. Histogram shows that orientational
preference tends to be aligned with the gradient of the orientational feature
map.
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Figure 8: Functional Microcircuits for LGN-V1 interaction. a) Proposed
connection scheme between one V1 orientation column and one LGN cell.
Open circles are excitatory connections, closed circes are inhibitory. Each
V1 orientation column is connected to many LGN cells through replicas of
this circuit. The circuit is the same for either on-center or off-center genic-
ulate cells. Sequence of inhibitory interneurons provides for exciation upon
favorable input, inhibition upon unfavorable. Dashed lines serve to correlate
activities of neurons they connect, and are active only during learning stage.
b) Alternative Circuit when the backwards inhibition occurs within the V1
layer.
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