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For the purpose of molecular dynamics simulations of large biopolymers we have built a parallel computer
with a systolic loop architecture, based on Transputers as computational units, and have programmed it
in occam II. The computational nodes of the computer are linked together in a systolic ring. The program
based on this-topology for large biopolymers increases its computational throughput nearly linearly with
the number of computational nodes. The program developed is closely related to the simulation programs
CHARMM and XPLOR, the input files required (force field, protein structure file, coordinates) and output
files generated (sets of atomic coordinates representing dynamic trajectories and energies) are compatible
with the corresponding files of these programs. Benchmark results of simulations of biopolymers compris-
ing 66, 568, 3 634, 5 797 and 12 637 atoms are compared with XPLOR simulations on conventional
computers (Cray, Convex, Vax). These results demonstrate that the software and hardware developed
provide extremely cost effective biopolymer simulations. We present also a simulation (equilibrium of
X-ray structure) of the complete photosynthetic reaction center of Rhodopseudomonas viridis (12 637
atoms). The simulation accounts for the Coulomb forces exactly, i.e. no cut-off had been assumed.

KEY WORDS: Molecular dynamics simulation, parallel computers, parallel programming, Transputer,
photosynthetic reaction center.

1. INTRODUCTION

A major concern of molecular biology is to understand the structure-function rela-
tionship of biological polymers, mainly proteins and nucleic acids. For a long time it
had been tacitly assumed that the function of a biopolymer can be revealed from its
static structure, i.e. from a precise knowledge of the equilibrium positions of its atoms
together with a knowledge of typical atomic charges and chemical properties like
hydrogen bonding. However, during the past decade it has been realized that further
properties, which are not evident from the characteristics of the separate constituents
of biopolymers, are required to understand function. Such properties are, for exam-
ple, thermal mobilities of atoms, activated motions of constituent groups, local
electric fields and dielectric relaxation.

The properties mentioned are often very difficult to measure experimentally even
for small subsections of biopolymers, let alone for the whole polymer. It appears that
the required information can be obtained only by computer simulations of biopoly-
mers. Currently, many groups are developing a software basis in order to allow an
increasingly faithful representation of biopolymers by computer programs. These
programs are likely to contribute to biology and biotechnology beyond the scope of
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molecular dynamics simulations, namely the force evaluation and the integration
step', to a parallel computer and to employ existing simulation programs and graphics
packages for an analysis of the simulated trajectories. To implement this suggestion
a program on a parallel computer needs to interface with some existing simulation
software using standard input and output files. The program described below pro-
vides such an interface specifically for the simulation programs CHARMM [6] and
XPLOR [7, 8].

The parallel computer built and programmed by us is based on Transputers as
computational units. The Transputer is a 32 bit processor with a 64 bit floating point
coprocessor integrated on a single chip. We have chosen this chip for our parallel
computer for reasons detailed further below. One advantage of the choice of the
Transputer is that parallel computers, comparable to the one developed by us, can be
obtained from commercial manufacturers. Therefore, molecular biologists not willing
to build computer hardware, which we assume is the majority, can still use our
simulation program. The reason why we decided to build our own computer rather
than use a commercial machine is the following: We wanted to choose an optimal
computer design in order to achieve for a minimum cost a rate of computation
comparable to that of the best currently available supercomputers.

Our program has been written in occam II [9, 10, 11, 12], the language around
which the Transputer had been designed. The language facilitates distribution of
computational processes among Transputers as well as communication among these
processes. In the initial phase of the research described here, occam IT had been the
only programming language for the Transputer. However, since that time more
conventional languages, e.g. FORTRAN and C, have been ported to the Transputer.
Molecular biologists who prefer these languages over a new language might want to
incorporate the programming strategies presented below in these conventional lan-
guages. Such approach would actually allow to include elements of programs, written
for sequential machines, into the program for a parallel Transputer-based machine.

The software development environment chosen by us has been the Transputer
Development System (TDS), also described below, which runs on IBM personal
computers. Recently, familiar operating systems, e.g. UNIX-like systems, have also
been adapted to Transputer workstations. We point this possibility out, since the aim
of this paper is not to propagate a particular parallel computer and a particular
concurrent algorithm but rather to provide a convincing example which demonstrates
the feasibility and the cost effectiveness of molecular dynamics simulations on parallel
computers. .

It must be pointed out that we succeeded in making molecular dynamics simula-
tions more affordable because we had ready access to supercomputers such that
programming strategies for large scale molecular dynamics simulations became fami-
liar to us. Our experience that the use of supercomputers does not always lead to
bigger appetite for expensive computational equipment, but rather can have the
opposite effect, will not be anisolated one. Future development of parallel approaches
to molecular dynamics simulations will require numerical experiments on convention-
al supercomputers.

'The latter step does not require much time; however, it is so closely linked to the force evaluation and,
therefore, we do not want to separate the two.
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where 7; denotes the position of the i-th atom. Here we have used the notation
V; = 8/0F,. The function E

E=EB+E9+E¢+EE]+E,dw+EH+EI (2)

defines the total energy of the molecule. It is comprised of several contributions which
correspond to the different types of forces acting in the molecule. The first contribu-
tion describes the high frequency vibrations along covalent bonds, the second contri-
bution the bending vibrations between two adjacent bonds and the third contribution
the torsional motions around bonds. The fourth contribution describes electrostatic
interactions between partial atomic charges, the charges being centered at the posi-
tions of the atomic nuclei. The next term, E,;; , accounts for the van der Waals-
interactions between non-bonded atoms in the molecule, Ej, stands for the energy of
hydrogen bonds, and the last term describes so-called improper motions of one atom
relative to a plane described by three other atoms. Various research groups have
developed functional representations and corresponding force constants which at-
tempt to faithfully represent atomic interactions and dynamic properties of biomole-
cules [15]. The program which we have developed is based on the energy representa-
tion of CHARMM ([6]. Actually, our program can read a file of force parameters
which has a format identical to that of XPLOR [7, 8], a simulation program closely
related to CHARMM. As a result, any adaptation of force constants suggested in the
framework of CHARMM or XPLOR can be transferred to our program.

Due to the intermediate state of development of our program there exist still a few
limitations in regard to compatibility with CHARMM and XPLOR: Our program
cannot account for hydrogen bonding directly, except by reparameterizing the energy
contributions other than those in E, of participating atoms. Our program also does
not include a special representation of water. Further differences will be mentioned
in this Section.

The integration method of the Newtonian equations of motion employed by our
program is the Verlet algorithm [16]. This method determines the positions 7,(t + Af),
of atoms i at the instant 1 + Ar according to the formula

f(t + A = 27() — £t — A) + F(1) (A m, )
where F(7) stands for the sum of all forces acting on the j-th atom at time ¢, i.e.
F() = =VEG1), i), . . . Fy(0) 4)

While integrating the Newtonian equations of motion computer time is spent mainly
on evaluation of the two-particle interactions, i.e. of interactions connected with the
Coulomb potential Ej; and with the van der Waals energy E,,,. The programs
CHARMM and XPLOR avoid the prohibitive computational effort of an exact
evaluation by allowing a cut-off for these interactions; this assumes that these interac-
tions do not contribute much to the dynamics for pairs of atoms separated beyond
a certain distance. We have not introduced such a criterion into our program. Rather
than providing a cut-off option we intend to introduce an option which makes it
possible to evaluate the Coulomb interaction in a hierarchical way such that, accord-
ing to a hierarchy of inter-particle distances, Coulomb forces are updated with
different frequencies. Such algorithm has been suggested in [4]. An alternative most
promising method for an efficient evaluation of Coulomb forces, the Fast Multipole
Algorithm, has been developed by Greengard and Rokhlin [17].
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next decision to be made is concerned with the way the processors should be linked
together through data channels, commonly referred to as the topology of a parallel
computer. In this section we will explain the topology chosen by us, namely, the so
called systolic loop.

The computational task we are mainly concerned with is the evaluation of Coulomb
and van der Waals forces. Since these forces, from a computational point of view, are
very similar, we will consider Coulomb forces only. Actually, much of the program
code deals with the remaining interactions included in Equation (2); however, the
evaluation of these interactions, in case of large polymers, consumes only a small
fraction of computer time. Since some of these interactions involve three or four
atoms the evaluation requires that the coordinates of as many atoms are simul-
taneously available to a processor. In our approach which involves a fixed mapping
of processors to the primary sequence of the biopolymer (see below) this requirement
is not problematic as the mapping can be chosen as to keep atoms engaged in
multi-atom interactions on one processor’.

The Coulomb forces, which describe the electrostatic interactions in a homoge-
neous dielectric environment*, depend on the charges g, and g, of atomic pairs (i, /) and
on the corresponding vector r; = r; — r;joining the atoms at positions r; and r;. The
force between atoms i and j acting on atom i is

g 447
Fy dnmer) ©)

The force between atoms i and j acting on atom j is

- —

Fo= ~F- ©)

J

On a given atom the Coulomb forces of all other atoms act. It is, therefore, necessary
to determine F; for all pairs of atoms. There are N(N — 1)/2 pairs for a total number
N of atoms. For larger biopolymers the resulting number can be extremely large,
leading to the need for parallel processing.

A key problem connected with concurrent evaluations of Coulomb forces is that
each processor has to know the coordinates of all atoms. If each processor had
enough memory to store the coordinates of all atoms, and if updating these coordina-
tes did not consume essential processing time, the problem of computing Coulomb
forces concurrently would be rather straightforward. In our approach (see below) to
molecular dynamics simulations processing elements actually spend most time on the
evaluation of forces and only little time on communication of data (coordinates,
forces). However, storage requirements for atomic coordinates and for lists defining
the bond structure can be considerable. A processor with 1 MByte of RAM can only
store coordinates of about 3 000 atoms. If one would keep all coordinates with each
processor, the rather small number of 3 000 atoms would be the limit for the largest
biopolymer to be simulated, no matter how many processors are employed. If one
could distribute, however, storage of coordinates over all processors (because of the
need of evaluating pair interactions, coordinates have to be stored at any time in two
processors simultaneously), for a 50-processor machine the largest biopolymer to be

3This mapping requires that some atoms are represented on more than one processor.

*If one wishes to determine electrostatic forces in an inhomogeneous dielectric environment, one needs
to solve the Poisson equation. For a computational method, see [18). We have adopted this method to
describe the interior of proteins 3] and are currently implementing the method on our computer.



SIMULATION ON A PARALLEL COMPUTER 141

link 0 ~| T800 |, link 1
nelwork transputer \i‘“ ~ / (1) o link 0

host transpuler T800 T800
\\ (0 @
fink 1
) ®_ link0 ik 1
1BM - AT L Tas
(as a terminal) {8004 board) —\ ok 1 ok O
ik 2 ) L ™
T800 1800

O] 3)

fink 0 ./'\ R ikt
T800

ikt (4 ™ l;nkD

Figure2 Ring topology adopted by us: Processors are connected to form a ring with one outlet to the host
transputer. This topology had been suggested also in {19, 20).

of coordinates across other Transputers. This leads to wait states as well as impedes
computations in the Transputers involved in the communication route.

The topology of the parallel computer suggested by Figure 1 is actually suitable for
the simulation of particle systems with short-range interactions because the required
communication routes are short. Since future versions of Transputer chips are likely
to have more than four links, one will be able to map an arrangement of cells covering
the simulated volume rather easily onto a set of Transputers.

The problems mentioned above are circumvented by the systolic loop topology
illustrated in Figure 2, which is actually the topology adopted by us. This topology
had been suggested previously as optimal for the problem at hand by Ostlund and
Whiteside [19], by Hillis and Barnes {20] and by Fincham [14]. The topology connects
the processors in a ring, the ring having one outlet to the host computer. Our
implementation of this topology corresponds to that in Reference [20] and differs
from that discussed in [19] and [14] in that the mapping between atoms and processors
is fixed. The atoms are mapped onto processors (Transputers) irrespective of their
position in space. In case of protein simulations one can assign Transputers to atoms
in accordance with the amino acid sequence, but this is by no means necessary’. The
atoms assigned to a specific Transputer will be referred to as the ‘own’ atoms of that
Transputer, all other atoms are the ‘external’ atoms. For a discussion of the computa-
tional task of a processor we separate the Coulomb forces into two contributions

7 9.9,y 99k
‘o%%\‘ 4mer 3 ‘external’ 47537;’* (
atoms j atoms k

F,is the force which acts on atom i ‘owned’ by the processor. In order to evaluate the
first contribution the processor needs to know only the coordinates of its ‘own’ atoms
J. The second contribution, however, requires knowledge of the coordinates of all
‘external’ atoms k. These coordinates are passed around the ring of processors in such
a way that any time coordinates pass by, a processor uses them to complete computa-

$A mapping of atoms following the amino acid sequence, however, is most suitable for bond interactions,
e.g. bond stretch and bond angle interactions, since some of these interactions involve three or four atoms.
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®an address-buffer/address-latch; these components separate address signals from
data and forward them multiplexed to the memory, i.e. the components act as an
interface between processor and memory.

® parity logic; this serves to detect parity errors and forwards messages about detected
errors to the host transputer.

@®bus bars; these devices carry the supply voltage for all components on the board;
the advantage of the use of bus bars is that their high capacity provides an excellent
buffering of the supply voltage.

®three LEDs (not shown in Figure 3) to indicate the current status of the node.

No ROM is employed for the computational nodes. The reason is that the Trans-
puter feature ‘boot from link’ is used, and that the program is being loaded at the
beginning of computations into the RAM of each node.

Since our system is designed to have 60 computational nodes®, i.e. a rather large
number, and will have to run for long periods of time to carry out simulations, one
needs to be concerned with the recognition of so-called soft memory errors. One has
to expect 100-1000 FITs (one FIT is a Failure in Time expected during one billion
hours of operation). For a parallel computer configured with 60 MBytes of memory
this error rate amounts to about one failure every few months. In order to protect
calculations against such errors we store an additional parity check bit for each byte
(the Transputer permits byte-wise memory access) which allows to test for single-bit
errors. In case an error is detected the program can restart with the last integration
step and with correct data. This makes the more complex task of error detection and
correction, i.e. by using seven parity bits, unnecessary.

The three LEDs which are located in the front panel provide the following informa-
tion:

® A red error-LED is wired to the error pin of the Transputer; it signals errors like
division by zero, floating point overflow or array boundary violation.

® A yellow parity-LED indicates a parity error.

® A green busy-LED flashes with each external memory access. Therefore its intensity
allows to estimate the frequency of memory accesses which in turn signals to the
experienced user which kind of instructions (memory-intensive or computationally
intensive) are currently being executed. Most importantly, the busy-LED signals
which node is idle, a state to be avoided.

4.2 The Boards

One of the aims of the design of our parallel computer had been to make it compact.
We achieved a design which allowed us to locate six Transputers with memory and
necessary support chips onto a double eurocard. This was done as follows:

®We used a three layer board and chose a very high PCB density, i.e. a PCB trace
width and spacing of 0.2 mm.

®We employed passive SMD components.

®We placed chips on both sides of the board: The Transputers, the parity logic as well
as driver ICs were placed on the front side. The RAM-SIP moduies were placed on
the back. The compact design resulted in short distances which, in turn, yield
well-defined signal levels and a reduced probability of error occurrence.

This number, presently, is determined by the dimension of the chassis, and could be considerably larger.
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In case a Transputer has to run several, e.g. 10-100, processes simultaneously, only
few of these processes can hold their data in the on-chip RAM, since the Transputer
must provide the workspaces for the inactive processes, too.

3.An individual Transputer is a sequential machine; if one Transputer has to run
several processes, only one of them can be active at a given time, while the other
processes are waiting for their time slice.

4. A most serious objection against a scheme ‘one atom-one process’ arises from the
fact that the phenomenological force field employed in describing atomic interac-
tions in biopolymers involves effective 3- and 4-atom interactions, e.g. describing
bond angle vibrations and torsions. In order to determine such forces an atom’s
process would need to collect and store the coordinates of several atoms; in fact, a
maximum of five atomic coordinate vectors need to be stored. This would require
rather large memories for each computational node. In case of a coarse-grained
programming approach with processes which monitor a few hundred atoms, the
requirement on memory is much less stringent since atoms involved in multi-atom
interactions often will be joined to the same process. For biopolymers this is true,
in particular, when processes monitor segments of the polymer’s primary sequence.
In fact, such scheme leads to an increase of memory requirements for multi-atom
interactions which measures only 1/15 of that for the ‘one atom-one process’ type
of approach.

An alternative fine grained scheme of parallel computation would join processors
to the terms contributing to Equation (2) in evaluating the forces V, E. Such approach
is a generalization of schemes which join processors to atoms, since the latter schemes
correspond to an accumulation of all terms arising in V,E, i.e. for fixed i, to a single
processor. Joining processors to individual contributions of V,E, of which there is a
number O(N?), allows an extreme distribution of computational tasks. However, such
approach would result in more data flow since the evaluated contributions need to be
accumulated in certain processors to yield the total forces ;. Such approach might
be favourable, however, for shared-memory machines.

5.2 Transputer Development System and Folding Editor

Before we explain details of our program we like to mtroduce some key features of
the Transputer development system [22] and its editor, the folding editor, which were
used to develop and run our program.

The folding editor is key to the Transputer development system. Within this editor
the compiler can be activated and so-called EXEs executed. An EXE is a program
resident on a Transputer host, which, in our case, is a T414 Transputer on a modified
B004 board of INMOS. The editor is named after the ‘fold’ which is the building
block of a kind of hierarchical windowing system and which structures the source
code of the program. Each part of the text is located within a fold which can be
labelled by a title. A fold can be closed and, in this case, is represented on the screen
by ‘. . . title’ on a single line. Closing all subfolds one can view the global structure
of the program.

Opening a fold results in a full representation of its contents on the monitor. A fold
can contain other folds. Open folds can be recognized through three curly brackets
which mark the beginning ‘{{{ title’ and the end ‘}}}’. All editor commands, the
compiler as well as EXEs are activated through function keys and usually apply only
to the fold designated by the current cursor position. In keeping with the fold
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Figure 4 Flow chart of the main program. Copies of this program are running on every computational
node.

Newtonian equations are integrated again for a time step Ar and a new computational
cycle is started.

In a first 1mtlallzatlon step (part 1, 2, 3 of Figure 4) each node starts computation
of the forces F, = z F acting on its ‘own’ atoms i begmnmg with the contributions
of pair interactions F ongmatmg from all of its ‘own’ atoms j. The node then hands
the coordinates of i xts own’ atoms to its next neighbour in clockwise direction and
receives the coordinates of atoms ‘owned’ by its other neighbour. Each node keeps its
‘own’ coordinates in store.

The simulation program then carries out repeatedly the following steps (part 4 of
Figure 4). On the basis of the coordinates just received each node evaluates pair
interactions F, ; for the corresponding set of ‘external’ atoms and adds the results to
the forces . As explamed below, at this point the nodes may avoid to evaluate
interactions of pairs (i, /) which previously have been evaluated for the opposite
ordering of atoms, namely (j, i), by a node which ‘owns’ atoms j. For this purpose
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Adding both terms on the right hand side yields 193¢ = ides!,
In case of an even number of nodes the computation time required is

other nodes pairs
t;;="=%«<%_|)-1/2-n+ M - (NYV-T, (1
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own' atoms ~—— ——— —
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which yields
ven 1 . gideal |
650 = |1 + M fy (12)
M=%

In the limit M < N the deviation from ideal behaviour is given by the factor 1 + _Al?
This observation leads to a most interesting computational strategy: since our boards
each hold six Transputers our parallel computer has an even number of nodes, say
2M; the strategy is to assign of these nodes 2M — 1 to the evaluation of pair
interactions, and to delegate the remaining node to evaluate the forces governing
hydrogen bonds; since the latter forces arise from effective four particle interactions
they are best evaluated, in fact, by a single processor which can hold in its memory
the coordinates of all those atoms being possibly candiates for hydrogen bond
formation.

We still need to specify how the forces F',j which are not evaluated by the node
‘owning’ atom i, but are nevertheless needed to determine the force F,, reach this node.
For this purpose a communication channel for forces is established which runs in a
direction opposite to that of the coordinate channel, namely counterclock-wise. If we
define (node m being the sender and node n the receiver)?

A, = {iliis the index for the atoms ‘owned’ by node m} (13)
and
Sw = {F)IF; = — Y F,jed,}, (14)
€Ay, i#]

then, in case of our example with six nodes, 15 such sets S, of interactions are
generated during one computational cycle. The sets S,,,, can be routed through the ring
of computational nodes in the following way: After computing one of the sets each
node sends its result down the ring in counterclock-wise direction. The node which
needs the set fetches it and does not send it further. The routing of the sets of forces

$Reader please note: the indices i, jrefer here to atom numbers, the indices m, n to computational nodes;
the connection between the two sets of indices is determined by the assignment of atoms to computational
nodes.
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passing coordinates. A routing process receives incoming sets S,,, and passes them
either (if this node is node #) through a buffer to the process which evaluates the forces
13, or (if this node is not node n) to the multiplexer which passes them further down
the ring. The communication of the routing process with the process ‘calculation’
evaluating forces F; is complicated by the fact that in occam II two processes cannot
share data, since data may reside at different nodes. As a result the following strategy
has been adopted: When a node m evaluates the sets of forces S,,,, m # n, it adds the
results to its local force accumulators. Then it transmits the set S,,, to node n along
the ring. When a node p (p # m, p # n) receives the set S,,,, its routing process
recognizes that the set is not addressed to this node and passes it further. When the
set reaches node n, the routing process of that node transfers it to the process
‘add.buffer’. This process passes forces 17, €S, to the process ‘calculation’, which adds
them to the accumulators for the forces F;.

After evaluation of the total force acting on atom i, F,, is completed in each node
for all of the node’s atoms i, the integration step can be carried out and new sets of
coordinates are available. The coordinates have to be fed now to the host Transputer
and from there to the host computer for further analysis. We will discuss now how
the coordinates are fetched by the host Transputer.

5.7 Processes on the Host Transputer T414

The host Transputer is part of the ring. As a result it needs to pass along coordinate
packets and the sets of forces S,,, as well as fetch coordinates to be sent to the host
computer. Furthermore, the host Transputer monitors all processors for parity errors
and stops and restarts computations if necessary. The tasks described are carried out
by the EXE ‘controller’ mentioned above. The processes and their relationships are
shown schematically in Figure 5 together with the processes residing on the T800
nodes. -

We first assume that a parity error did not occur and that, therefore, the parity
control process did not become active, i.e. we discuss all the processes in Figure 5
except the parity control process. Most trivial is the role of the host Transputer with
regard to the packets of forces handed down the ring of computational nodes; these
packets are simply passed along whenever they arrive. Also the action of the host
Transputer on coordinate packets is rather trivial. The master process decides if a
coordinate packet needs to be sent to the host computer, i.e. to the PC AT. The actual
data transfer is executed by the process ‘analysis’. This process also keeps track of
valid restart files and writes the trajectory data in user-definable intervals to a host file.
Data concerning the various energy contributions (see Equation (2)) are also stored
after each integration step in order to provide some information about the current
state of the calculation to the user. Time stamps are tagged to the output data, to
enable determination of the runtime required for completion of a trajectory.

We discuss now the action taken by the controller EXE in case a parity error occurs.
On each node parity is checked as outlined above (Section 4). The parity error lines
of all nodes are daisy-chained and connected to the event pin of the host Transputer.
In case a parity error occurred anywhere in the system, the parity control process is
activated and assumes control. The first action is that the process ‘analysis’ is in-
formed of the event. The process ‘analysis’ closes down all files and assures that a valid
restart file is made available. Under no circumstances will corrupted data be stored
(neither in a data file nor a restart file). All other processes, i.e. ‘pass-through’ and
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Table 2 Benchmark results of a molecular dynamics calculation on a segment of the photosynthetic
reaction center (3634 atoms); shown is the time required for an integration step. The extrapolations were
done on the basis of benchmarks with PTI.

VAX 11-750 1 x T800 CONVEX CI 24 x T800 CRAY-XMP 50 x T800
XPLOR MD XPLOR XPLOR

(23]
2 hours 339.7s 350s 147s 15.6s 7.8s 7.6s
(estimated) (extrapolated) (extrapolated)  (extrapolated)

for any number of nodes, as long as the number of nodes is a small fraction of the
number of atoms.

Actually, computer time in molecular dynamics simulations for polymers of in-
teresting size is spent mainly on determining the forces at each instant in time. The
integration according to the Verlet algorithm (Equation (3)) takes only a small
fraction of the computational effort. For this reason the benchmark tests provided
here only show the time required for evaluation of the total force F(¢), and not the
time required for evaluating the remaining part of Equation (3). The benchmark tests
presented vary in the degree of completion to which the total forces are determined.
In one case we show results of an evaluation of solely non-bonded interactions, i.e.
the Coulomb and van der Waals interaction; in another case we show results for all
forces. The times needed for the computations in the different situations are given in
Table 1. It should be pointed out that the computations underlying the results in
Table 1 did not assume a cut-off of the pair-interactions, for which reason the times
given in Table 1 are considerably longer than is the case for molecular dynamics
calculations with cut-off.

The times shown in Table 1 need to be compared with equivalent times on conven-
tional computers. Such times are provided in Table 2 fora VAX 11-750, a Convex C1,
a Cray-XMP, a single Transputer (T800) and parallel machines with 12 and 24
Transputers (T800). The simulations compared in Table 2 involve a 3634 atom
segment of the photosynthetic reaction center. As explained below the computer times
needed to be extrapolated for some entries of Table 2.

We first discuss the results presented in Table 1. The time needed for simulations
increases with the square of the number of atoms; the time required for evaluation of
Coulomb and van der Waals forces amounts of 50-99 percent of the time needed for
the evaluation of all forces, the percentage approaching 100 percent with increasing
polymer size. This behaviour is understood readily. The larger the number of atoms
in a polymer the more a force evaluation is dominated by Coulomb and van der Waals
contributions since the respective number of terms in the total energy expression
increases quadratically with polymer size. _ .

The decrease in computer time in going from a single Transputer to 12 Transputers
varies between a factor of 2.5 for the smallest polymer to a factor of 10.75 for the
largest polymer. For protein segments with 3634, 5797, and 12637 atoms the rate of
computation doubles in going from 12 to 24 Transputers. However, such enlargement
of the computer is quite disastrous for the smaller segments simulated, i.e. those with
66 and with 568 atoms; in the first case the rate of computation actually decreases, in
the second case doubling the number of processors yields only a 1.4-fold increase in
computing speed.
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for parts on the boards as well as the fraction of cost for chassis, power supply etc.,
i.e. one needs to multiply the numbers given in the Table by the number of nodes to
arrive at the approximate total cost for a parallel computer.

Table 3 shows that a single node costs about §1 000. A computer with 50 nodes,
i.e. one which would equal a Cray-XMP in computational through-put would cost
about $50 000. It must be noted, of course, that the parallel computer at this stage of
development lacks universality in treating different computational tasks’. However,
this does not seem to be a problem for molecular dynamics simulations. The simula-
tions for most investigations require computer time of such magnitude that a com-
puter devoted solely to simulations will be welcomed by many researchers.

7. RESULTS

In this section we will present simulations of two proteins, the small protein bovine
pancreatic trypsin inhibitor, which has been investigated many times before and serves
as a test bed for our program, and a large protein complex, the photosynthetic
reaction center of Rhodopseudomonas viridis comprised of 12 600 atoms which is
probably the largest protein simulated to this day.

7.1 Simulation of Bovine Pancreatic trypsin inhibitor

The simulation of the protein bovine pancreatic trypsin inhibitor had been based on a
structure equilibrated at 300 K [24]. An integration step of 1 fs had been adopted. In
contrast to conventional procedures our simulation started with vanishing velocities.
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Figure 6 Time development of the temperature (defined by Equation (15)) of Pancreatic Trypsin Inhibitor
during 1000 integration steps. The integration step size assumed was 1 fs.

We have also carried out calculations on percolating systems, on the simulation of Magnetic Resonance
Imaging and on Computational Neural Science on our computers. Some of these applications were
programmed in Par. C.
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Figure 8 Behavior of the different energy contributions during the dynamics simulation of Pancreatic
Trypsin Inhibitor; the following energy contributions are shown: total energy (total), angular energy (angle),
bond stretching energy (bond), van der Waals interactions (vdW), and electrostatic energy (el.). The
integration step size assumed was 1 fs."

Inserting the expression for x, , , as given by Equation (16) yields the identity x, , ,
= x, _ which is equivalent to time reversal symmetry.

In order to test to which extent time reversal symmetry is reproduced we have
evaluated a 1 ps (forward) trajectory of PTI involving 1000 integration steps. At the
end of this trajectory the last and second last positions were switched and the
calculation continued for a further 1000 steps (backward trajectory). The temperature
during the forward run, determined according to Equation (15), is presented in Figure
6. In order to facilitate comparison of temperature values of the forward and the
backward trajectory we have actually plotted the temperature difference at equivalent
times of the forward and the backward trajectory (Figure 7). This difference does not
exceed a value of 0.0004 K demonstrating that time reversal symmetry is reproduced
well. It can be concluded that round-off errors during the molecular dynamics
simulation, at least for self-averaged quantities like temperature, can be safely neglect-
ed.

A further test of our algorithm is furnished by energy conservation. We have
monitored the main energy contributions for pancreatic trypsin inhibitor during a
trajectory lasting over 40 ps. Figure 8 presents the contributions of the electrostatic
interactions, van der Waals interactions, angular forces, bond stretching forces and
the total energy of the protein. The data presented in Figure 8 are averaged over ten
successive integration steps. Figure 8 shows that the total energy remains constant
over the whole time interval. The absolute energy values are in agreement with values
determined in [4], except for the lowering of energy due to the cooling from 300K to
260 K mentioned above. ’ '

Pancreatic trypsin inhibitor, being a rather small protein, is certainly not the kind
of biopolymer for which the parallel computer developed by us has been intended. In
fact, one aim of our development has been to specifically study the photosynthetic
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Our relaxation scheme also involved some measures to control the excess energy
contained in the initial structure. The respective procedures are presented in Table 5.
In order to prevent the protein from becoming too hot in its kinetic energy degrees
of freedom we have assumed, in the initial phase of the simulation, dissipative forces
(friction) which slow down atomic motion.

When the temperature of the photosynthetic reaction center after the first 600
integration steps reached 300K, we switched our procedure. For the following 4150
integration steps we scaled atomic velocities after each step by a common factor such
that the temperature as defined through Equation (15) remained constant at 300 K.
This procedure amounts to the coupling of the system to a large heat reservoir which,
under realistic circumstances, is actually provided by the surrounding solvent. In
order to test if equilibrium had been reached, we allowed the system to move freely
for 1 950 steps, i.e. to move solely according to the integration scheme given by
Equation (3). Monitoring the temperature T of the kinetic energy degrees of freedom
we found, in fact, that T increased only by 16 K, i.e. the further flux of energy into
the kinetic energy degrees of freedom was only minor. After this test period we
resumed enforced equilibration at 300K by rescaling of velocities. This period lasted
another 350 time steps. From then on the photosynthetic reaction center was left to
move freely.

The equilibrium schedule described had been devised to shorten the computational
route to thermal equilibrium. A short route to equilibration is necessitated by the
large size of the reaction center protein complex. The computing times for this
complex make it presently impossible to apply a conventional Monte Carlo annealing
scheme.
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Figure9 Time dependence of van der Waals energy, electrostatic energy, bond energy, and kinetic energy
during a simulation of the photosynthetic reaction center of Rhodopseudomonas viridis; the simulation
involved all 12 600 atoms of the photosynthetic reaction center. The details of this simulation, in particular,
conditions regarding the kinetic energy degrees of freedom, are explained in the text.
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Figure 11 Comparison of the velocity distribution (at time ¢ = 917 fs) resulting from a simulation of the
photosynthetic reaction center and of a Maxwell distribution for a mass of 13.2amu. This mass had been
chosen to minimize the difference between the two distributions shown.

Such discrepancy is not surprising due to the fact that the atoms in the photosynthetic
reaction center do not all have identical mass. The discrepancy appears to be par-
ticularly relevant for the hydrogen atoms since their mass differs most strongly from
the masses of the other atoms, and since 2 344 atoms of a total of 12 637 atoms are
hydrogens, i.e. over 20%. A better description of the simulated data results when one
averages over the 300 K Maxwell distribution of all reaction center atoms accounting
for their specific atomic masses m; and evaluates

N m \ _'"}1:1’7
= i T .
F(vy) = l; 4z <2nk,T> Ve (18)

Figure 12 compares F(v) with the simulated data. The distributions agree better than
those in Figure 11, in particular in the range of higher velocities (v > 0.015 AJfs)
where mostly hydrogens contribute. However, F(v) is narrower than the simulated
distribution. The difference between the distributions in Figure 12 is due to a lack of
equilibration.

Finally, we investigated the location of the secondary quinone during the relaxation
of the photosynthetic reaction center. In vivo, i.e. for the reaction center embedded in
a cellular membrane, this chromophore can leave the reaction center and, therefore,
it is of interest to monitor its behaviour in this respect. Figure 13 shows the distance
between the center of mass of the photosynthetic reaction center and the secondary
quinone during the first 1.5 ps of the relaxation process. One can recognize a systemat-
ic drift of about 2.7 A. It is not possible to extrapolate the behaviour seen in Figure
13 to intermediate and long times, i.e. to predict if the quinone under the conditions
of our simulation would leave the reaction center. However, it might be of interest in
this respect to relate an observation of the behaviour of the secondary quinone during
another relaxation carried out by us. This relaxation started from an initial geometry
in which sterical strain existed in some part of the phytol chain of the secondary
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photosynthetic reaction center accommodates docking, penetration and undocking of
the secondary quinone rather easily.

8. CONCLUSIONS

We have demonstrated in this paper that molecular dynamics calculations can be
carried out in a most cost-effective manner by parallel computation. We explored, in
particular, the performance of a parallel computer with a systolic ring topology and
Transputers as computational nodes. For this purpose we have built such a computer
and programmed it in occam II. The program’s input and output files have been
chosen identical to those of the well-known CHARMM and XPLOR molecular
simulation programs, guaranteeing that performance can be judged and that the
results of the program can be further analyzed on sequential computers by programs
well-developed for this purpose. We have tested the program carrying out some
representative molecular dynamics calculations on bovine pancreatic trypsin inhibitor.
We have also demonstrated that a parallel computer with 12 and 24 nodes can
simulate the dynamics of the photosynthetic reaction center, a protein complex with
12 637 atoms. No cut-off of pair interactions had been assumed in this simulation.

In closing we would like to comment on the prospects of molecular dynamics
simulations on parallel computers. The merit of a parallel approach to molecular
dynamics lies in its cost-effectiveness; one cannot claim at this point that the parallel
approach considerably extends the range of biopolymer simulations beyond what
conventional algorithms offer, except if one would invest in a massively parallel
computer with 1000 nodes, say, for a price of todays supercomputers. In the latter
case a rate of computation, which is twenty times higher than that of current
supercomputers, would result. ; .

Because of its cost-effectiveness the parallel approach allows a more wide-spread
application of molecular dynamics simulations. For this purpose a parallel computer
dedicated to biopolymer simulations should be linked to a suitable high-end graphics
workstation, the latter serving for data analysis (using conventional molecular dyn-
amics programs) and for visualization. Such simulation workstations could compute
biopolymer systems of 10 000 atoms or more and allow docking of adsorbates to
proteins or nucleic acids, e.g. in drug design. A most promising area where such
workstations could serve a useful purpose would be in crystallographic refinement by
simulated annealing. This method, suggested recently by Briinger e al. [26, 27]
involves the simulation of a heating schedule for the molecules to be refined. These
molecules are subject to restraining forces which originate from the difference between
observed and calculated structure factor amplitudes. Because of the nature of the
Fourier transform involved in determining the structure factor these forces are
long-range multi-particle interactions for which one cannot assume cut-off approxi-
mations. Because of their multi-particle character the algorithm suggested here for
two-particle interactions would need to be modified.
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