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A Pariser-Parr-Pople (PPP) Hamiltonian of an 87~ electron system of the molecule 
octatetraene, represented in a configuration-interaction basis (CI basis), is analyzed with 
respect to the statistical properties of its matrix elements. Based on this analysis we develop an 
effective Hamiltonian, which represents virtual excitations by a Gaussian orthogonal 
ensemble (GOE). We also examine numerical approaches which replace the original 
Hamiltonian by a semistochastically generated CI matrix. In that CI matrix, the matrix 
elements of high energy excitations are choosen randomly according to distributions 
reflecting the statistics of the original CI matrix. 

I. INTRODUCTION 

A proper description of interacting many-fermion sys- 
tems still is one of the hard problems of modern chemistry 
and physics. A common approach to the description of 
many-fermion systems is an expansion of wave functions in 
terms of Slater determinants of one-particle functions. 
Such approach leads to high dimensional state (e.g., spin- 
coupled electron configurations) spaces, the dimensions of 
which increase exponentially with particle number. Conse- 
quently, computation times for evaluation of observables 
also increase drastically as a function of system size such 
that only small electron systems can be accurately de- 
scribed. In the case of molecular electronic systems the 
objective of such descriptions are the ground state and the 
lowest excited states. 

In nuclear physics, and in some instances in atomic 
and molecular physics, the spectral region at higher ener- 
gies and at high level densities has been investigated. It has 
been found for highly excited nuclei,’ atoms,’ and mole- 
cules3 that in this spectral region many fermion configura- 
tions contribute to eigenstates, and that these states can be 
fairly well described by models which are based on statis- 
tical interactions (for a review see Ref. 4). In the high 
energy spectral region it is actually difficult to resolve sin- 
gle stationary states with definite quantum numbers. In the 
following such many-particle states are referred to as 
“complex” states. It is characteristic of such states, that 
their spectral properties depend weakly on the details of 
the interactions between single particle configurations? and 
one can assume that interaction matrix elements may have 
some random characteristics. This approach lends itself to 
a simplified description of spectra since statistical interac- 
tion models can be solved with considerably less computa- 
tional effort than deterministic models. 

In this paper we like to investigate to what extent sto- 
chastic models can be employed also for descriptions of 
low energy states of molecular many-electron systems. Our 

motivation for such investigation is that stochastic treat- 
ment of interactions between many-electron configurations 
may simplify the description of molecular electronic states. 
Such simplification is highly desirable since qualitatively 
correct and quantitatively accurate descriptions of elec- 
tronic spectra of molecules require sophisticated and nu- 
merically complex many-electron methods.6p7 As a first 
step in our investigation we examine to what extent statis- 
tical approaches yield correct descriptions of electronic ex- 
citations of conjugated molecules described by a Pariser- 
Parr-Pople (PPP) Hamiltonian. These excitations are 
known to exhibit strong electron correlation effects; as 
such they provide a good testing ground for new many- 
electron theories. The sample electron system which we 
consider is the QT system of octatetraene which comprises 
eight electrons. This system, on the one hand, is large 
enough to allow statistical investigation and, on the other 
hand, is small enough to be calculated exactly. 

In Sec. II we analyze the statistical properties of the 
elements of the configuration interaction matrix corre- 
sponding to a Pariser-Parr-Pople parametrization of the 
many-electron Hamiltonian. In Sec. III an effective Hamil- 
tonian for the low-lying deterministic states is constructed. 
In this effective Hamiltonian statistical properties of the 
high energy complex states are represented by an ensemble 
averaged one-particle propagator (one-point function) .* 
For a Gaussian orthogonal ensemble (GOE) which, like 
the PPP Hamiltonian, is orthogonally invariant, the one- 
point and the two-point functions were calculated by Ver- 
baarschot, Weidenmiiller, and Zirnbauereg We analyze the 
existence of physical solutions of the eigenvalue problem 
for the effective Hamiltonian and present a self-consistent 
algorithm for a solution of the eigenvalue problem. In Sec. 
IV the spectrum of the effective Hamiltonian is compared 
to conventional, i.e., deterministic, PPP-CI spectra. In Sec. 
V a numerical approach is presented, in which we replace 
those matrix elements of the Hamiltonian involving higher 
excited electron configurations by random numbers, the 
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FIG. 1. Normalized distribution of all nonvanishing off-diagonal elements 
YF,, of the PPP matrix (dashed line) and a Gaussian distribution (solid 
line). The variance of the Gaussian distribution has been chosen to be 
d2=: lo-’ eV2. 

distribution of which resembles those of the original matrix 
elements. The spectrum of the ensuing Hamiltonian is 
compared to that of the PPP-CI Hamiltonian. The paper is 
concluded by a summary. 

II. STATISTICAL ANALYSIS AND DEFINITION OF THE 
MODEL 

In this section we first provide a statistical analysis of 
the matrix elements of a PPP-CI matrix for octatetraene. 
The level assumed for the CI description includes up to 
four-particle-four-hole excitations (QCI) .7 That analysis 
serves to motivate a simple semistochastic model for the 
description of the PPP matrix, which is defined in the sec- 
ond paragraph. 

A. Statistics of the PPP model matrix 

First we analyze the statistics of the nonvanishing off- 
diagonal elements of the PPP matrix. The normalized dis- 
tribution of these matrix elements is displayed in Fig. 1. It 
is slightly asymmetric around the origin with a mean value 
of ( y&v> z 0.008 eV and a width of (V&J = 0.255 eVZ for 
P#Y. Because the mean value (V,,) is 0( 10e3), (I$,,) is 
approximately equal to the variance with an error of 
0( 10m5), which is small compared to the width. The cor- 
relations between matrix elements ( V,,,V,,,,,) are approx- 
imately 4 x 10m5 eV2 (~#~‘,Y#Y’;~#Y’,Y#~‘), and thus 
vanish in a good approximation. The distribution displayed 
in Fig. 1 resembles a Cauchy distribution 

p(v)=Tbix&7. 
But all even moments (Tr V2”) for n> 1 of a Cauchy dis- 
tribution diverge,“*” and we need for further calculation 
finite values of the second moments of the distribution of 
off-diagonal elements. Analytical calculations are feasible, 
however, for Gaussian distributions of matrix elements. 
Unfortunately, a Gaussian poorly reproduces the overall 

FIG. 2. Mean square of off-diagonal matrix elements (V~,,) in units of 
eV2. The ordinate is the energy difference AE = 1 VW - VW1 of the cor- 
responding diagona1 elements. 

distribution of matrix elements in the PPP-CI Hamiltonian 
as illustrated in Fig. 1. Whereas the Gaussian approxi- 
mates the matrix elements in the region near the maximum 
value well, it fails to represent matrix elements with large 
absolute values. The resulting Gaussian has a variance 
I?= lOA eV2, which is much smaller than the variance 
o-&=: ( V~J = 0.255 eV2 (~.L#Y). 

Further details about the statistics of the off-diagonal 
elements VP,, can be obtained if these matrix elements are 
divided into classes with fixed energy difference AE 
= 1 Vpp - I’,,,, 1 of corresponding diagonal elements. Figure 
2 shows, that the width ( VE,,( AE) ) of corresponding dis- 
tributions P( V,,,,AE) of off-diagonal elements is monoton- 
ically decreasing with the energy difference AE of the re- 
spective diagonal elements. Hence, the AE-dependent 
distributions of off-diagonal elements are becoming smaller 
with increasing AE. The mean values ( V,,,( AE) ) also de- 
pend on AE. For AE values in the range AE < 2 eV the 
mean values are small and negative [ - 0( 10m2 eV)], for 
larger values of AE they are small and positive 
[O( 10e2 eV)]. 

The spectrum is the property of the PPP-CI matrix, 
which is of interest to us. For the purpose of describing 
properties of molecular systems under conditions prevail- 
ing in most chemical processes, only the lowest energy 
excitations are actually relevant. We will investigate, how- 
ever, the complete spectrum of the PPP-CI matrix and its 
stochastic models. The reason is that such an analysis of 
the spectra of matrices with stochastic attributes reveals 
important characteristics of such matrices. We have deter- 
mined therefore all eigenvalues Ej of the PPP-CI Hamil- 
tonian studied, ordering them according to increasing en- 
ergies. In Fig. 3 we present the result of such calculation, 
namely, the distribution of the differences between consec- 
utive eigenvalues, i.e., s = Ej+l - Ej Actually, Fig. 3 pre- 
sents s in units of the mean level spacing D = (,TT”+~ 
- Ej). This distribution is compared to the Wigner distri- 
bution’ 
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FIG. 3. Nearest-neighbor spacing histogramm of the 1195 PPP-CI eigen- 
values as function of the relative level spacing x=s/D. That distribution 
is compared with a Wigner distribution (0=0.0349 eV). 

P(s/D) = !yexp[ ?y] , 

which describes the spacing between consecutive eigenval- 
ues for random matrices with matrix elements obeying a 
Gaussian distribution. 

From Fig. 3 we can conclude, that neighboring many- 
particle levels of the PPP matrix repel1 each other, i.e., it is 
unlikely, that these levels are degenerate. This indicates 
correlations between the PPP levels at a scale of approxi- 
mately one mean local spacing D. The repulsion between 
levels is due to the existence of nonvanishing off-diagonal 
elements of the PPP-CI Hamiltonian. Zimmermann et aZ.,3 
who investigated the optical absorption spectra of NO2 and 
C2H$, have also found a Wigner distribution for the 

[Hab i O][O i 

nearest-neighbor spacing of the many-particle levels of 
these systems. In contrast to such level repulsion, com- 
pletely randomly distributed levels would tend to be degen- 
erate representing a Poisson distribution. Zimmermann 
and Cederbaum have shown, that spectral statistics gener- 
ally evolve continuously from regular to irregular fluctua- 
tions upon increase of the coupling.” Comparing with 
these results we find that our distribution of off-diagonal 
elements in Fig. 1 resembles a distribution which is typical 
for a weak-coupling case, whereas our distribution of level 
spacings in Fig. 3 appears to indicate strong coupling. In 
fact, the investigations in Ref. 6 have shown that the PPP 
model of polyenes corresponds to a case of intermediate 
coupling. 

B. Analytical approximation of the PPP statistics 

The distribution of energy level spacings P(s/D) con- 
tains only information about fluctuations of the eigenvalue 
spectrum. The global behavior of the spectrum is deter- 
mined by the number of possible combinations of many- 
particle states out of one-particle states.13 In order to sep- 
arate fluctuations from the mean behavior we divide the 
physical Hilbert space S?, the dimension of which in our 
case is Nx = 1195, into two subspaces. We introduce pro- 
jection operators P and Q, which are orthogonal to each 
other (p = P;Q = Q,P + Q = 1). As a consequence 2’ 
can be expressed by the direct sum &“=PSY@ QX. The 
first subspace PX is spanned by the states with low en- 
ergy. The dimension of this subspace is denoted as M. The 
second subspace Q2Y is spanned by the higher energy basis 
states. The dimension of Q2Y is N = N&- - M, where 
Nx is the dimension of X The subspace Q&p is the com- 
plement of PA?. 

We now divide the PPP-CI Hamiltonian defined in 8 
into one part HO, which describes the deterministic and 
mean properties and another part V, which describes cou- 
pling to high energy virtual excitations and which we will 
refer to as the residual interaction 

U’HQ),, 1 
H=H,+J’= -** i 

I  

.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  :  .  . .a. . . . . . . . . . . . . . .  
.  

I- 

(1) 

0 i &&J (t-@&b i (QHQ),,- (&v) 

The off-diagonal blocks in Eq. ( 1 ), V,, = (PHQ),, 
= [(QHf?val+, can be considered as effective scattering 
potentials, which couple the deterministic and the stochas- 
tic regions by scattering low energy states into the space of 
virtual excitations and vice versa. 

We choose the basis of eigenstates of HO as the basis in 
which we represent &4 In the following, states in PAY are 
labeled by latin indices and states in QSY are labeled by 
greek indices: 

I 

Hob!p)=~,&cc) (I&kQX,. (2) 

An important starting point towards stochastic models 
of the Hamiltonian H is an energy ordering of the basis 
states 1 (p,), i.e., we assume Hpp < H,,,, for p < Y. The func- 
tion h(p) = HP@ is then a monotonic function of p. It is 
determined by the number of combinations a many- 
particle state can be formed out of single-particle states, a 
number which increases with energy. In the energy region 
of complex states, we approximate /z(p) by a continuous 
function with a smooth dependence on ,u; the function with 
this property is 4. 
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PIG. 4. Spectrum of the diagonal elements of the QCI-PPP Hamiltonian. 
High energy regions are approximated fairly well by e,=20.1+0.014~ 
(eV) (valuesp= l,..., N, correspond to values i= lol,..., Nz of the index 
variable in the figure). 

Let us briefly consider the relationship between HpF 
and eK Figure 4 shows the spectrum of energy-ordered 
diagonal elements of the QCI-PPP Hamiltonian. After a 
steep rise in the low energy region, the spectrum is approx- 
imately uniformly distributed, i.e., ep increases linearly 
with p, the latter corresponding to a constant density of 
states. We choose, therefore, the following approximation 

~p=emin +pd* (3) 
The parameters which, in case of the PPP-CI Hamiltonian, 
provide a good fit to H,, are emin = 20.1 eV, which can be 
interpreted as the lower energy boundary of QZ, and d 
=0.014, which represents the inverse of the mean energy 
density in Q% and provides a natural energy unit in this 
space. We have chosen the dimension M of the low energy 
state space such that all diagonal elements, which lie in 
Q X Q space, are well approximated by Eq. (3) and such 
that the mean value of the diagonal elements of the resid- 
ual interaction ( Vcyc) vanishes. That choice renders M 
= 100 in our case. 

We want to represent the off-diagonal matrix elements 
of H in QX Q space, Vpy = (QHQ),, - (~p~p,J for p#v 
which couple only complex states, by a random matrix. To 
derive such representation one considers H to be described 
as an ensemble of stochastic matrices. 

Which mathematically tractable matrix ensembles 
share some properties with the PPP matrix? In order to 
find an answer we recall that there are two different units 
of energy: the mean local spacing D of eigenvalues and the 
local spacing d of the diagonal elements. A comparison of 
D with d can provide information about the coupling 
strength of the off-diagonal matrix elements. In the case of 
vibrations of polyenes, Jost14 found the behavior (l/D= l/ 
d) as indicative for weak coupling. Since in case of the 
relectron system described by the PPP-CI matrix the den- 
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sity of eigenvalues l/Dz29/eV is smaller than the density 
of diagonal elements l/d=7 l/eV, the off-diagonal ele- 
ments considerably affect the spectrum of the matrix. As 
mentioned above, that statement does not imply that the 
r-electrons represented by the PPP Hamiltonian are a 
strongly coupled system. It merely serves to obtain an es- 
timate on the couplings within the CI matrix in the chosen 
basis which is made up of spin-adapted antisymmetrized 
products of Hat-tree-Fock one-electron states. 

We want to consider now a representation of H by a 
particular ensemble of random matrices, namely, that re- 
ferred to as a Gaussian orthogonal ensemble (GOE).5 The 
GOE shows the same level repulsion as the PPP spectrum 
(cf. Fig. 3). In this respect the GOE is well adapted to the 
PPP-CI Hamiltonian in the Q% space. The GOE repre- 
sentation exhibits a strong coupling of matrix elements. 
Nevertheless, the distribution of off-diagonal matrix ele- 
ments Vpy is poorly approximated by a Gaussian (cf. Fig. 
1). 

In order to test, if the long-range correlations between 
the matrix elements in QZXQ&o space behave similar to 
those of the GOE, A3 statistics has to be investigated (for 
a review see Refs. 4 and 15). Because of the high numerical 
effort this is left for future research. In this paper we em- 
ploy the GOE as a simple analytically tractable model for 
the stochastic part of the PPP-CI Hamiltonian. Thus we 
are investigating the global influence, a stochastic model of 
the high lying states would have on the low lying states. 

We assume the matrix elements of V to be “coordi- 
nates” of V in the “matrix-element space” QZ’XQZ. 
Then, V is represented as a vector in this space. 

The GOE is defined in the space of real symmetric 
matrices by the following general assumptions: 

(1) the matrix elements V,,,(p < Y) are independent 
random variables; 

(2) the GOE is invariant under orthogonal transfor- 
mations. 

These general assumptions in a stochastic state space of 
dimension N lead to a uniform distribution of the matrix 
elements VP,, with Gaussian shape” 

PN(V)=KNexp[ --?g-] . 

Here KN is a normalization constant. This distribution also 
follows from the condition of minimum information in the 
“matrix-element space” or from the assumption of a 
z,-particle interaction.5 Though a hypothetical 
z,-particle interaction is unphysical, the GOE describes 
the fluctuation properties of nuclear spectra,’ atomic spec- 
tra2 and molecular spectra3 quite well. 

The first and second moments of a matrix ensemble 
described by a GOE are 

( vp,> = 0, (44 

v&vpw> =02(S~~,S,r+S~Y’SY~~), (4b) 

with c? = v2/N; v2 depends on the number of interacting 
particles. 
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the basis of SY. With respect to that basis the ith projected 
eigenvector in PST’1 I,@‘) is given by 

In our example of single, double, triple, and quadruple 
excitations of the 8r-electron system of octatetraene the 
approximation of the distribution of the off-diagonal ele- 
ments by the GOE is so crude, see Fig. 1, that we deter- 
mine u2 by a Gaussian fit. It provides a variance of 2 
= u2/iv z 10m2 eV2, i.e., vz4 eV. We refer to such a 
modified “GOE” as an extended GOE. 

(9) 

Having defined a simple stochastic model for the ma- 
trix elements in the QX Q part of the Hamiltonian, we now 
consider their coupling to the deterministic part by the 
matrix elements V,,. The mean values (I’& are of the 
order O( 10e2 eV> (the average is solely over Q-space in- 
dices y and v]. Since the correlation between the P- and 
Q-space states increases monotonically with decreasing dis- 
tance from the P2? and QZ? energy boundary, the func- 
tional form of the variance ( V&C AE) ) (see Fig. 2) can, in 
a very crude way, be approximated by a simple exponential 
function of the index a 

Eigenvalues and eigenvectors are solutions of Eq. (8) in 
the chosen basis’* 

[H$(E.) -E&&b]Cf)(E.) =o 1 I (10) 

with an energy dependent effective Hamiltonian 

E!(E) =Hab+ C Hap (Em :HQ) Hvb (11) 
P PV 

fa=0.01eo~02”, (5) 

with f. = 0.01 eV2 andfloo = 0.07 eV2. By using Eq. (5) 
and Fig. 4 a AE, value can be associated to each index a. 
At the beginning of this section we have found, that the 
correlations between off-diagonal matrix elements are 
about IO-’ eV2. The correlations between the scattering 
potentials Vpa and Vpb will be stronger and will tend to 
f, for la--61-+0. Th us if errors of the order 
0( 10m2 eV) are assumed to have a negligible influence on 
the results of our simple model, the coupling matrix ele- 
ments between PjY’ and QZ approximately can be as- 
sumed to be Gaussian distributed with vanishing mean val- 
ues, i.e., we assume for the matrix elements 

( VP) =o (64 

and energy dependent variances 

fob={ V,V,,) =S,, eiamblfa. (6b) 

Equations (4)) (5), and (6) define a simple model for the 
statistics of the matrix V, which permits an analytical 
treatment of the mean influence of complex states on the 
low lying states of the PPP matrix. 

This resembles closely the block diagonalization procedure 
in Ref. 19. We want to use the statistical properties of the 
Hamiltonian, which we made plausible in the preceding 
section, to evaluate the eigenvalue problem [Eq. ( lo)]. In 
first order pertubation theory the averaging affects only the 
effective Hamiltonian and not the wave function. In second 
order pertubation theory the wave function would change 
and the averaging procedure would not be any more sep- 
arable and would involve the two-point function. This is 
left for further investigation, here we want to provide a first 
guess for the influence of the highly excited states on the 
low lying ones. Thus in first order approximation, we are 
looking for global effects of the high lying complex states 
on the low lying deterministic states: The eigenvalue prob- 
lem reduces to an eigenvalue problem of the ensemble av- 
eraged effective Hamiltonian. By construction the matrix 
elements Hop = Vap and ( QHQ)p,, = V,, are Gaussian dis- 
tributed with vanishing mean values [Eq. (4) and Eq. (6)]. 
If we use the fact that for Gaussian distributed functions 
the mean value of the product equals the product of the 
mean values, we obtain for the statistical averaged effective 
Hamiltonian 

III. THEORETICAL METHODS (REF.17) 

A. Effective Hamiltonian and secular equation 

In a representation corresponding to the direct sum 
PSYeQR’=X the stationary states of the PPP-CI 
Hamiltonian are determined by 

<f$> =%,+fadG(@) >. (12) 

(G( u,E) ) describes the influence of the complex part of the 
spectrum. Hence, the central problem of the calculation 
consists in the determination of the ensemble averaged 
propagator ( z Z) (;z)=E(i?z) (7) 

for all I$)&?. Since we are interested in states in the PF 
subspace, we solve the linear system in Eq. (7) in the form 
projected onto PX 

1 
pffP+f’HQE-QHQQffP (8) 

In the preceding section we have divided H into Ho and V 
[Eq. ( 1 )] and have chosen the eigenbasis of Ho [Eq. (2)] as O,,(E) = C (E- QSpy- VP,]. 
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B. Functional form of (G) and l/N expansion 

In order to determine the propagator Tr,O- ’ (E) we 
consider the generating function 

+O” Z(E,J) = s -03 
fi d$exp[ -f c &P&W, 

p’=l P 

+iJ c 4; , 
P 1 

which is related to the propagator through 

Tr,0-l (E) ra In zy . 
J=O 

(15) 

(16) 

Here C& represent a set of real variables and J is a real- 
valued “source parameter.” The logarithm of Z(E,J) can 

be formally expressed through the limit lim,,o(Z? 
- 1)/n, where Z” can be evaluated by means of the replica 
variables {&;k = l,..., n;~ = l,..., N) (Ref. 20) 

F(E,J) = 
s +m --m -f c cb&,UW$ ctvk 

+iJ c (&?“]s (17) 
pk J 

with the common abreviation for the differential of path 
integrals: &k[d$$ = g[$]. This procedure, known as the 
“replica trick” had been introduced for the description of 
spin glasses20,2’ and in the present setting has been applied 
in Ref. 9. 

Using the statistical properties of VP,, (4) we obtain for 
the Green’s function (G(u,E)) = (Tr,O-‘(E)), 

-& 2, ( 5 +:$it)2] 2 (18) 

for any fixed index I between 1 and n. In order to eliminate 
the quartic term in 4 the real and symmetric auxiliary field 
variables s,&,(k,k’ = l,...,n;Skk! = S,&) are introduced 
(Hubbard-Stratonovitch transformation) 

ev[ -& 2 ( F &fJF)2] 
=c(n) s ;I(: dSkkt eXp[ -; 2 bkkd2] 

i U c skkt c +k&’ . 
kk’ P 1 

We note c(n) = [(l/2) m]‘1”(“+r)‘2 + 1 for n-0. If this 
expression is substituted back into Eq. ( 18) one obtains 
with ~3 [s] = I$(:,‘,!!? dskkt 

(G(U) > 

N 

=i lim c(n) C 
s 

m ~‘[ww(4;)2 
n-0 a=1 -co 

Xexp[ -TTr$]eip(--f 5 z &[(E--E~) 
x‘&‘-Uskk&f’;’ . I (19) 

The integration over the &, which now appear in a qua- 
dratic form, is formally straightforward. With the identity 

i T (4L)2eXp k p$ (#‘k($)kkr+F)] 

I 

c 
pkk’ 

#+;)kk’$!f 1 
and partial integration over (.$)kk’ = (E - $)6kk’ 
- USkk,, giving rise to a term which tends to zero with n, 
the final form of the propagator reads 

(G(u,E)) =$fy c(n) (2rr i)“12 J:, ~3 [slsu 

N 

where ( fiII) ,& = (E - E&-k, - Us,&, has t0 be StliCt\y POS- 

itive definite. Hence, the mean propagator is the expecta- 
tion value of an n Xn (n-+0)-matrix field skk,, weighted 
with e-di”(s), where Y(s) denotes the Lagrange function 

N 

~(S)=~Tr$-l-~Trk c ln[(E--~)~kk,-Uskk,]. 
p=l 

(21) 

3’(s) explicitly depends on the Q-space dimension N. 
Thus (G) can be expanded asymptotically in l/N. For 
N- CO the mean (so-called classical) contribution, the 
saddle-point solution, is obtained.* The saddle point so is 
given by %5!‘/& 1 s=so = 0 as solution of the algebraic equa- 
tion 
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N 

s-v c 
1 

O-N pc1=, E-Ep-vso’ 
(22) 

This equation yields N- 1, N or N+ 1 solutions generically 
denoted by the same symbol se. Only that solution yields a 
saddle point, for which (i) the second term in a Taylor 
expansion of 9’ is positive and (ii) further terms, which 
describe fluctuations around the saddle point, are small 
compared to the second term. 

With sfil = s&k, + srk! one obtains for the Taylor se- 
ries of A!’ around the saddle pointi 

Co 199 
Y(s)=T(so)+ c -- 

p=2 P afl 
Trk[S(‘)]P 

S’S0 

=A?(so) +P(s(l)) , 
Y(se)is the mean Lagrange function 

(23) 

N 

I =iiVn&+i n C ln(E--E,--vso). (24) 
p=l 

-!?‘(s(‘))is the Lagrange function for the fluctuating part 

&SC’)) =~C,Trk(S(1’)2+PI(S(1)), (25) 

where 

i??l (SC’)) =; pf3 f Tr&(l))p, 

and 

cp= 5 (Em&,,)’ for p’3’ 

(26) 

(27) 

(28) 

Substituting expression (23) into Eq. (20) one obtains a 
“loop’‘-expansion for the mean propagator16 

(G) =r Frn( do(n 

+4(n) 
s 

53 [s(‘)]sj;) exp[-J?(s(‘))] 
I 

=(Go>+W”‘) , (29) 

where 

do(n)=exp[-T’(so)] s 9[sC1)][-p(sC1))]+1 

for n-+0, 

d,(n)=exp[-T’(so>]+l for n-0. 

Finally, exp[ - 2 (s(‘))] is expanded into a power series in 
1/N 

+ SP 

.e 

f 

cp:0 

/' / :2'0 

i I' 
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FIG. 5. Schematical graphical solution of the saddle-point equation (22). 
The solid line shows a typical hyperbola, in case Eq. (22) has N+l 
solutions; the dot-dash line is the curve for N solutions and the case with 
N- 1 solutions is dotted. The saddle point is marked with SP. 

OD (-l)m 
XC 

m=O 
7 Pyys”‘,. (30) 

Using the saddle-point equation (22) one obtains, to sec- 
ond order in l/N 

c3 3c5 1 
so+p+g+O 3 + ( )I (31) 

2 2 

C. Solution of the eigenvalue problem 

The statistically approximated part of the matrix influ- 
ences the deterministic part by an energy dependent prop- 
agator in the effective Hamiltonian [see Eq. (12)], which 
we derived in the preceding section for an extended GOE 
[Eq. (31)]. Now the eigenvalues of 

flu:(E) =Hab+fab; .+s+$ 
2 2 

in the region of deterministic states 

(32) 

[see Eq. (2)] have to be calculated. First the solution of the 
saddle-point equation (22) is needed for the calculation of 
E:(E). - 

Figure 5 shows schematically the N- 1, N or N+ 1 
solutions of Eq. (22), which exist for different parameters 
u. Only the solution with positive and maximal c2 and with 
fluctuation coefficients c3 and c5 much smaller than I c2 I is 
a saddle point. The stated conditions eliminate [see Eq. 
(27)] all solutions near the poles so = (E - E~)/u for 
which c2 < 0. Thus only the solution closest to the origin on 
the branch at the extreme right of the graph is a saddle 
point. If the two lowest solutions are degenerate, i.e., c2 
= 0 (dot-dash curve in Fig. 5)) the asymptotic expansion 
(20) diverges term by term. 

Therefore, the existence of a saddle-point solution 
strongly depends on the variance v2/N in the statistical 

J. Chem. Phys., Vol. 97, No. 3, 1 August 1992 



1872 Grossjean et al.: Semistochastic approach to electron systems 

region. This constitutes the main difficulty in the selfcon- 
sistent diagonalization procedure for the effective Hamil- 
tonian Eq. (32). 

IV. SELF-CONSISTENT CALCULATION OF THE 
EFFECTIVE HAMILTONIAN’S EIGENVALUES 

The eigenvalue problem for the energy-dependent ef- 
fective Hamiltonian [Eq. (lo)] has to be solved in a self- 
consistent way with given parameters Hab, M, N, ep, fob v. 
For the P-space matrix elements Hnb we have chosen a 
100x 100 dimensional submatrix of the PPP matrix such 
that (VW) vanishes and Ed linearly increases in Q space 
(cf. Sec. II). Then, the dimension of the complementary, 
statistically described space is 1095. From the statistical 
analysis of the PPP matrix in Sec. II we obtained 
E~=E~“+@ with E,in=20+1 eV and d=0.014 eV [Eq. 
(3)]. The correlation between P and Q space is approxi- 
mated by fab = e -Iomblfa with f, = 0.01 e”.02= in units of 
[eV2] [Eq. (5)], and the variance of our extended GOE 
d = v2/N z 10m2 eV2 [Eq. (4)]. 

The algorithm of the self-consistent solution can be 
summarized in the following way: 

( 1) choose the ground state energy E”‘, which satis- 
fies the condition in Eq. (33); 

(2) solve the saddle-point equation (22), with c2 
> 0, to obtain $‘; 

(3) calculate the matrix elements of pff [Eq. (32)], 
which belong to si”’ and A’(‘); 

(4) diagonalize flff [Eq. (IO)]. 
Steps ( l)-(4) have to be repeated for each eigenvalue 
which satisfies the condition in Eq. (33) up to self- 
consistency (Ei with O<i CM). 

In Sec. III we have seen that the existence of a saddle- 
point solution strongly depends on the parameter v, i.e., on 
the distribution width of the matrix elements in Q space. 
Figure 6 shows a graphical solution of the saddle-point 
equation (22) in the region of (E - czti)/v < so < 0 for 
different parameters v. Figure 7 depicts corresponding val- 
ues of c> If v > 6 eV, no saddle point exists in the energy 
region of E. < Ej < ehn. If a saddle point exists, so can only 
be in the range - 0.5 < so < 0 (cf. Fig. 6). In this so inter- 
vall c2 is nearly constant with an approximate value of 
c2 = N/2. Therefore, the numerical value of the propagator 
depends only weakly on v. 

For the parameter v-4 eV, which we obtained from 
the one Gaussian fit to the distribution of the CI off- 
diagonal elements, a saddle point exists. Therefore, the 
spectrum of the effective Hamiltonian [Es. (32)] can be 
calculated by the self-consistent algorithm summarized 
further above. If the boundary between the deterministic 
and the stochastic region emi,, is approached, the conver- 
gence of the self-consistent algorithm becomes worse, be- 
cause then condition (33) allows only an approximation 
from the left. Furthermore, for that energy range the ap- 
proximations for Ed in the region above the boundary and 
for fob in the region below are getting poorer. 

Figure 8 shows the energies of the 50 lowest energy 
ordered eigenvalues for the 100X 100 dimensional deter- 
ministic submatrix Hab for the effective Hamilton matrix 

0 

-2 

Ei 
!3 
\ 

n-4 0 

-6 

-0.8 -0.8 -0.4 -0.2 

SO 

FIG. 6. Graphical solution of the saddle-point equation (22). The hyper- 
bolas represent the right-hand side of the saddle-point equation for dif- 
ferent parameters u=Z4,8 (from above), and energies E so that the pole 
of all graphs is located at (E - E,,&/u = - 1. 

Ip” and for the exact QCI-PPP Hamiltonian matrix. The 
eigenvalues of He” are evidently lowered relative to those of 
Hab but the QCI energies are still smaller than the He’f 
energies except for the energy of the ground state. The 
ground state of He’ lies at - 1.445 eV, the QCI ground 
state at - 1.4376 eV and that of Hab at - 1.009 eV. 

Figure 9 shows the deviations of the eigenvalues of 
both pff and Holb from the QCI-PPP eigenvalues. The ten 
lowest eigenvalues are reproduced with errors smaller than 
0.5 eV. The lowering of the spectrum by the stochastic part 
of the matrix relative to Hab increases as a function of the 
index. Particularly at high indices, this increase of the cor- 
relation correction does not suffice to reproduce the QCI- 

-0.2 

-0.4 

0" 
-0.6 

-0.8 no saddle point (SP) 

-0.8 -0.6 -0.4 -0.2 

SO 

FIG. 7. Values of cz belonging to the parameter values in Fig. 6 in de- 
pendence of s,, (from above, respectively). 
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FIG. 8. The dashed curve represents the eigenvalue spectrum of the 100 
x 100 dimensional submatrix H,, the solid curves the spectra of the 
effective Hamiltonian p and of the exact QCI-PPP Hamiltonian matrix. 

PPP spectrum. 
As shown in Fig. 9 the fluctuations of the deviations of 

Hc” and of Hob from the QCI eigenvalues proceed nearly 
parallel. Since for l!@  the deviations are much smaller than 
for Hob we can infer that our rough statistical model de- 
scribes global correlation corrections qualitatively correct. 
However, as indicated by the paralellism mentioned above, 
some of the more detailed correlation corrections, which 
are missing in the spectrum of Hab, are also missing in the 
spectrum of Zi? In that respect the spectrum of H”’ still 
reflects part of the effects which are due to the truncation 
of the CI space. 

The failure in the description of these more detailed 
correlation effects is not surprising, because in our treat- 

0 
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22 
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-2 
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ment we did not account for -higher correlations of the 
PPP-CI matrix elements. Furthermore, in the analytical 
approximation CEq. ( II)] only first order perturbation the- 
ory and the one-point function, which takes care for a 
mean behavior, have been considered. To check for arti- 
facts possibly introduced by some of the details of our 
model, we have employed several different test functions 
[Eq. (5)] to describe the coupling of the P and Q spaces. 
We found that the results are only weakly influenced by the 
functional description of the coupling matrix elements. 
Further investigations may answer the question, whether 
use of higher order pertubation theory and inclusion of 
longer range correlations in form of the two-point function 
can remedy the failures sketched above. The next section 
serves to exclude another possible source for the shortcom- 
ings of the simple model considered so far, that is the 
admittedtly crude approximation of the statistics of the 
off-diagonal elements by an extended GOE. 

V. NUMERICAL ATTEMPTS 

In the preceding section we have shown that a simple 
statistical model can provide a qualitatively correct de- 
scription of the global influence of the complex states of a 
PPP matrix on the low energy states. However, that model 
failed to correctly reproduce the fine structure of the low- 
energy spectrum. In order to elaborate to what extent er- 
rors in the description of the lower energy states are due to 
the quality of the statistics in the stochastic state space, we 
employ a numerical model with improved statistics of the 
off-diagonal elements. Thus we try to approximate the dis- 
tribution of off-diagonal matrix elements as closely as pos- 
sible. 

The statistics of off-diagonal elements, which depends 
on the energy difference of the diagonal elements AE, has 
been numerically reproduced by 40 individual random 
number generators for 0 < AE < 20 eV which approximate 
the empirical distributions P( V,,AE) by two-Gaussian 
fitted distribution functions. Since we want to decrease the 
errors, caused by the neglect of deterministic correlation 
contributions, the dimension of the deterministic state 
space is considerably enlarged (M=332), so that the sto- 
chastic region extends deeply into the region of high level 
densities [cf. Fig. 41. 

\ S” I t I 0 t I I I 
5 lo 15 20 25 30 35 40 45 

Index i 

FIG. 9. Deviations of the 50 lowest eigenvalues of Pff (solid lines) and of 
Ha6 (dashed lines) from the exact QCI-PPP eigenvalues. 

Figure 10 shows for the 50 lowest eigenvalues of the 
QCI matrix the differences to the corresponding eigenval- 
ues of both the semistochastic matrix H, (M=332,N 
=863) and of the deterministic submatrix Hd (M=332). 
Like in the case of the effective Hamiltonian, the inclusion 
of the stochastic part of the matrix into the calculation of 
the eigenvalues leads to a correlation correction. For the 20 
lowest states that correction approximately assumes values 
between 0.02 und 0.15 eV and increases with energy (see 
Fig. 10). Similar to the case of the simple analytic approx- 
imation the fluctuations of the difference energies in Fig. 
10 are not changed by inclusion of the stochastic part of 
the matrix. That shows that these fluctuations do not de- 
pend on the statistics chosen for the high energy part. As 
they derive from the reduction of the full deterministic 
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FIG. 10. Deviations of the 50 lowest eigenvalues of the semistochastic 
matrix H, (M=332, N=863, solid lines) and of the deterministic sub- 
matrix Hd (M=332, dotted lines) from the exact QCI-PPP eigenvalues. 

QCI space onto a less dimensional subspace, they reflect 
higher order correlations between matrix elements. 

The errors of our numerically calculated semistochas- 
tic model, i.e., the deviations of statistically calculated 
from exact QCI state energies, amount to about 0.3 eV on 
the average. Due to the statistical choice of off-diagonal 
elements the eigenvalues of the semistochastic Hamiltonian 
have statistical errors of approximately 0.05 eV. The larg- 
est error for one of the ten lowest states is about 0.4 eV. 
Such error is too large for a quantitatively reliable descrip- 
tion of the low-energy states of conjugated molecules, but it 
is small enough as to possibly enable a construction of a 
simple method to estimate the correlation effects of com- 
plex states even for larger molecules, for which spectra 
cannot be computed exactly. 

VI. CONCLUSION 

Taking an &-electron system as example, the suitabil- 
ity of simple semistochastic approaches for a description of 
the low-lying eigenvalues of many-electron systems has 
been analyzed. 

The PPP-CI matrix has been divided into a low- 
dimensional deterministic submatrix, containing the low- 
energy states and a high-dimensional stochastic comple- 
mentary matrix, which was approximated by an extended 
GOE. With this approach we calculated the eigenvalues of 
an energy dependent effective Hamiltonian in the deter- 
ministic state space. That Hamiltonian contains the con- 
tributions of the stochastic states in form of a propagator. 
The spectrum calculated in such a manner has been com- 
pared with the exact spectra of the PPP matrix and the 
spectrum of a deterministic submatrix (reduced CI). 

The introduction of the propagator leads to a global 
correlation correction of the deterministic submatrix’s ei- 
genvalues. But, due to the truncation of the CI space large 
fluctuations are present in the correlation correction to 
level energies, which reflect higher order correlations be- 

tweenmany-particle states and, hence, cannot be removed 
by our statistical approach. Therefore, the low energy ei- 
genvalues of the CI matrix can only be qualitatively ap- 
proximated by our simple statistical model. Nevertheless, 
about 80% of the correlation energy, caused by the com- 
plex states, are reproduced. 

In order to analyze to what extent the results depend 
on the quality of the statistics for the stochastic part of the 
matrix, we have carried out a numerical investigation, in 
which the statistics of the PPP matrix elements in the high 
energy part of the matrix has been approximated by an 
ensemble of random number generators. Also this im- 
proved statistical approach renders only global correlation 
corrections to the spectrum of the low-energy deterministic 
part of the matrix. Large fluctuating deviations of about 
0.3 eV from the exact level energies are still observed. Like 
in the simple analytical model these fluctuations arise from 
deterministic, higher order correlations among matrix ele- 
ments that become neglected upon reduction of the CI 
space to a smaller, deterministic subspace. 

Therefore, we conclude that a semistochastic method 
is appropriate if one is interested in a fast estimate of global 
correlation effects, caused by complex states. At present, 
the method is not well suited for an exact calculation of the 
low lying eigenvalues of the system. The system 
parameters-mean local spacing d and “lower boundary” 
of the stochastic space Emi,,+an be extended to larger 
system8 where exact calculations are not available. Work- 
ing out the behaviour of these parameters as a function of 
the system size is a task of further investigations. 
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