Biol. Cybern. 67, 35-45 (1992)

Biological
Clolog i

© Springer-Verlag 1992

Self-organizing maps: stationary states, metastability

and convergence rate
E. Erwin, K. Obermayer, and K. Schulten

Beckman Institute and Department of Physics, University of Illinois at Urbana — Champaign, Urbana, IL 61801, USA

Received July 22, 1991/Accepted in revised form December 18, 1991

Abstract. We investigate the effect of various types of
neighborhood function on the convergence rates and the
presence or absence of metastable stationary states of
Kohonen’s self-organizing feature map algorithm in one
dimension. We demonstrate that the time necessary to
form a topographic representation of the unit interval
[0, 1] may vary over several orders of magnitude depend-
ing on the range and also the shape of the neighborhood
function, by which the weight changes of the neurons in
the neighborhood of the winning neuron are scaled. We
will prove that for neighborhood functions which are
convex on an interval given by the length of the Ko-
honen chain there exist no metastable states. For all
other neighborhood functions, metastable states are
present and may trap the algorithm during the learning
process. For the widely-used Gaussian function there
exists a threshold for the width above which metastable
states cannot exist. Due to the presence or absence of
metastable states, convergence time is very sensitive to
slight changes in the shape of the neighborhood func-
tion. Fastest convergence is achieved using neighbor-
hood functions which are “convex” over a large range
around the winner neuron and yet have large differences
in value at neighboring neurons.

1 Introduction

The self-organizing feature map (SOFM) algorithm
(Kohonen 1982a, b, 1988) is a biologically-inspired
method for constructing a structured representation of
data from an input space by prototypes, called weight
vectors. The weight vectors are associated with selected
clemgnts, the neurons, of an image space where metric
rglatlonships are defined between the elements. For any
given data-set, the SOFM algorithm selects weight vec-
tors and assigns them to neurons in the network. The

—_—
Correspondence to0: E. Erwin

weight vectors as a function of neuron coordinates are
called the feature map. Topologically ordered feature
maps are characterized by the fact that prototypes which
are neighbors in the input space are mapped onto
neighboring neurons. The SOFM algorithm can success-
fully form feature maps which are topologically ordered,
or nearly so, in a variety of applications, where the input
space and image space have the same or different
dimensionality. However, no complete theory of feature
map formation has yet appeared. Such a theory would
be useful for optimizing the algorithm in technical
applications and for developing new algorithms for cases
where the original SOFM algorithm is not adequate.

In a companion article (Erwin et al. 1992) we began
to provide a framework for answering some questions
about the SOFM algorithm. We have proven that the
one-dimensional SOFM algorithm will converge to a
topographic representation of the unit interval [0, 1] by
a linear chain of neurons given only that the neighbor-
hood function, by which the weight changes in neurons
in the neighborhood of the winning neuron are scaled,
be monotonically decreasing. We also demonstrated
that the dynamics of the one- or multi-dimensional
algorithm may be described using a set of energy func-
tion, such that the weight values associated with each
neuron tend to move to decrease their energy.

In this paper we will consider the convergence pro-
cess in more detail, in particular the rate of convergence
and the presence and absence of metastable states, which
correspond to non-global minima of the energy func-
tions. In Sect. 2 we will briefly describe the one-dimen-
sional SOFM algorithm. In Sect. 3 we will discuss the
issue of metastable states, stationary states of the al-
gorithm which do not corresond to the topologically
ordered, optimal mappings. We will prove that for a
certain class of neighborhood functions there exist no
metastable states, while for other types of neighborhood
functions metastable states are present regardless of the
parameters of the algorithm. We will also show that for
the case of the widely used Gaussian functions, there
exists a threshold value for their width, above which the
topologically ordered state is the only stationary state of

36

the algorithm. However, for more narrow Gaussian
functions, or for the simple step function, metastable
states exist and the mapping algorithm may become
“stuck” temporarily in these non-ordered configurations.

In Sect. 4 we will provide numerical and analytical
results on the speed of ordering as a function of the
algorithm’s parameters. Due to the presence or absence
of metastable states, convergence time is very sensitive
to slight changes in the shape of the neighborhood
function, so that neighborhood functions which are
close in some function-space metric may yet cause the
SOFM algorithm to require very different amounts of
time to converge. Fastest convergence is achieved using
neighborhood functions which are ‘“convex” over a
large range around the winner neuron in the network,
and yet have large differences in value at neighboring
neurons. For the typically chosen Gaussian function,
these competing interests balance to give the shortest
convergence time when the width of the Gaussian is of
the order of the number of neurons in the chain. The
results of this section offer suggestions for avoiding
metastable states in practical applications.

2 The one-dimensional SOFM algorithm

The one-dimensional SOFM algorithm employs a set of
neurons which are arranged in a linear chain. The
location of any neuron in the network is specified by the
scalar index s, which we will allow to take integer values
between 1 and N, the number of neurons. A weight vector
w;, in this case a scalar from the interval [0, 1), is assigned
to each neuron s to form the feature map.

Given an initial set of weight vectors, feature map
formation follows an iterative procedure. At each time
step ¢, a pattern v, an element of the data manifold in input
space, is chosen at random. The neuron r whose weight
value w, is metrically closest to the pattern is selected

|w, — o] = min |w, — |, ey
s

and the weight values of all neurons are then changed
according to the feature map update rule,

w,(t + 1) = w, () + eh(r, $)v(t) — w, (O], (2)

where ¢, the learning step width, is some small constant
(0 < ¢ < 1). The function A(r, 5) is called the neighbor-
hood function. For most applications it has a maximum
value of one for s =r and decreases with increasing
distance between s and r.

For convenience we define a state of the network as
a particular set of weight values {w,|s=1,2,...,N;
w, €[0,1]}, and a configuration as the set of states
which are characterized by the same order relations
among the scalar weights.

The original form of the SOFM algorithm em-
ployed a step function as the neighborhood function
h(r, 5)

1, 1flr—s.'|<l, 3)
0, otherwise.

h(r, s) = H(Jr —s)) ={

Later it was discovered that the algorithm could be
made to converge more quickly in practical applications
if a gradually decreasing function were used (e.g. Ritter
et al. 1989; Lo and Bavarian 1991). In a companion
paper we proved that for the one-dimensional case, the
algorithm can be guaranteed to converge for any
monotonically decreasing neighborhood function.
However, we also observed that other properties of the
neighborhood function seemed to affect the efficiency of
the algorithm. In particular we will show here that the
algorithm is more efficient when a so-called convex
neighborhood function is used.

We define a neighborhood function to be convex on
?f certain interval of integer values 7 = {0, 1,2,..., N},
i

Is—gq|>|s—rl|r —q|= |
[h(s, 5) + h(s, @)] <[h(s, r) + h(r, g)] (4)

holds for all |s — g|, |s — r|, |r — g| within the interval 7,
and to be concave otherwise. If the indices r, s and g are
allowed to be real numbers and the interval / is taken to
be the set of all real numbers, this definition fits the
usual notion of convexity. However, due to edge effects,
the definition (4) allows some additional neighborhood
functions to be classified as convex even though their
second derivative is positive over a part of the range of
allowed arguments.

To illustrate the consequences of neighborhood
function shape, we choose specific neighborhood func-
tions which do or do not need condition (4). We have
selected the step function (3) above and the “Gaus-
sian”, “concave exponential”, “compressed Gaussian”,
and ‘“‘compressed concave exponential” neighborhood
functions (Fig. 1) given by:

(exp(—(r — 5)*/0?), (5
exp(—+/|r —sl/o), (6)

h(r,s) = H(|r —s]) = < 1= A(1 —exp(—(r —9)?*/a?),
and @)

1 —A(1 —exp(—+/|r —s|/o) 26)

1.00 7
0.80

0.60 1

h(ixI)

0.40

0.20

0.00 +—r—r—r—rr—r—r——r
-10 -5

P

(')' 5 10
X

Fig. 1. Examples of the neighborhood functions used: Gaussian
(open symbols), concave exponential (filled symbols); ¢ =6 gn both
cases. The Gaussian function here is convex (4) over the interval
-9<x<9

respectively. The constant A in the compressed func-
tions must be in the range 0 < 1 < 1, and will usually be
small. For 4 =1, (7) or (8) reduce to the Gaussian (5)
or concave exponential functions (6), respectively. Note
that Gaussian functions (5) and (7) are convex within
an interval around their maximum; for large enough
values of o, the Gaussian functions will be convex over
the full range of their possible arguments, which are
integer values less than N. An approximate lower
bound on the value of ¢ is given by ¢ > N. \/5, although
slightly lower values of ¢ may still result in neighbor-
hood functions satisfying (4). The concave exponential
functions (6) and (8) are concave for all values of the
parameter o.

3 Metastable states

It is known that the ordered state for the one-dimen-
sional SOFM algorithm is stationary and stable (Ko-
honen 1982a; Ritter and Schulten 1986). However, little
attention has been given to the existence of other
stationary states, which correspond to stable “topologi-
cal defects” of the feature meap. Here we will show that
the existance of metastable states is linked to the shape
of the neighborhood function. Metastable states with
topological defects exist for any neighborhood function
which is not “convex” (4).

For the derivation of these results it will be conve-
nient to relabel the weight values so that their indices
are arranged in ascending order in the input space. To
avoid confusion we introduce new symbols u, to refer
to weight values laveled such that x <y-—u, <u,
(x,y€e{l,2,...,N}) and use the “old” symbols w, to
label weight values by the position of the correspond-
ing neurons in the network. “New” indices can be
converted to “old” indices by a permutation function
s = P(x), which, however, is different for each configu-
ration of the network. Thus we may write:

Uy = Wy =W, - ©)

Note that the arguments of the neighborhood func-
tion are always the indices s of w,, since the neighbor-
hood function is defined by neighborhood relation-
ships in the image space (nmetwork), not in the
input space. We will use the abbreviation A(s, y) for
WP (x), Z(y)). _

Let us denote the probability density of choosing a
pattern v by P(v). Then the average change
Vlul = u(t +1) —u,(f)) of the weight value u, in
one iteration, with the average taken over all possible
patterns v, is given by

Vilul =€ } A(x,) — u,)P@) dv , (10)
0

where y is the label of the winner neuron. The quan-
tity V.[u] may be interpreted loosely as the average
force acting to either increase or decrease the value of
the weight u, at the next iteration. Expanding (10)
into a sum of integrals over all possible winner neu-

37

rons y yields

N
Viul=e¢ Y Ax,p) | @—u)P@®)d, (11)
y=1 vefdy)
where each integral is evaluated only over the Voronoi
tessellation cell of the neuron p, i.e. the area of the
input space mapped onto neuron y. The Voronoi tes-
sellation cell may be expressed as

Q(l) = {UIO <p <%(u| + uz)} ’
Qy) = {vl%(uy-l'*'uy) <v <';'(“y + “y+l)}v (12)
forl<y<N,

QN) = {vfi(uy—, +uy) <v <1}.

We define a stationary state to be a set of weight
values {u, } or {w, } which are characterized by vanishing
forces: ¥V, =0 for all x. The stationary states could
correspond to local minima or maxima of the energy
functions (given in Erwin et al. 1992), but we will show
that all known stationary states correspond to local
minima of the energy functions. Later we will differenti-
ate between stable stationary states which belong to the
absorbing, ordered configurations, and metastable states
which belong to configurations with topological defects.

Let us consider the simplest case, where P(v) is a
constant. The condition ¥, [u] = 0 for the existence of a
stationary state then simplifies to

0=,.lz:“. hx,y) | @ -u,,).dv. (13)

vefy,

If the neighborhood function A(r, s) is also constant,
there exists only one stationary state with weight values
given by u, =1/2, for all x.

Let us next consider neighborhood functions which
can be written as a perturbation

h(x, y) = 1 — ig(x, y) (14)

on this trivial case. Note that the “compressed” neigh-
borhood functions (7) and (8) are of this form. Then
we may derive the following theorem:

Theorem 1. Given a constant probability distribution and
a neighborhood function h(x, y) = 1 — Ag(x, y), such that
glx,y) = G(Ix - y|) is positive and of order O(1), and
0<i<1, then

1. Any permutation function P(x) which when inserted
into the right hand side of

Uy =l+%(§(l9 x) -gA(N’ X))
+-fj:(g‘(1, x)* —&(N, x)%) + 0(4%) (15)

leads to weights {u,} in ascending order, with the
differences between adjacent weight values being
greater than O(A*), describes a configuration which
contains one stationary state.

2. The stationary state {u2} is given by the r.h.s. of

(15).

38

The derivation of (15) in Theorem 1 is given in Ap-
pendix A. Note that the “compressed” neighborhood
functions (7) and (8) meet the requirements of Theorem
1 when the factor 4 is sufficiently small.

For an ensemble of maps with weight values located
at one of the stationary states, application of the update
rule (2) to each map, with patterns v independently
chosen from the input space with the probability den-
sity P(v), leads to no change in the average of each
weight value across the ensemble. The weight values in
any individual map must, however, change after each
application of the update rule. The average effect of the
update rule on maps whose weight values are near a
stationary state is considered in the following theorem:

Theorem 2. Given a constant probability distribution,
then for the neighborhood functions of Theorem 1

|0V, Jou,| <0, Vx,ye{l,2,...,N}, (16)

JSor all sets of weight values {u, } such that the derivatives
exist, i.e. for all maps such that u, #u,, Vx #y.

This theorem may be proven by performing the indi-
cated derivative and using the property u, > u,, Vx >y
of the stationary state (15).

Theorem 2 states that the weight values of maps in
a configuration containing a stationary state are more
likely to move toward that stationary state than away
from it, and thus they fluctuate around the values given
by Theorem 1. However, unless the weights are in an
ordered configuration, there is always a finite probabil-
ity that a series of input patterns will cause an individ-
ual map to “escape”, i.e. to change their configuration
of weights. After a change in configuration, the weights
will again be attracted to a stationary state, but this
may not be the one in the previous configuration. For
these reasons, we call stationary states stable only if
they belong to the absorbing, ordered configuration,
and metastable otherwise.

We may make several extensions of Theorem 1
concerning the existence of stationary states. Our first
corollary states the conditions under which no
metastable states exist.

Corollary 1. If the conditions of Theorem 1 hold and
h(x, y) is convex in the sense of (4), then and only then all
stationary states belong to ordered configurations.

The proof of Corollary 1 is given in Appendix B.
Although expansion (15) is no longer valid for neigh-
borhood functions with 1 ~ 1, we found empirical evi-
dence from numerical simulations that even when the
expansion (15) is not valid, metastable states exist for
concave, but not for convex neighborhood functions.

When the conditions of Theorem 1 are met, it
follows from u, ., > u, and (15) that

8(2(1), Z(x + 1)) — g(P(N), P(x + 1)) >
g(P(1), 2(x)) — gPWN), 2(x)), (17)

for any two weights u, and u, , ,. After 2(1) and #(N)
have been specified, there is at most one possible set of
values for the other 2(x)’s which will fulfill (17). Thus

Corollary 2. If the conditions of Theorem 1 are met, and
h(x, y) is concave, then non-ordered stationary states, i.e.
metastable states, exist. If the number of neurons is N,
then (15) predicts at most a total of N(N — 1) stable and
metastable stationary states.

When the conditions of Theorem 1 do not hold, it is
no longer correct to neglect the terms of order @(4%) in
(15). Corollary 2 no longer holds and more than one
stationary state may exist for each pair of #(1) and
P(N) values, thus the number of stationary states is no
longer limited to N(N — 1). Indeed, for ¢ =0 in any of
the four neighborhood functions, N! metastable states
exist, one for each configuration of the weights.

The conditions of Theorem 1 are met for the com-
pressed neighborhood functions (7) and (8) for small A
and all but the smallest values of ¢. For very small o,
£(1, x) — g(N, x) < O(A*) and the expansion to order 13
is not sufficient. The conditions of Theorem 1 are also
met by the Gaussian (5) and concave exponential (6)
functions, if their width ¢ is sufficiently large. In this
case expansion of (5) and (6) with respect to /o
leads to the perturbations AG(|x|) = x%/a?, or AG(Jx|) =

|x|/o, respectively. Since Gaussian neighborhood
functions with broad enough ¢ are convex over the full
range of their possible arguments, application of Corol-
laries 1 and 2 to Guassian functions yields that there
exists a threshold value for ¢ above which no
metastable states exist. An equation for determining
this threshold value will be given in Sect. 4.3.

Figure 2 illustrates these results for a 10-neuron
Kohonen chain and a compressed Gaussian neighbor-
hood function (7) with N =10, A =10~%. For a 10-neuron

= 3

=

=

b [1,
04_

T 11
=

- 9

.2”

]

Z 3+

@

=

h <

)

g 2

=

Configuration

Fig. 2. Schematic diagram demonstrating how the number of
metastable states increases for a 10-neuron chain as the width o of the
Gaussian neighborhood function is decreased. The horizontal axis is
a somewhat abstract “configuration” axis. Only half of the configura-
tion space is shown — each vertical line thus represents two configura-
tions in one of the classes of metastable states listed in Table 1. The
central line represents the class of ordered configurations. Class B of
metastable states branches off from the central line at o =~ 5.02;
classes C and D becomes metastable at o ~4.53

chain a maximum of 90 metastable configurations can
be found from (15). These configurations can be grouped
into the 25 classes which are listed in Table 1 along with
the range of o over which they are stable. All members
of a class are related to each other by two elementary
symmetry operations, i.e. by replacing all indices s by
(N — s + 1), or replacing all weight values w, by (1 — w,).

For large o, the perturbative part of (7) is convex,
and the only stationary states are the two ordered
stationary states, but as ¢ is lowered this term be-
comes concave and metastable configurations also be-
gin to appear. As o is reduced, the first set of
metastable states to appear are the ones in the class
labeled B in Table 1. In this configuration all of the
weights are ordered except for the two corresponding

-

39

to the neurons at the end of the chain, i.e.
(W) <w, <wj; -+ + <wy <w,). Three symmetrical meta-
stable states appear at the same value of o, namely with
(W1 > Wy > Wi > wg); (Wa<w <Wy <+ - <Wy<Wyg);
and (W, > w; > wy>-->we>wy). As o is lowered
further, more metastable states appear, with greater
disorder. Some metastable states, such as B, remain
metastable as ¢ is lowered, others are only stable over a
limited range of ¢. As o goes to zero for any of the
neighborhood functions considered, the conditions of
Theorem 1 do not hold, and expansion (15) is no longer
sufficient. Note that for the concave exponential func-
tion (8), a certain set of meatstable states exist for all
_}alues of o; some of their configurations are indicated in
able 1.

Table 1. Table of metastable states for a compressed Gaussian neighborhood function (7) (1 = 10—%). The range of values of ¢ over which a
metastable state exists in each given configuration was calculated from (15). Since this equation is no longer valid for small o, we only indicate
states which are metastable for values of o greater than 1.2. Configurations marked by a star (*) also contain metastable states for the concave

exponential neighborhood function (8)

Class Range of Number of Prototype
o Members -
2) P P4 PS5 F6) H #8) P9 H0)

A* o0-1.2000 2 1 2 3 4 5 6 7 8 9 10
B* 5.0245-1.2000 4 1 2 3 4 5 6 7 8 10 9
C* 4.5289-1.2000 2 2 1 3 4 5 6 7 8 10 9
D* 4.5289-4.3733 4 1 2 3 4 5 6 7 10 9 8
E 4.3733-1.2000 4 1 2 3 4 5 6 10 7 9 8
F* 4.0258-3.8473 4 2 1 3 4 5 6 7 10 9 8
G 4.0258--3.8473 4 1 2 3 4 5 10 6 9 8 7
H 3.8473-1.2000 4 2 1 3 4 5 6 10 7 9 8
I 3.8473-3.3954 4 1 2 3 4 5 10 9 6 8 7
J* 3.5132-3.3024 2 3 2 1 4 5 6 7 10 9 8
K 3.5132-3.3024 4 2 1 3 4 5 10 6 9 8 7
L 3.5132-3.3954 4 1 2 3 4 10 9 5 8 7 6
M 3.3954-1.2000 4 1 2 3 4 10 5 9 6 8 7
N 3.3954-3.3024 4 1 2 3 10 4 9] 8 7 6
o 3.3024-1.2000 2 3 2 4 1 5 6 10 7 9 8
P 3.3024--2.6862 4 2 1 3 4 5 10 9 6 8 7
Q 3.3024-2.6862 4 1 2 3 10 4 9 8 5 7 6
R 2.9889-2.7269 4 3 2 1 4 5 10 6 9 8 7
S 2.9889-2.7269 4 2 1 3 4 10 9 S 8 7 6
T 2.9889-2.7269 4 1 2 3 10 9 8 4 7 6 5
U 2.7269-1.2000 4 3 2 4 1 5 10 9 6 8 7
\' 2.7269-1.2000 4 2 1 3 4 10 9 8 5 7 6
w 2.7269-1.2000 4 1 2 3 10 9 8 7 4 6 5
X 2.6862-1.2000 4 2 1 3 4 10 5 9 6 8 7
Y 2.6862~-1.2000 4 1 2 3 10 9 4 8 5 7 6
Z 2.4489-2.0864 2 4 3 2 5 1 10 6 9 8 7
AA 2.4489-2.0864 4 3 2 1 4 10 9 5 8 7 6
AB 2.4489-2.0864 4 2 1 3 10 9 8 4 7 6 5
AC 2.4489-2.0864 4 1 2 10 9 8 7 3 6 5 4
AD 2.0864—1.2000 2 4 3 5 2 1 10 9 6 8 7
AE 2.0864-1.2000 4 3 2 4 1 10 9 8 5 7 6
AF 2.0864—1.2000 4 2 I 3 10 9 8 7 4 6 5
AG 2.0864-1.2000 4 1 2 10 9 8 7 6 3 5 4
AH* 1.8857-1.2000 4 4 3 2 1 5 10 9 8 7 6
Al* 1.8857-1.2000 4 3 2 1 4 10 9 8 7 6 5
AJ* 1.8857-1.2000 4 2 1 3 10 9 8 7 6 5 4
AK 1.8857-1.2000 4 1 2 10 9 8 7 6 5 4 3
AL* 1.2810~-1.2000 2 5 4 3 2 1 10 9 8 7 6
AM* 1.2810-1.2000 4 4 3 2 1 10 9 8 7 6 5
AN* 1.2810-1.2000 4 3 2 1 10 9 8 7 6 5 4
AO* 1.2810-1.2000 4 2 1 10 9 8 7 6 5 4 3
AP* 1.2810-1.2000 4 1 10 9 8 7 6 5 4 3 2

40

4 Rate of convergence

4.1 Ordering time

Let us define ordering time as the number of time steps
required for a given map to reach an ordered configura-
tion. In the case of the neighborhood functions (5)—(8),
for ¢ -0 or ¢ — oo the relative order of the weight
values is not affected by the update rule and ordering
time becomes infinite. For all other values of g, the
neighborhood function is a monotonously decreasing
function of the distance |r — s|, and the ordering time
must be finite. Thus there must exist an intermediate
value o,,, which corresponds to a minimum in order-
ing time. The minimal value and its location differ
between the neighborhood functions (5)—(8) and, in
fact, crucially depend on the shape of the neighbor-
hood function.

Figure 3a shows the average ordering time as a
function of ¢ for the Gaussian neighborhood function
(5) and an ensemble of 10-neuron Kohonen chains.
Note that time is scaled by ¢, since ordering time is
proportional to ¢ for ¢ < 1. Ordering time is minimal
for 6 9. For ¢ - o ordering time rises slowly and
approaches a logarithmic dependence. The standard
deviation of the number of time steps required (indi-
cated by the error bars) is small and approximately
constant. For small ¢ average ordering time rises very
rapidly and the standard deviation is large. The large
average ordering time with a large standard deviation is
due to the presence of metastable states, which appear
as the neighborhood function becomes progressively
more concave. Constant standard deviation, and a log-
arithmic increase in ordering time with o, is due to an
initial “contraction” phase of the network. Ordering in
the separate regimes of large and small o will be dis-
cussed in detail below.

Similar graphs result for chains and a larger number
of neurons N, but ordering time scales differently with
N in the regimes of large and small ¢. For large N
ordering time becomes a function of ¢/N for large o.
However, this is not true for small 6 where the presence
of metastable states causes ordering time to increase
faster than a linear function of N. Figure 3b shows that
the compressed Gaussian function gives results similar
to the Gaussian function, except that time of ordering
rises more rapidly as ¢ approaches zero.

For the case of the concave exponential (6) and
compressed concave exponential (8) neighborhood
functions, however, the presence of metastable states
for all values of o gives rise to much longer ordering
times; so much longer, in fact, that is was infeasible to
construct graphs similar to Fig. 3a, b. Ordering times
for independent simulations with identical parameters
spanned several orders of magnitude. Note that al-
though the compressed Gaussian and compressed con-
cave exponential functions differ only slightly (in some
function-space metric) they give rise to ordering times
which differ by several orders of magnitude. Hence the
shape of the neighborhood function, e.g. its concavity
or convexity, crucially influences the learning dynamics.
In the following sections we will discuss the different-
convergence phenomena in the regimes where
metastable states are, or are not present.

4.2 Contraction of weights

For convex functions, e.g. Gaussian functions with
large o, metastable states do not exist; the increase in
ordering time as o increases is completely due to the
increase in the amount of time spent in the initial
(random) configuration.

For o¢—+w, the change in weight differences,
AW,_, = (W,, - w.t)t+l - (W, - W,)‘, per iteration ap-
proaches zero as 1/ In the initial random configura-
tion the weights cover the unit interval completely,
weight differences are much larger than 1/¢? and no
rearrangement of weights can take place. Therefore
map formation must proceed in two steps: first the
range of weight values must shrink until Aw,, = 0(1/0?)
while maintaining the initial configuration, and then the
weights must rearrange to form an ordered mapping.

Figure 4 shows the average ordering time ¢, the time
t. spend in the initial configuration, and the rearrange-
ment time, ¢ —¢,, as a function of ¢ for the Gaussian
neighborhood function (5). The increase in ordering
time above o,,, is completely due to an increase in ¢,
which empirically fits well with the logarithmic function

t. = (1/)In(l/I.[A(r, 5))) (18)

where / denotes the length of the interval spanned by
the initial weight values and /, denotes the length of the
interval covered by the weights (critical length) after
which the first rearrangements occur (see Fig. 5). The

() Fig. 3. Ordering time as a function
of the width ¢ of the neighborhood
function, for a Gaussian (a) and a
“compressed” Gaussian (b) function
(A = 0.1). Ordering time is averaged
over 1000 independent simulations
for each data point. Error bars
represent one standard deviation.
Metastable states exist below

o = 5.0254 (dotted line)

50 10000 T

[}

[-}) '

E~ wif |

B 304 .

-g 100 ; X
2 204

é 10- 101 '

t

0 1 .

1 10 100 1000 10000 1 10

100 1000 10000

Width of the Neighborhood Function

20

Scaled Time
S

I 10 100 1000 10000
Neighborhood Function Width

Fig. 4. Ordering time (filled Squares), time spent in the initial configu-
ration (open squares), and rearrangement time (open circles) as a
function of o for a ten-neuron Kohonen chain with a Gaussian
neighborhood function

1500

KXX:

1000 -

500 A
q

Time in Initial Configuration

0 == o e A——
104 0.001 001 0.1 1
Initial Map Width

Fig. 5. The number of time steps spent in the initial configuration ¢,
is plotted against the length of the unit interval spanned by the weight
values in the initial map, / = max(jw, — w,|), for a 10-neuron Kohonen
chain and a Gaussian neighborhood function at several values of o.
The curves can be fit to the function t. = (1/e)In(l/L[A(r, 5)]), for large
I, where /, is an empirical constant which is a functional of h(r, s)

distance /, is a functional of A(r, s). Its dependence on ¢
determines the shape of the ordering-time curves for
large .

Based on the mistaken assumption that for a Gaus-
sian neighborhood function the number of “kinks” in
the map, N(1), could not increase in any time step, Geszti
et al. (1990) inferred that the rate-limiting step in the
ordering process was the elimination of the last “kink”
in the map. They modelled this process as a random
walk of the location of this kink in the chain of neurons,
but failed to correctly predict ordering time as a function
of o. We can now see why this approach fails. For large
o, the rate-limiting step is the initial contraction of the
range of the weights; after this step the ordering time is
independent of ¢. For small o, the effect of metastable
states on the ordering time must be considered.

4.3 Effect of metastable states

For the concave exponential functions (6) and (8), and
for the Gaussian functions (5) and (7) with small ¢, the
long ordering times combined with a large standard

41

deviation may be explained by the presence of
metastable states. In some simulations the map will get
“stuck’ in metastable configurations for a large number
of time steps, whereas in some simulations the al-
gorithm will, by chance, avoid the metastable states.

For the compressed neighborhood functions (7) and
(8), Theorem 1 may be used to predict when metastable
stationary states should be present. Their effect on the
ordering process may be observed in Fig. 6, which
shows the percentage of maps in a particular configura-
tion as a function of time for the compressed neighbor-
hood functions (7) and (8). In each plot the heavy
curve represents the percentage of maps, out of an
ensemble of 10,000 initially random maps, which have
reached one of the two ordered configurations, class A
in Table 1, at a given time. The thin solid curves
represent the percentage of maps in the configurations
of classes B—G defined in Table 1, and the dashed curve
which starts near 100 percent represents the total per-
centage of maps in all other configurations.

Figure 6a, b shows the population diagram for a
compressed Gaussian neighborhood function. With
large o (6 =1000) the only stationary states of the
mapping alborithm should be the ordered configura-
tions, and indeed we see in Fig. 6b that the mapping
remains in the initial random configurations (dashed
curve) until ¢ & 190 while undergoing the contraction of
weights discussed in the previous section. After ¢ ~ 190,
a rapid rearrangement of the weights takes place until
t ~ 220 when all maps in the ensemble have reached the
ordered configurations (heavy curve). At no time do the
populations of any of the non-ordered configurations
become significant.

The situation is quite different for the compressed
Gaussian (7) with small ¢ (0 = 3.5). Figure 6a shows
that for this small value of g, the period of contraction
of weights is not necessary, and rearrangement starts
almost immediately. After a very short time most of the
maps are trapped in one of the metastable configura-
tions — which for this value of o are of the form of
classes B, C, and E-L of Table 1.

Figure 6c, d shows similar diagrams for the com-
pressed concave exponential (8) with ¢ =3.5, and
o = 1000, respectively. For both of these neighborhood
functions metastable states exist in configurations B-D,
and F, and in a few other configurations which are not
plotted (see Table 1). As expected we do see a large
percentage of the maps trapped in these metastable
configurations, particularly configurations of the type B
and D, for intermediate times. For both of these neigh-
borhood functions, the percentage of maps in the or-
dered configurations approaches 100 percent as a
logarithmic function of time, but for each the average
ordering time is far greater than for the corresponding
convex Gaussians in Fig. 6a, b.

Plots of the compressed Gaussian (7) and com-
pressed concave exponential (8) functions against dis-
tance for ¢ =1000 appear quite similar at short
distances from the winner neuron. The concave expo-
nential may at first appear to be an even better choice
for the neighborhood function since it does decrease

S

100%
(a)

g8
&®

2
$

8
R

8
&

Fig. 6a~d. Percentage of ordered maps and

(=]
®

100% +

80% 1

.......

60% 1

40% 1

.
.
»
1
]
1
H
[
H
'
\

20% -

©¢ maps in disordered configurations, out of
300 an ensemble of 10,000 independent
simulations, is shown as a function of time
d) for a “compressed”™ Gaussian neighborhood
function (¢ =0.1, A = 10—*) with a g = 3.5,
b ¢ = 1000, and for a concave exponential
neighborhood function with ¢ o = 3.5, and
d ¢ = 1000. The curves for the disordered
configurations in classes B, C, D, E, F, and
G from Table 1 are denoted by the
symbols above. The dashed curve represents
the total percentage of maps in all other

.
-
e

configurations. Plot symbols are ommitted

Populations of Selected Configurations

vevew—eam—e ONl SOMeE curves to avoid clutter

o
R
ot

1 T
400 800 1200 1600 2000 O 400 800

Number of Time Steps

; = ==
1200 1600 2000

= Ordered - ClassB -#- ClassC —+ ClassD —#- ClassE = ClassF — Class G === Other

more rapidly at small distances from the winner neu-
ron. However, a 10-point one-dimensional array of
neurons can self-organize into a map of the unit inter-
val in fewer than 140 iterations with this Gaussian
neighborhood function, while the ordering time
with the concave exponential can be many orders of
magnitude longer.

Although Theorem 1 and its corollaries hold only
for the compressed functions, or for the Gaussian with
large o, we have empirically observed that Corollaries 1
and 2 correctly predict the existence or non-existence of
metastable states for all monotonically decreasing
neighborhood functions. Metastable states appear to
exist for any concave neighborhood function, and not
to exist for convex neighborhood functions. Figure 7a
and b shows populations diagrams for the (non-com-
pressed) Gaussian (5) function with ¢ =2 and 1000,
respectively, in the same format as Fig. 6. (Further

Populations

examples can be seen in Erwin et al. 1991.) By using a
convex function, such as a broad Gaussian, we can
optimize ordering time and avoid having the algorithm
get ‘“‘stuck” in a metastable state. Since the first
metastable state to appear as ¢ in lowered has the
weights wy and wy_, in reverse order in the input
space, i.e. configuration B in Table 1, we may find the
threshold value of sigma above which no metastable
state can exist by finding the lowest value of o for
which the neighborhood function between the three
neurons wy, wy_; and wy is convex (4). This threshold

value can be found from the relation

h(N,N) +h(1,N)=h(1, N~ 1) +h(N-1,N =2)
(19)

14+ HWN—-1)=H(N -2)+ H(1) (20)

by numerical methods.

LTS

Fig. 7. Percentage of ordered maps and
maps in disordered configurations as a
function of time for 10,000 independent
simulations for a Gaussian neighborhood
function with a ¢ =2 and b o = 1000.

¢ Symbols as in Fig. 6

ag

3000 40 8

Number of Time Steps

120 160 200

s E

1me

.
.

100 +

Ordering T

104

Standard Deviation of

1

10 100 000 10000
Width of the Neighborhood Function

Fig. 8. The standard deviation of the ordering time plotted against
o for a 100-neuron Kohonen chain. For large o the standard de-
viation of the ordering time approaches a constant value. At interme-
diate values, the standard deviation of the ordering time is inversely
proportional to o. For smail values of ¢ the ordering time and its
standard deviation increase rapidly. The dotted line shows the calcu-
lated value of ¢ ~ 43.214, below which metastable states should exist

Further evidence that metastable states arise for
concave functions even when the expansion in (15) does
not hold can be seen in Fig. 8. In this figure the
standard deviation of the ordering time is plotted
against ¢ for a 100-neuron Kohonen chain. For inter-
mediate values of o, the standard deviation of the
ordering time is inversely proportional to &; however
for small values of g, the ordering time, and its stan-
dard deviation both increase rapidly. The value of ¢
which marks the transition between these two behaviors
appears to correspond to ¢ & 43.214 (shown as a dot-
ted line in Fig. 8) below which value the neighborhood
function becomes concave. The same behavior is ob-
-served in maps with a different number of neurons.

The earliest form of the SOFM algorithm employed
a step function (3) for the neighborhood function (Ko-
honen 1982a, b, 1988). Later it was discovered that
gradually decreasing functions, such as Gaussians, give
rise to faster convergence of the algorithm in practical
applications (e.g. Ritter et al. 1989; Lo and Bavarian
1991). Since it resembles the shape of a narrow Gaus-
sian function, we might expect the step neighborhood
functio to lead to metastable stationary states which
result in the longer ordering times. However, Theorem
1 cannot be used to either confirm nor deny the exis-
tance of metastable stationary states in this case. Since
the low-order terms in the expansion (15) evaluate to
zero for many values of the parameter x, the higher-or-
der terms in the expansion cannot be neglected. Evi-
dence for the existence of metastable states may be
obtained by making plots such as those shown in Figs.
6 and 7. Such graphs reveal that the ordering process
follows a similar time course to that followed when
metastable states are present. After a short period of
contraction, the maps quickly rearrange so that the
majority are in one of a few configurations, at least
some of which probably contain metastable states. The
configuration which holds the greatest number of non-
ordered maps as the majority of maps reach the ordered
configuration is the configuration E of Table 1.

43

5 Summary and discussion

The one-dimensional SOFM algorithm itself is of little
practical importance. However, a thorough understand-
ing of its properties is a necessary first step towards
understanding the higher-dimensional versions of the
algorithm which are used in applications. In this paper
and its companion (Erwin et al. 1992) we have focused
on the simplest form of the SOFM algorithm. This
enabled us to provide exact results, such as a proof of
ordering for general monotonically decreasing neigh-
borhood functions, and a method of describing the
behavior of the algorithm in terms of a set of energy
functions. However, our results also reveal how compli-
cated a full description of the SOFM algorithm must
be. We proved that the algorithm, even in the one-di-
mensional form, cannot be described as following a
gradient descent on any energy function. The dynamics
of the algorithm must instead be described using a set
of energy functions, which can be very complicated for
the multi-dimensional case.

In this paper we have proven analytically that, for
the one-dimensional SOFM algorithm, the *“shape” of
the neighborhood function, in particular its “convex-
ity” determines the presence or absence of non-ordered
stationary states. Ordering time may vary by orders of
magnitude depending on the type of neighborhood
function chosen. Broad, convex neighborhood func-
tions, such as broad Gaussians, lead to the shortest
ordering times. Narrow Gaussian functions, step func-
tions, and other concave functions all allow non-or-
dered stationary states which delay the convergence of
the algorithm on average. Other, more subtle properties
of the neighborhood function which we have not stud-
ied may also turn out to be useful for efficient multi-di-
mensional map formation. For example, Geszti (1990)
has suggested that anisotropic neighborhood functions
should reduce the ordering time of one- and multi-di-
mensional feature mappings.

In this paper we have shown that the Gaussian
functions, which are the most commonly used neigh-
borhood functions, give best results if the width of the
Gaussian function is large enough to avoid the presence
of metastable states. For the one-dimensional case the
value of ¢ below which the first metastable state ap-
pears may be found from the relation (20). An optimal
value of o exists, which is slightly higher than this
threshold value. It is difficult to give an equation for the
optimal value of ¢ for a Gaussian function, since the
two competing effects, due to the presence of
metastable states and the contraction of weights, scale
differently with the number of neurons. As a quick
approximation, the value of ¢ which gives the optimal
ordering time is of the order of the number of neurons.
It is probably wise to employ similar guidelines in
choosing neighborhood functions in multi-dimensional
applications.

From our discussion of ordering time for the one-
dimensional algorithm, we can understand the empiri-
cally observed fact that in practical applications with
high-dimensional forms of the algorithm, ordered maps

44

may often be formed more quickly by employing a
neighborhood function which begins with a large
width which is slowly reduced. Starting with a broad
neighborhood function allows rapid formation of an
ordered map, due to the absence of metastable station-
ary states. After the ordered map has formed, the
width of the neighborhood function may be reduced
until the map expands to fill the input space more
fully.

Acknowledgements. This research has been supported by the Na-
tional Science Foundation (grant number NSF 90-15561) and by the
National Institute of Health (grant number P41RR05969). Financial
support to E. E. by the Beckman Institute and the University of

- Illinois, and of K. O. by the Boehringer-Ingelheim Fonds is grate-

fully acknowledged. The authors would like to thank H. Ritter for
stimulating discussions.

Appendix A: derivation of the stationary state equation

To derive the stationary state Eq. (15), we set V,=0
using the definition of V¥, in (13). Inserting

A(x, y) =1—Ag(x,y), and (21)
u, =124+ 20, + i%¢, (22)

into (13) and keeping only terms up to order 12, we find
0= [(&(1, x) — &N, x))/4 - 26,]
N-1
+12{ Zz ©6,.1—-6,_))
y=-
+(6,-,+20,+0,,,—40,)/4
+ (6, +6,—46,)6, + 6, — 4(1, x))
+§(l’ x)(el + 02) - 4¢x]/4
+[8(N, x)6, — (O — 1 + 0y)?/4

+6,0n +0y_1) — ¢x]}

+ O(43)
= A[(&(1, x) — &(N, x))/4 —26,]

+ A%0,(4(1, %) + &N, X)) — 2¢,] + 0(A%)
So from the first-order term we get
0. = (4(1, x) — §(N, x))/8 , (23)
and from the second-order term we get
¢, =0.(4(1, x) + (N, x))/2

=(&(1, x)> - &N, x))/16.. (249

Inserting this into (22) gives the result (15). Note that
the third order terms (omitted here) cannot be written
in such a simple form.

Appendix B: proof that all stationary states
are ordered for convex g(r, 5)

From u; <u,<---<uy and (15) we can conclude
that the following relationship must hold for the

values of g(x, y)

< <§(11N) —gA(N’N) (25)
Now assume that g(x, y) has the following properties:
8(x, y) =8(y, x) = G(|P(x) - 2(y)|), and G(|x|) is
monotonically increasing from zero with |x|. Also as-
sume that

£(z, x) > 8(z, y) + 8(, %), (26)

will hold if and only if neuron wp,,, is located between
neurons wpy,y and wg, in the neural chain, i.e. if

12(2) = 2(x)| > |2() - 2(3)|, |P(») — P(x)| . (27
Condition (26) may also be written as (1 + A(z, X)) <
(A(x, y) + A(y, x)) which together with (27) is our
definition of convexity (4).

From (25) we know that for any x, (§(1, 1) —8&(N, 1)
<(§(19 X) "'ﬁ(N, x)) < (é(l, N) _gA(Ny N))a but since
&(1,1) = &N, N) =0, we may write
8(x, N) <g(N, 1) + £(1, %), and (28)
8(1, x) <g(1, N) + (N, x) . (29)

From (28) and (26) we known that 2(1) is not located
between #(N) and #(x), and from (29) and (26) we
know that #(N) is not located between 2(1) and
P(x). Therefore we may conclude

P(x) is located between 2(1) and P(N), for all
l<x<N. (30)

From (25) we know that for all x’ > x,
&(1, x) — (N, x) <g(1, x") — §(N, x’), or rather
8(1, x) +4(N, x’) <&(1,x) +gWN,x). @31

From (30) we know that both #(x) and P(x’) are
located between 2(1) and #(N). Now suppose that
P(x") were between P(1) and P(x). Then it follows
from the assumption (26) that '

8(1, x) > £(1, x") + &(x, x)=4(1, x) > #(1, x’), and
&(x’s N) > §(x, x") + g(x, N)=g(x’, N) > §(x, N) , thus
&(1,x) + &(x’, N) > (1, x') + g(x, N) . (32)

Byt this contradicts (31). Therefore our supposition
that 2(x’) is located between (1) and #(x) is incon-
sistent with the assumption that the neighborhood
function be convex. We conclude that for a convex
neighborhood function

P(x’) is located between P(x) and 2(N),

Vx<x'<N. (33)

Conditions (30) and (33) together imply that either
PN <P(<-<PN) or PN)>PQ2)>-+>
P(N). Therefore the only stationary states for a
convex neighborhood function are the two states
where the weights are ordered in either ascending or
descending order.

References

Erwin E, Obermayer K, Schulten K (1991) Convergence propertics of
self-organizing maps. In: Kohonen T et al. (eds) Artificial neural
networks, vol I, North Holland, Amsterdam, pp 409-414

Erwin E, Obermayer K, Schuiten K (1992) Self-organizing maps:
ordering, convergence properties and energy functions. Biol Cy-
bern (this issue)

Geszti T (1990) Physical models of neural networks. World Scientific,
Singapore

Geszti T, Csabai I, Czaké F, Szakics T, Serneels R, Vattay G (1990)
Dynamics of the Kohonen map. In: Statistical mechanics of
neural networks: Proceedings, Sitges, Barcelona, Spain, Springer,
Berlin Heidelberg New York, pp 341-349

45

Kohonen T (1982a) Analysis of a simple self-organizing process. Biol
Cybern 44:135-140

Kohonen T (1982b) Self-organized formation of topologically correct
feature maps. Biol Cybern 43:59-69

Kohonen T (1988) Self-organization and associative memory.
Springer, New York Berlin Heidelberg

Lo ZP, Bavarian B (1991) On the rate of convergence in topology
preserving neural networks. Biol Cybern 65:55-63

Ritter H, Schulten K (1986) On the stationary state of Koh-
onen’s self-organizing sensory mapping. Biol Cybern 54:99-
106

Ritter H, Martinetz T, Schuiten K (1989) Topology conserving maps
for learning visuomotor-coordination. Neural Networks 2:159—
168

