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Abstract

Background: The exchange of metabolites and the reprogramming of metabolism in response to shifting
microenvironmental conditions can drive subpopulations of cells within colonies toward divergent behaviors.
Understanding the interactions of these subpopulations—their potential for competition as well as
cooperation—requires both a metabolic model capable of accounting for a wide range of environmental
conditions, and a detailed dynamic description of the cells’ shared extracellular space.

Results: Here we show that a cell’s position within an in silico Escherichia coli colony grown on glucose minimal agar
can drastically affect its metabolism: “pioneer” cells at the outer edge engage in rapid growth that expands the
colony, while dormant cells in the interior separate two spatially distinct subpopulations linked by a cooperative form
of acetate crossfeeding that has so far gone unnoticed. Our hybrid simulation technique integrates 3D
reaction-diffusion modeling with genome-scale flux balance analysis (FBA) to describe the position-dependent
metabolism and growth of cells within a colony. Our results are supported by imaging experiments involving strains
of fluorescently-labeled E. coli. The spatial patterns of fluorescence within these experimental colonies identify cells
with upregulated genes associated with acetate crossfeeding and are in excellent agreement with the predictions.
Furthermore, the height-to-width ratios of both the experimental and simulated colonies are in good agreement over
a growth period of 48 hours.

Conclusions: Our modeling paradigm can accurately reproduce a number of known features of E. coli colony
growth, as well as predict a novel one that had until now gone unrecognized. The acetate crossfeeding we see has a
direct analogue in a form of lactate crossfeeding observed in certain forms of cancer, and we anticipate future
application of our methodology to models of tissues and tumors.

Keywords: Flux balance analysis, Reaction-diffusion modeling, Metabolic cooperativity, Crossfeeding,
Colony modeling

Background
A cell’s metabolic behavior is tightly coupled to its local
microenvironment; with it the cell exchanges both food
and waste, and from it the cell detects useful information
such as shifts in substrate availability. Cells have evolved
complex biochemical networks in order to respond to
environmental changes, including regulatory systems that
enable them to feed on a diverse range of substrates. For
diffuse populations living in well-stirred conditions the
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depletion of food and accumulation of metabolic waste
can be slow and spatially uniform, meaning that the
behavior of any given cell is largely independent of the
others. In contrast, within a colony the close proximity of
nearby cells competing for the same diffusing resources
can create steep chemical gradients capable of signifi-
cantly altering each cell’s metabolism. Under these con-
ditions, the behavior of neighboring cells can be strongly
interdependent [1], and understanding their interactions
requires a detailed picture of both the shared environment
and the cells’ metabolic responses to it.
Several approaches have been developed in the past

to analyze the intercellular interactions of large num-
bers of microbes in close spatial proximity (for a review,
see [2]). In general, these models have employed highly
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simplified kinetic descriptions of nutrient uptake and cell
growth. Despite the numerous successes of these meth-
ods, oversimplification—especially of complex cellular
networks like metabolism—can fail to capture impor-
tant collective behavior. E. colimetabolism alone involves
thousands of reacting substrates and enzymes, and while
many individual metabolic pathways are well character-
ized, understanding how these pathways interact on a
systems level remains a challenge. Flux balance analysis
(FBA) [3,4], which uses linear programming techniques to
find the set of reaction fluxes that optimize growth, has
proven to be a powerful tool for investigating the genome-
scale metabolism of bacteria and other organisms under
different environmental conditions and in different gene-
expression states [5,6]. Recently, a method using FBA
in both a spatially- and temporally-resolved manner was
described in [7]. This approach made iterative use of the
GPU-accelerated Lattice Microbes software [8] to model
the diffusion of substrates throughout a cluster of fixed
cells, and FBA to model each individual cell’s metabolism.
While refinements to the method predicted the emer-
gence of a large region of anaerobically-growing cells
within a modeled E. coli colony and significant acetate
production [9,10], the single molecule resolution of the
method made it better suited to studying the interactions
of a small number of cells (∼ 100) in low concentrations
of metabolites.
In order to simulate larger and denser colonies over

long timescales with higher metabolite concentrations, we
have developed a coarse-grained method in which both
cell density and substrate concentrations are discretized
to a cubic lattice. We model the 3D diffusion, uptake,
and efflux of substrates within and around a growing
colony of E. coli (see Figure 1) by coupling a reaction-
diffusion simulation with a genome-scale flux balance
metabolic model. This technique, which we call 3DdFBA
(3-Dimensional dynamic Flux Balance Analysis), offers
powerful insight into how spatial localization within
microbial colonies can impact metabolism at the level of
individual pathways and reactions. Our simulations reveal
how steep glucose and oxygen gradients emerge within
the modeled colonies and give rise to four well-defined
metabolic phenotypes—a fast-growing ring of cells near
the edge making use of the TCA cycle and electron trans-
port chain, a large region of nearly dormant cells in the
colony interior, and a pair of spatially distinct crossfeeding
subpopulations comprised of acetate-producing fermen-
tative cells near the colony base and acetate-consuming
cells higher up. Imaging experiments involving fluores-
cently labeled E. coli strains strongly support these predic-
tions. We also find that the spatial distribution of growth
rates within the simulated colonies lead to 3D cross-
sections and a linear radial expansion that agree with
experimental results.

Results and discussion
We simulated 48 hours of E. coli colony growth on an
agar plate containing M9 minimal medium supplemented
with 2.5 g l−1 glucose and trace elements. The E. coli K-12
MG1655 strain was modeled using the iJO1366metabolic
reconstruction [4]. The simulations were initialized with
the equivalent volume fraction of a single cell in the center
of an approximately 3.2 × 3.2 mm agar surface of depth
approximately 1 mm. Oxygen was allowed to diffuse into
the colony directly from the air as well as through the
agar, while glucose was allowed diffuse through the agar
alone. The M9 salts and trace elements were not assumed
to be growth-limiting, and so their concentrations were
not modeled explicitly in the 3D spatiotemporal simula-
tion, but they were allowed to be freely taken up by the
cells of the colony. Expecting significant fermentation on
the interior of the growing colony [10], preliminary FBA
calculations were performed in order to anticipate which
fermentative products may play an important role in the
cells’ collective metabolism. Formate, acetate, and ethanol
were all predicted to be produced in significant amounts,
with formate being produced at roughly twice the rate of
acetate and ethanol. Succinate was predicted to be pro-
duced at roughly 1% of the acetate production rate, while
lactate was not predicted to be produced by the mod-
eled cells at all. Because neither formate nor ethanol are
used by wild-type E. coli as a carbon source and because
succinate was produced in such small quantities, the only
fermentation product that was ultimately tracked in the
spatiotemporal model was acetate. Dirichlet boundary
conditions were imposed for the simulated oxygen, glu-
cose, and acetate. The glucose concentration on the walls
and floor of the agar was held fixed at 2.5 g l−1, while the
oxygen concentration on all boundaries was fixed at 260
μM (the dissolved concentration of oxygen in water under
standard laboratory conditions, chosen to approximate
the adsorbtion of oxygen as a purely diffusive process).
The acetate concentration on the boundaries was fixed at
0.0, ensuring that all acetate within the simulation was cre-
ated by the cells themselves. There are no free parameters
in our simulations—all are either taken from the literature
or fit to experimental results. All parameters used in our
calculations are summarized in Table 1.

3DdFBAmethodology
A major result of this study was the development of
the 3DdFBA methodology used to perform the simu-
lations; it is outlined in the pseudocode provided in
Algorithm 1 and in Figure 1. Both the colony and its sur-
rounding environment are discretized to a 3D lattice (see
Figure 1A). Chemical species—represented by a lattice of
local concentrations—can diffuse throughout the simu-
lation volume and be taken up or produced by the cells
of the colony. Within the colony, the number of cells in
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Figure 1 s3DdFBAmethodology at a glance. (A) Cells, agar, and air are discretized to a 3D cubic lattice. (B) Substrate diffusion is accounted for
using a seven-point stencil finite difference scheme. (C) Substrates can be passively or actively taken up by the cells. Those that cannot passively
penetrate cell membranes experience hindered diffusion around cells in the extracellular space (D) Flux balance analysis predicts substrate usage
and cell growth. (E) Cell volume grows exponentially until it surpasses a maximum volume fraction, ρmax, at which time intercellular forces create
pressure that pushes cell volume outward into neighboring lattice sites of lesser volume fraction. (F) Cells of different species or in different
regulatory states can be simultaneously simulated. Those in different states can transform back and forth at rates that can depend on up to two
local substrate concentrations, (φm and φn , or φo and φp).

a given lattice site is expressed in terms of a local vol-
ume fraction, ρ, which can range continuously up to some
user-defined ρmax. This ρmax represents themaximum cell
volume fraction capable of being packed into a given lat-
tice site before intercellular forces begin to shove some
of the cells outward into neighboring sites. FBA is used
in order to predict how the cells in each lattice site will
respond to the concentrations of substrates available to
them—they may take up some of one substrate and pro-
duce some of another, and grow at some rate as a result.
These predictions are used to update the local substrate
concentrations and the local cell volume fractions. Cells
are allowed to be of different species and/or in different
regulatory states. These different cell types or states may

use different flux balance models or the same model but
with different constraints imposed (when, for example,
simulating cells with certain genes “knocked-out”).
Our implementation exploits a natural time-scale sep-

aration between the rate at which small molecules like
glucose or oxygen diffuse and the rate at which a colony
grows. Because the physical size, shape, and regulatory
state of a colony changes relatively slowly, fairly long time
steps, tgrow, can be safely taken between updates. These
time steps can be on the order ofminutes (for fast-growing
microbes like E. coli) to hours (for slow-growing microbes
like Methanosarcina acetivorans [18]). Substrate concen-
tration profiles, on the other hand, can approach steady
state in as short as a few seconds or less. This means
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Table 1 Parameters used in our 3DdFBA simulations

Parameter Description Value Units Reference or rationale

Dglc, aq Diffusion coefficient of glucose in water 7.8 × 10−10 m2s−1 [11]

DO2, aq Diffusion coefficient of O2 in water 2.6 × 10−9 m2s−1 [11]

Dace, aq Diffusion coefficient of acetate in water 1.2 × 10−9 m2s−1 [12]

Dglc, agar Diffusion coefficient of glucose in 1.5% agar 7.4 × 10−10 m2s−1 [11]

DO2, agar Diffusion coefficient of O2 in 1.5% agar 2.5 × 10−9 m2s−1 [11]

Dace, agar Diffusion coefficient of acetate in 1.5% agar 1.1 × 10−9 m2s−1 [11,12]

λ Lattice spacing 10.0 μm λ < 40 μm, the experimental O2 penetration depth ([13])

Lx Simulation volume x dimension 3.2 mm

Ly Simulation volume y dimension 3.2 mm

Lz Simulation volume z dimension 1.92 mm

Hagar Agar height 0.96 mm

�τ Diffusion, Active Substrate Uptake, FBA time step 1 × 10−3 s �τ � λ2

2DO2, aq

tss Concentration profile steady state relaxation time 1 s see Expanded View Section 1

tgrow Time between growth events 60 s see Expanded View Section 1

[O2]air O2 concentration in the air 2.6 × 10−4 M (computed assuming Henry’s law [14])

[O2]agar, boundary O2 concentration fixed on the boundary of the agar 2.6 × 10−4 M (assuming agar and air in equilibrium)

[ glc]agar, boundary Glucose concentration fixed on the boundary of the agar 1.39 × 10−2 M

ρmax Maximum volume fraction of cells within a colony 0.65 dimensionless [15]

�ρ Colony expansion cutoff 0.01 dimensionless

mcell Mass of a single E. coli cell 2.58 × 10−13 g [6]

Vcell Volume of a single E. coli cell 1 × 10−18 m3 [6]

vmax, glc uptake Maximum uptake rate for glucose 10.4 mmol gDwt−1 hr−1 fit to data in [16]

km, glc uptake Michaelis constant for glucose uptake 0.37 mM fit to data in [16]

vmax, ace uptake Maximum uptake rate for acetate 16.0 mmol gDwt−1 hr−1 [17]

vmax, O2 uptake Maximum uptake rate for oxygen 31.8 mmol gDwt−1 hr−1 (rate required to aerobically metabolize
glc and ace at their max uptake rates)
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that these concentration profiles always remain effectively
at steady state with respect to the growth of the colony.
This is important for two reasons. First, the assumption
that FBA is a valid description of the behavior of a cell
hinges on the cell and its environment being at steady
state. Second, and more practical, it allows for significant
simulation speedup. Simulation of the diffusion, uptake,
and utilization of substrates can be performed for rela-
tively short times, tss � tgrow, until they come to steady
state, and the results can be used to project forward until
the next colony size update. Our own simulations used
values of tgrow = 60 s and tss = 1 s in order to ensure
moderate colony growth between updates and ample time
for the concentration profiles of all simulated chemical
species to relax to steady state(see Table 1 and Additional
file 1: Section 1.1).
Substrate profiles are brought to steady state through

the iterative application of the code’s Diffusion, Active
Substrate Uptake, and FBA kernels (see below for details).
The Diffusion kernel employs a seven-point stencil finite-
difference scheme to account for the diffusion of sub-
strates between lattice sites (see Figure 1B). The Active
Substrates Uptake kernel allows for substrates known to
be actively imported by the cells of each lattice site to be
taken up in accordance with assumed Michaelis-Menten
kinetics (see Figure 1C). Finally the FBA kernel is used to
predict how much of each substrate the cells of each lat-
tice site produce or consume, as well as those cells’ average
growth rate (see Figure 1D). Steady state FBA solutions
have been used in the past in iterative time-stepping ways
similar to this [19-21], but never with the full 3D spatial
resolution described here.
Once brought to steady state, the substrate concentra-

tions and cellular growth rates are used in subsequent
colony size and regulatory state calculations. This is done
by application of the Growth, Expansion, and Regula-
tion kernels (again, see below for details). The Growth
kernel updates the values of the local volume fraction
ρ within the colony in accordance with an exponential
growth law and the local growth rates predicted by FBA.
Then, in the event that some lattice sites contain values
of ρ greater than ρmax, the Expansion kernel iteratively
redistributes some of these sites’ excess volume fractions
to neighboring sites with lesser volume fractions until
every site falls within a small cutoff of ρmax. This pro-
cess effectively expands the colony (see Figure 1E) and
ensures that the cell density and intercellular pressure
remain relaxed throughout the colony. Finally, the Regu-
lation kernel updates the regulatory states of the cells in
each lattice site in accordance with assumed first-order
kinetics. Because the cells’ regulatory state can be strongly
influenced by environmental factors, the local rates at
which they change are assumed to be functions of the local
substrate concentrations (see Figure 1F).

Algorithm 1: Pseudocode for the 3DdFBA simulations
presented in this paper.
Data: Simulation parameters, FBA solution table for

each cell type
Result: Substrate concentrations, fluxes, biomass and

growth rates
initialization;
t ← 0;
while t < Tmax do

***bring substrate profiles to
steady state***
τ ← 0;
while τ < tss do

for s ∈ lattice sites do
Diffusion Kernel;
for c ∈ Cell Types do

Active Substrate Uptake Kernel;
FBA Kernel;

end for
end for
τ ← τ + �τ ;

end while
***grow colony, update regulatory
states***
for s ∈ lattice sites do

Growth Kernel;
end for
whilemax(ρ) > ρmax + �ρ do

for s ∈ lattice sites do
Expansion Kernel;

end for
end while
for s ∈ lattice sites do

Regulation Kernel;
end for
t ← t + tgrow;
write output to file;

end while

Diffusion kernel
Each lattice site in the simulation volume is specified as
one of three types: air-type, agar-type, or cell-type (see
Figure 1A). The air-type lattice sites behave essentially as
a source for gaseous substrates like oxygen. The concen-
tration of a substrate in an air-type site is fixed at the
concentration of the dissolved gas in water at standard
laboratory temperature and pressure. This choice approx-
imates the adsorption of particles from air to agar (or cells)
as a simple diffusive process. In effect, it is assumed that
right at the boundary between the air and the agar or
cells there exists a thin film of water that remains at equi-
librium (in terms of the forward and reverse adsorbtion
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reactions) with the air above it. The oxygen concentra-
tion in the air-type sites was computed using Henry’s law
to be 260 μM (assuming the partial pressure of O2 to
be 0.2 atm and a Henry’s law constant of 0.0013 mol l−1

atm−1 [14]). Diffusive flux is allowed from the air-type
sites into the agar- and cell-type sites, but it is disallowed
from the cells and agar into the air, ensuring that aque-
ous substrates like glucose and acetate cannot escape. The
cell- and agar-type lattice sites are allowed to diffusively
exchange substrates, but their local diffusion coefficients
differ. In agar, substrates diffuse at rates taken from the
literature, which for glucose and oxygen in 1.5% agar, are
approximately 95% of their diffusion rates in water (see
Table 1 and [11]). The diffusion rates of substrates in cell-
type sites depend on the local cell volume fraction and the
substrate. Oxygen, for example, readily diffuses through
cell membranes [22], and is assumed to diffuse at a simi-
lar rate through cells as it does through water. Conversely,
glucose, which cannot diffuse passively through the cell
membrane [23], is assumed to have to diffuse around
cells, and thus experiences a crowded environment and
correspondingly slowed diffusion (see Figure 1C). The
effective diffusion rates of these hindered substrates are
given approximately by [24]:

Deff(x, t) = 1 − ρ(x, t)
1 + ρ(x,t)

2
D (1)

where D is the diffusion rate of the substrate in water and
ρ(x, t) is the instantaneous local cell volume fraction at
lattice site x.
Among the cell- and agar-type lattice sites, diffusion

is modeled using a seven-point stencil finite difference
approach. The extracellular concentration of a substrate φ

in site i is updated as:

φi(τ + �τ) = φi(τ ) + �τ

λ

∑
j
Jφ,j→i(τ ) (2)

where λ is the lattice spacing, j indexes over the 6 lattice
sites neighboring site i, and Jφ,j→i represents the diffusive
flux across the boundary seperating sites j and i. This flux
is computed as:

Jφ,j→i(τ ) = Dφ,j(τ ) + Dφ,i(τ )

2
φj(τ ) − φi(τ )

λ
(3)

where Dφ,i and Dφ,j are the diffusion coefficients for the
substrate in sites i and j, respectively. Here it is important
to note that we have averaged the diffusion coefficients for
sites i and j rather than using one or the other; this helps
to ensure continuity when Dφ,i �= Dφ,j.
A lattice spacing of 10 μm was used in our simulations.

This was chosen in order to resolve the oxygen profile
within the colony which is known to fall to nearly zero
within approximately 40 μm from the surface [13]. This,
coupled with the diffusion rate of oxygen—the fastest

diffusing species in the simulation—set a maximum the-
oretical value for �τ ≤ λ2

2DO2
≈ 2 × 10−2, although a

more conservative value of 1 × 10−3 s was used in order
to ensure convergence.

Active substrate uptake kernel
As the cells of the colony actively import glucose,
the local extracellular and intracellular glucose concen-
trations change. This process is assumed to be gov-
erned by a Michaelis-Menten-type chemical reaction (see
Figure 1C):

φext(x, t + �τ) = φext(x, t) − k(x, t)�τ

φint(x, t + �τ) = φint(x, t) + k(x, t)�τ
(4)

where φext(x, t) and φint(x, t) are the instantaneous local
concentrations of the extracellular and intracellular forms,
�τ is the time step, and k(x, t)—the instantaneous local
uptake rate—is given by:

k(x, t) = ρ(x, t)
Ekcat
Vcell

φext(x, t)
km + φext(x, t)

(5)

Michaelis-Menten kinetics has been applied in the past
to the enzymatic uptake of substrates by cells (beginning
as early as 1949 [25]). In the above expression, ρ(x, t) again
represents the instantaneous local cell volume fraction, E
represents the number of enzymatic transporters on a cell
membrane, Vcell represents the volume of a cell, kcat rep-
resents the enzyme turnover rate, and km is the so-called
Michaelis constant for the reaction. In the case of glu-
cose, the parameters Ekcat

mcell
and km were fit to experimental

measurements [16], yielding 10.40 mmol gDwt−1 hr−1 (a
value in close agreement with a similar analysis in [26]
and the default value in the iJO1366metabolic model) and
0.370 mM, respectively. Literature values for the average
dry weight, mcell, and volume, Vcell, of a single cell were
then used to transform Ekcat

mcell
to Ekcat

Vcell
(see Table 1).

Flux balance analysis kernel
FBA is used to model substrate utilization and production
in the simulation. The maximum instantaneous specific
(or mass-normalized) uptake rate, vmax, of a given sub-
strate by a cell in lattice site x during the time interval �τ

is assumed to be given as:

vmax(x, t)=
⎧⎨
⎩

φ(x, t) Vcell
mcell�τ

if φ is passively transported into the cell
φint(x,t)
ρ(x,t)

Vcell
mcell�τ

if φ is actively transported into the cell

(6)

This simply requires that during the time interval �τ

the cells have access only to the substrate lying within
their volume—φ(x, t)Vcell for passively diffusing sub-
strates (assuming the substrate is distributed uniformly
throughout the lattice site), and φint(x,t)

ρ(x,t) Vcell for actively
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imported substrates (where the factor of ρ(x, t)−1 reflects
the fact that φint is known to be confined entirely within
the local cells). Constraints of this type are calculated for
each metabolite that is tracked in the spatially-resolved
simulation (see Figure 1C), and used with a genome-
scale flux balance metabolic model in order to pre-
dict the behavior of the cells in each lattice site (see
Figure 1D). The local substrate concentrations are then
updated accordingly as:

φ(x, t + �τ) = φ(x, t) − vFBA(x, t)
mcell�τ

Vcell
ρ(x, t) (7)

where vFBA(x, t) represents the exchange flux for the sub-
strate predicted by FBA. The second term on the right
hand side can be thought of as the product of the pre-
dicted uptake rate per cell, vFBA(x, t)mcell, the number-
density of cells in the lattice site, ρ(x,t)

Vcell
, and the time

step.
Because simulations can easily involve on the order

of 1 million cell-type lattice sites (ours involve approxi-
mately 1.6 × 106), and because each site requires frequent
updates to its substrate concentrations (ours are updated
around 1,000 times per simulated second), a single second
of typical simulation time can require on the order of 109
or more individual FBA solutions. Many of these will be
similar to each other; the behaviors of cells in adjacent lat-
tice sites or in the same site in subsequent time steps will
often not change appreciably, meaning that the same or
nearly the same solution can be used over and over again,
avoiding the need for redundant FBA solving. To that end
we have approximated the local instantaneous FBA solu-
tion in a given lattice site using a precomputed lookup
table (see Additional file 1: Section 1.2 for details).

Cell growth kernel and colony expansion kernel
The local instantaneous growth rates, g(x, t), predicted by
FBA are used to update the volume fraction in each lattice
site in accordance with an assumed exponential growth
law:

ρ(x, t + tgrow) = ρ(x, t)eg(x,t)tgrow (8)

The volume fraction within a lattice site is allowed to
increase until it surpasses ρmax. At this point the site
is considered “over-filled,” and the force of the cells in
the lattice site pushing against each other create an out-
ward pressure through each of the lattice site’s six walls
(see Figure 1E). Because the growth of the colony is slow,
the cells are assumed to have ample time to redistribute
themselves in responce to these intercellular forces, and
as a result the cell volume fraction is assumed to remain
relaxed throughout the colony at all times. This relaxation
is performed immediately after application of the Growth
kernel and involves the iterative movement of cell vol-
ume from over-filled sites to neighboring sites with lower

volume fractions until the highest volume fraction in the
entire colony is within some small user-defined cutoff,�ρ,
of ρmax (see Additional file 1: Figure S1). The amount of
volume fraction, ρi→j, moved from lattice site i to a neigh-
boring site j in a single iteration is proportional to the
difference in the sites’ respective degrees of over-filling:

ρi→j = 1
12

[max(0, ρi−ρmax)−max(0, ρj−ρmax)] (9)

Here, the factor of 1
12 = 1

2 × 1
6 accounts for the fact that

each lattice site has six faces through which cell volume
can be moved, and the factor of 1

2 ensures convergence.
In cases where ρi→j < 0, cell volume is moved from site j
to site i. When multiple cell types are present in the same
lattice site, the total volume fraction is used to determine
howmuch cell material is moved across each face, and this
is then divided up among the cell types according to their
relative fractions.
For spherical cells, themaximum packing fraction, ρmax,

might be set to approximately 0.74—the close-packing
fraction of uniform spheres. The simulations presented
here use the value 0.65 (accounting for approximately
650 cells per lattice site) in accordance with a model
of the growth of colonies of rod-shaped Salmonella
typhimurium [15].

Regulation kernel
Multiple different cell types can to be simulated simulta-
neously. These can be either different species or different
regulatory states of the same species. In the latter case,
the cells’ regulatory state is allowed to change over time in
response to its environment (see Figure 1F). This is per-
formed straightforwardly assuming first order kinetics:

ρi(x, t + tgrow) = ρi(x, t)+
∑
j
kj→i(φm(x, t),φn(x, t))ρj(x, t)tgrow

− ki→j(φo(x, t),φp(x, t))ρi(x, t)tgrow
(10)

where ρi(x, t) represents the instantaneous local vol-
ume fraction of cell type i in lattice site x, and
kj→i(φm(x, t),φn(x, t)) represents the instantaneous local
switching rate from regulatory state i to j. These switching
rates are assumed to depend on the local substrate con-
centrations (up to two of them—φm and φn or φo and φp
above) and, for simplicity, be polynomial in form:

ki→j(φm(x, t),φn(x, t)) = max(0,α0 + α1φm(x, t) + α2φn(x, t)

+ α3φm(x, t)2 + α4φn(x, t)2

+ α5φm(x, t)φn(x, t))
(11)

where the constants {αk} are fit to experimental data or a
known model. The simulations presented here include a
“regulated” model (see below) that involves the switching
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of cells between glucose- and acetate-consuming states.
The switching rate parameters for this model were fit to
data from [27], (see Additional file 1: Figure S2).

3DdFBA predicts E. coli in colonies engage in cooperative
acetate crossfeeding
Unregulatedmodel
Initially, simulations were performed without any form
of regulation. The cells were assumed to engage in the
metabolism that optimized growth solely in response to
the substrates available (see Figure 2A). A form of cooper-
ative crossfeeding was found to emerge within the simu-
lated colony wherein one subpopulation produced acetate
while another consumed it. This behavior resulted pre-
dominantly from oxygen depletion in the colony interior.
The penetration depth of oxygen (as measured near the
agar surface) was calculated to be between 40 and 50
μm—in strong agreement with previous experimental and
theoretical values [13,28]. Beyond this depth, extreme
hypoxia prohibited cells from making use of the tricar-
boxylic acid cycle (TCA) and electron transport chain,
and as a result they engaged in a form of fermentative
metabolism that produced acetate as a byproduct (see
Figure 2A, green region). Because the availability of glu-
cose fell dramatically with height above the agar, these
cells formed a broad flat disk near the base of the colony.
As the acetate diffused outward, some of it was taken up

by aerobic cells nearer the periphery, which formed a thin
shell of syntrophic acetate-consumers (see Figure 2A, red
region). This shell was approximately 20 μm thick and
accounted for a colony-wide average acetate uptake rate of
about 1.32 mmol gDwt−1 hr−1 at 36 hours of simulation
time. This was nearly 85% of the colony’s average acetate
production rate. Because crossfeeding among E. coli is
generally associated with either multi-species consortium
or long-term evolutionary experiments where genetically
distinct crossfeeding sub-strains arise over many genera-
tions [29], its emergence within an isogenic colony on time
scales as short as a few days is of particular interest.

Regulatedmodel
However these “unregulated” simulations yielded some
unrealistic behavior. Many of the cells predicted to be tak-
ing up acetate were also predicted to be taking up glucose
at the same time (see Figure 2A, purple region). Exper-
imentally, glucose and acetate consumption are known
to be differentially regulated, and E. coli in batch cul-
ture generally exhaust almost all of the glucose avail-
able to them before switching over en masse to acetate
metabolism [30]. In order to ensure that the crossfeed-
ing observed was not merely an artifact of the inability
of the model to account for this effect, a more refined
model was constructed. Cells were allowed to be in either
a glucose-consuming state (wherein an upper bound of
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0.0 was imposed on the acetate uptake reaction flux) or
an acetate-consuming state (wherein an upper bound of
0.0 was imposed on the glucose uptake reaction flux), and
could interconvert between the two at rates that depended
on the local glucose and acetate concentrations. These
rates were fit to experimental batch-culture data [27]
using a simple growth model:

dMglc

dt
= gglcMglc + kace→glc([ glc] , [ ace] )Mace

− kglc→ace([ glc] , [ ace] )Mglc

dMace
dt

= gaceMace + kglc→ace([ glc] , [ ace] )Mglc

− kace→glc([ glc] , [ ace] )Mace

d[ glc]
dt

= −Mglcvglc

d[ ace]
dt

= Mglcεace − Macevace

(12)

whereMglc andMace represent the biomass of the glucose-
consuming and acetate-consuming cells, respectively, gglc
and gace represent their growth rates, vglc and vace rep-
resent the uptake rates of glucose and acetate, respec-
tively, and εace represents the acetate production rate
by glucose-consumers. Because the experimental data
includes growth curves for cultures growing in only glu-
cose and only acetate, gglc and gace were easily fit assuming
an exponential form (see Additional file 1: Figure S2 A).
Using these values and the glucose and acetate concentra-
tion curves from the same single substrate experiments,
values for vglc, vace, and εace were fit (see Additional file
1: Figure S2 B magenta and blue, C blue). Finally, with
these values fixed, the switching rate parameters, {αi}, that
appear in Equation 11 were fit.
Overall, the modeled dynamics fit well with the exper-

imental behavior, especially in the low-acetate regime
where our spatially-resolved FBA simulations primarily
exist. The glucose concentration curves show very good
agreement (see Additional file 1: Figure S2 C), but at
intermediate acetate concentrations the model overesti-
mates acetate uptake (see Additional file 1: Figure S2 B
green, cyan). We attribute this to the fact that real cells
should experience some lag in switching from glucose-
consuming to acetate-consuming behaviors. This lag is
not represented in the model; the modeled cells switch
out of the glucose-consuming state directly to acetate-
consuming behavior. We expect that the addition of a
third non-growing “retooling” state between these gly-
colytic and acetoclastic states might bring the model
into better agreement. Nevertheless, because the highest
acetate concentration recorded in our 3DdFBA simula-
tions is approximately 5.8 × 10−3 M—laying well within
the range of the blue curve in Additional file 1: Figure
S2 B where the model best matches experiment—a more

refined model would likely add significant computational
complexity without offering much in the way of accuracy
in return. The switching rate parameters ultimately used
in themodel are summarized in Additional file 1: Table S1.
Simulation of this “regulated” model again yielded

acetate crossfeeding (see Figure 2B). As before, the
acetate-producing subpopulation consisted of glucose-
consuming cells located within the anoxic interior of the
colony near the agar. The acetate-consumers again formed
a shell, but it was wider and more diffuse than in the
unregulated model. This shell extended all the way to the
edge of the colony, and was comprised of a mixture of
both acetate-consuming cells (up to approximately 10%
by volume) and slow- or non-growing glucose-consumers.
Little acetate-consumption occurred at the colony periph-
ery near the agar surface; this was because the high
glucose concentration in this region strongly suppressed
the acetate-consuming state and instead drove the cells
toward use of the TCA cycle and electron transport
chain (see Figure 2B, blue region). In total, the acetate-
consumers accounted for a colony-wide average uptake
rate of approximately 0.69 mmol gDwt−1 hr−1 at 36
hours of simulation time. This was only about 39% of the
colony’s acetate production rate.
The ability to crossfeed acetate imparted a fitness

advantage to the colony as a whole, and after 36 hours the
model with regulation had outgrown a non-crossfeeding
model (that was unable to consume acetate) by about
4.5%. This faster growth derived from the crossfeeding
colony’s cells’ collective ability to aerobically metabo-
lize glucose even when they would not have been able
to individually. The acetate-producers lacked the oxy-
gen necessary to fully metabolize glucose, and as a result
could only partially metabolized it to acetate. The acetate-
consumers higher up in the colony, which had access to
oxygen but not glucose, were then able to complete the
process by metabolizing the acetate. The cells of the non-
crossfeeding model could not complete the second part of
this two-step metabolism, and grew slower as a result.
Because high glucose availability strongly suppresses

the acetate-consuming state, it was initially unclear if
the crossfeeding observed could be disrupted by increas-
ing the concentration of glucose in the agar. Additional
simulations were performed with glucose concentrations
spanning from 1.25 g l−1 up through 10 g l−1. In each
case acetate crossfeeding emerged within the simulated
colony (see Additional file 1: Figure S3) indicating that
this behavior is fairly robust across a range of glucose
concentrations.

3DdFBAwithmolecular crowding
A cell’s finite volume places an inherent upper limit on the
total number of metabolic enzymes that the cell can con-
tain. Because every enzyme takes up some portion of this
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volume, and because the maximum flux through a given
enzyme-mediated reaction is proportional to the num-
ber of enzymes that are present inside the cell, increasing
the flux through a given metabolic pathway results in an
increase in demand for the cell’s available space. Flux bal-
ance analysis with molecular crowding (FBAwMC) was
developed to account for this effect, and has been shown
to reproduce the bacterial Warburg effect in fast-growing
E. coli populations, as well as the preferential utiliza-
tion of some carbon sources over others (e.g. glucose
over acetate) [31-34]. Additional 3DdFBA simulations—
both with and without regulation—were performed using
lookup tables generated with the FBAwMC approach
(see Additional file 1: section 1.3 for methodological
details).
The addition of crowding constraints did not dis-

rupt the simulated colonies’ ability to crossfeed acetate.
In fact, fairly little changed between the simulations
using the standard FBA formulation and those account-
ing for molecular crowding. The greatest qualitative dif-
ference occurred among the fast-growing aerobic cells
of the colony periphery near the agar surface. With-
out regulation, standard FBA speciously predicted that
these cells would engage in simultaneous glucose and
acetate utilization (which served as part of the impe-
tus for the development of the regulated model). In the
FBAwMC formulation, no such simultaneous glucose and
acetate utilization was observed (see Additional file 1:
Figure S4 A). This is because acetate, which has a lower
metabolic yield than glucose, requires a comparatively
larger total enzyme-mediated reaction flux in order to
produce the same amount of biomass. This in turn means
that an increase in growth rate due to acetate utilization
costs more in terms of enzyme volume than the same
increase in growth rate due to glucose utilization. Fast-
growing cells, which are at or near their crowding limit,
are therefore driven to utilize glucose exclusively, and
only begin to scavenge acetate when glucose availability
drops.
Crowding constraints also drove a small subset of the

same fast-growing peripheral cells toward acetate pro-
duction, even in the presence of ample oxygen. Without
crowding constraints, these cells had engaged in rapid gly-
colytic growth that made heavy use of the cells’ oxidative
phosphorylation machinery. This led to doubling times
of around 41 minutes for the fastest-growing cells and
no appreciable acetate production. When crowding con-
straints were introduced, the volumetric cost associated
with the enzymes of the TCA cycle and electron trans-
port chain drove the fastest-growing of these cells toward
a mixed strategy of partial oxidative phosphorylation and
partial overflow metabolism (wherein glucose was metab-
olized to acetate and excreted, see Additional file 1: Figure
S4 C). This led to slower growth rates (doubling times

increased to nearly 50 minutes for the fastest-growing
cells) and significant acetate generation (∼ 3.5 mmol
gDwt−1 hr−1, or roughly 33% of the maximal production
rate among the anaerobic cells of the colony interior).

Experimental support for the predicted crossfeeding
behavior
A simple set of experiments was devised in order to
test for the predicted crossfeeding behavior. E. coli K-
12 strains containing a plasmid expressing GFP under
the control of the malate synthase A (aceB) promoter
were grown on agar plates containing M9 salts supple-
mented with 2.5 g l−1 glucose and trace elements. This
gene is part of the acetate operon, aceBAK, and is associ-
ated with acetate consumption (see Figure 2E). Colonies
were grown over a period of two days during which
time they were periodically (24, 36, 40, and 48 hours
after plating) imaged at a series of focal planes above the
agar surface. Imaging was performed using a Zeiss Axio
Zoom.V16 microscope equipped with a Zeiss ApoTome.2
structured illumination device for optical sectioning [35].
The resulting heights, widths, and spatial distributions
of fluorescence—indicative of the distribution of acetate-
utilizing cells within the colonies—were then compared
against those of the simulated colonies (see Figure 3, and
Additional file 1: Figure S5).
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Figure 3 Plot of simulated and experimental colony heights and
diameters. Plot of simulated and experimental colony heights and
diameters. At 24 hours (circles), 36 hours (triangles), 40 hours
(squares), and 48 hours (stars) after inoculation onto agar plates, 5
colonies of each of our fluorescent strains, PaceB-gfp (red), Pacs-gfp
(blue), and PgapA-gfp (green), were imaged and measured. The lines
indicate the height and width of modeled colonies (with regulation)
over 48 hours of growth. These colonies were simulated with
different values for ρmax ranging from 0.50 to 0.80. The main
simulations presented in the text use a value of 0.65 taken from the
literature [15], and appear as the black line. The step-like features
along these lines are artifacts of the discreteness of the spatial model.
The simulations overestimate colony height early on, but their
height-to-width ratios shows strong agreement at later time points.



Cole et al. BMC Systems Biology  (2015) 9:15 Page 11 of 17

Within the experimental colonies, rings of fluorescence—
indicating the presence of cells on the colonies’ periph-
eries rapidly expressing the aceB gene—were observed.
These rings narrowed at higher focal planes and eventu-
ally closed to a spot, indicating the height of the colony
(which, for example, at the 48 hour time point ranged
from approximately 250 to 400 μm). Compiled together
as a Z-stack, these rings form domes of fluorescence
on the colonies’ peripheries that show strong qualitative
agreement with the simulated results (see Figure 4A–H).
Comparison with reference colonies expressing GFP from
the promoter of the highly-expressed housekeeping gene
gapA (see Additional file 1: Section 1.4.1 and Additional
file 1: Figure S6) indicated that aceB expression was over
seven-fold higher in our experimental colonies than in
published results for cells grown in liquid culture [36]
(see Additional file 1: Table S2 for details). Similar spa-
tial patterns were also obtained using strains expressing
GFP under the control of the acetyl-CoA synthase (acs)
promoter which, like aceB, is associated with acetate con-
sumption (see Additional file 1: Figure S7). In this case
the ratio of acs-associated to gapA-associated GFP fluo-
rescence was approximately 50-fold higher than published
values for liquid-cultured cells.

Estimating the colony acs expression based on the
fluorescence ratio computed above and published
gapA expression data [37] yields an average value of
approximately 704 Acs proteins per cell, most of which
should be concentrated at the top and sides of the colony
(Figures S6 & S7). The product of this and a published
value for the Acs turnover rate (from Salmonella enter-
ica, the only gram-negative bacterium with a wild-type
Acs turnover rate listed in the Brenda database [38,39])
yields a maximum acetyl-CoA synthase reaction flux of
1.64 mmol gDwt−1 hr−1, in strong agreement with the
maximum value of 1.66 mmol gDwt−1 hr−1 (or 1.60
mmol gDwt−1 hr−1 with crowding constraints imposed)
predicted by the regulated models (see Figure 5). The
unregulated models, by contrast, overestimated this value
by approximately an order of magnitude. A similar calcu-
lation using the aceB fluorescence ratio and a published
value for the AceB turnover rate [39,40] yields values of
approximately 1,111 proteins per cell and a maximum
flux of 1.24 mmol gDwt−1 hr−1, also in agreement with
the regulated models.
Taken together, these experiments largely support the

simulated results. Not only do the observed aceB and acs
to gapA ratios indicate upregulation of genes associated

Figure 4 Comparison of experimental acetate-associated reporter expression with predicted acetate consumption. (A) Brightfield image
of a representative colony expressing GFP under the colntrol of the aceB promoter. This image was taken approximately 48 hours after innoculation
when the colony was approximately 2.0 mm in diameter. (B) PaceB-gfp fluorescence in the same colony imaged 100 μm above and parallel to the
agar surface. (C) PaceB-gfp fluorescence imaged 300 μm above the agar surface. (D) PaceB-gfp fluorescence in a plane bisecting the colony and
perpendicular to the agar surface; this was reconstructed from the entire compiled Z-stack of fluorescence images. (E) Gray-scale plot of the height
of a simulated colony. This image was produced after approximately 40 hours of simulation time when the colony was around 2.0 mm in diameter.
(F) Predicted acetate uptake rate imaged 100 μm above and parallel to the agar surface. (G) Predicted acetate uptake rate imaged 300 μm above
the agar surface. (H) Predicted acetate uptake rate in A plane bisecting the simulated colony and perpendicular to the agar surface.
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Figure 5Modeled three-dimensional E. coli colony. This colony, approximately 32 hours after innoculation on an agar plate (tan region), is
colored by acetate uptake rate.

with the predicted crossfeeding behavior, but this upregu-
lation also occurs in spatial patterns similar to those seen
in the simulations.
Additional control experiments are described in the

Additional file 1: Sections 1.4.2–1.4.5. The first of these
shows that the lack of fluorescence seen in the colonys’
interiors is not an artifact of the low oxygen concen-
tration in these regions preventing GFP maturation.
Colonies of E. coli expressing the flavin-based fluo-
rophore iLOV [41,42]—which does not require oxy-
gen to mature—show similar fluorescence patterns (see
Additional file 1: Figure S8), meaning that the GFP flu-
orescence we see is likely indicative of gene-expression
and not oxygen availability. The second control experi-
ment addressed whether scattering of the excitation or
emission photons as they passed through the colony
might have obscured fluorescence in the interior. Flu-
orescent colonies were physically bisected and imaged
at their cut plane (see Additional file 1: Figure S9).
The resulting images show the same dome-like distribu-
tion of fluorescence seen using the non-disruptive struc-
tured illumination imaging technique (see Additional
file 1: Figure S8), indicating that this distribution is not
simply an artifact of the imaging technique used. A third
control experiment involved colonies containing the pro-
moterless plasmid pUA66—the same plasmid used to
study aceB, acs, and gapA except without a promoter
region upstream of the gfp gene. No appreciable fluores-
cence was seen, indicating that the fluorescence of our
experimental colonies is not simply misattributed autoflu-
orescence or leaky transcription of the plasmid gfp (see
Additional file 1: Figure S11). Finally, we performed a pre-
liminary two-color experiment using a plasmid containing
the gene encoding mCherry under the control of the
ptsG promoter (part of the glucose phosphotranspherase

system) and gfp under the control of the aceB promoter
(see Additional file 1: Figure S12). Although we note that
the growth of the resulting colonies was slow and the GFP
fluorescence we observed was noticeably less intense than
that of our single-color experiments, we found that the
resulting images strongly indicate the existence of distinct
glucose- and acetate-consuming subpopulations.

3DdFBA predicts realistic colony growth dynamics
The physical growth of the simulated colonies was found
to proceed through two phases. During the initial 15
hours, the dimensions of the colonies grew approximately
exponentially. Beyond this time, however, the colonies’
radial expansions slowed to a constant rate of about 0.011
μm s−1 (see Figure 6A). These findings agree extremely
well with an experimental study of E. coli growth under
nearly identical conditions (solid agar medium with
M9 salts, glucose, and trace elements) that reported
an exponential-to-linear transition occurring around 12
hours after inoculation onto agar plates and a radial
expansion rate of around 0.008 μm s−1 [28]. Our own
experimental colonies (on the same solid medium) grew
slightly slower with a radial expansion rate of approxi-
mately 0.007 μm s−1 (see Additional file 1: Figure S5).
The observed shift toward linear expansion was, like

the predicted acetate crossfeeding, the result of nutrient
depletion in the interior of the colony, and both oxygen
and glucose starvation were found to contribute. After
approximately 13 hours of simulation time, the colony had
grown large enough to permit the emergence of clearly
defined aerobic and anaerobic regions (see Figure 6B).
Roughly commensurate with this drop in oxygen avail-
ability in the colony interior came a drop in glucose
availability (see Figure 6C). The concentration of diffus-
ing glucose at the center of the colony (as measured at
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Figure 6 Growth rates and substrate profiles over time. (A) The colony is colored by growth rate and shown in cross-section. The
fastest-growing cells (red) inhabit the colony periphery, while much of the interior shows little or no growth (blue) due to nutrient depletion. The
grey diagonal line shows the linear radial growth of the colony. (B) Oxygen concentration within the same colony in cross-section at 12, 13, and 14
hours. Between 13 and 14 hours, a well-defined anoxic region forms in the center of the colony. The penetration of oxygen into this colony is
between 50 and 60 μm. (C) Glucose concentration in cross-section at 14, 15, and 16 hours. Beyond 14 hours, the glucose concentration in the
colony interior rapidly falls, and beyond 15 hours, much of the colony interior, in addition to being anoxic, is also glucose-starved.

its radial center and half its instantaneous height) fell to
approximately half its initial value within 14 hours and
about 4% of its initial value within 16 hours. Combined,
these oxygen and glucose gradients gave rise to a rela-
tively compact ring of fast-growing “pioneer” cells at the
colony edge and almost no growth among the cells of
the colony center, in agreement with experimental obser-
vations [43] (see Figure 6A). Because this ring’s height,
width, and growth rate were controlled by the penetration
depths of oxygen and glucose, they remained relatively
constant over most of the latter part of the simulations.
For this reason, the rate at which the biomass of the colony
increased was proportional to its radius alone, and in turn,
its radial expansion rate remained approximately constant
(see Additional file 1: Section 1.5 for details).
The transition from exponential to linear growth also

affected the shape of the colony. Early on, when oxy-
gen and glucose were essentially ubiquitous, the sim-
ulated colony grew hemispherically in shape. Later, as
the majority of the growth shifted to the periphery, the

colony’s radial expansion outpaced its vertical growth,
and it took on a more broad and flat appearance. Exper-
imentally, the early growth of a colony is predominantly
two dimensional across the agar [44,45], meaning that
our simulations significantly overestimate the height of
small colonies. Despite this initial divergence, later time
points show better agreement with the height-to-diameter
ratios of the experimental colonies (see Figure 3, black
line). Varying the maximum local volume fraction, ρmax,
toward higher values brings the simulations into even bet-
ter agreement (see Figure 3 and Additional file 1: Figure
S5, red lines). It is worth noting that our model does not
require any sort of height parameterization; the agree-
ment we see emerges naturally from the way the colony
growth and expansion is handled in the simulation.

Conclusions
The application of the 3DdFBA method described here
focused on the growth and collective metabolism of
E. coli colonies. Its integration of 3D reaction-diffusion
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simulations with a flux balance model of metabolism that
involves thousands of reactions and metabolites enabled
us to generate new hypotheses that we then tested directly
in the laboratory.
The most striking result of this work was the predic-

tion that subpopulations within E. coli colonies naturally
engage in cooperative acetate crossfeeding. This was not
due to the evolution of distinct crossfeeding genotypes,
as is known to occur in long-term continuous culture
experiments, but rather it emerged from the cells’ own
regulatory responses to their local microenvironments
within the colony. Depending on location, some cells
experienced a glucose-rich anoxic environment that drove
them toward acetate-producing fermentative metabolism,
while others experienced a glucose-poor aerobic envi-
ronment that favored acetate-consumption. This behavior
remained robust over a range of common agar glu-
cose concentrations, meaning that it may be occurring—
completely unnoticed—in laboratory incubators the world
over.
The simulated colonies exhibited realistic growth

dynamics. The same glucose and oxygen gradients that
gave rise to acetate crossfeeding also gave rise to a ring of
fast-growing pioneer cells at the colony’s edge, and signifi-
cantly hindered the growth of much of the colony interior.
The pioneer ring had a profound impact on the macro-
scopic shape and growth of the simulated colony, leading
to both its broad and flat appearance and its linear radial
expansion (both of which agree well with experimental
values).
Several features of our modeling technique proved

essential to our study. The first, and most critical, was its
ability to perform 3D simulations with fine spatial reso-
lution. The concentration profiles of oxygen and glucose
within the colony changed dramatically over short dis-
tances in both the radial and vertical directions. The pen-
etration depth of oxygen, for example, was only around
50 μm from the edge of the colony, while the penetra-
tion depth of glucose at the colony center was only around
60 μm upward from the agar. Accurately accounting for
these steep gradients required the use of a 3D lattice with
a spacing of on the order of 10 μm. Although a simi-
lar method was recently reported [21], it was restricted
to two spatial dimensions and its reliance on costly on-
the-fly FBA calculations severely limit its practicality for
performing the millions of metabolism evaluations per-
timestep necessary to resolve these profiles. In contrast,
our use of precomputed FBA lookup tables enabled us
to preform our simulations at nearly real-time speeds.
Our code, running on the Keeneland supercomputer (with
Nvidia M2090 GPUs) and on a Linux desktop machine
(with a single Nvidia GTX780 GPU) performed the simu-
lations presented here at speeds of approximately 50.0 and
40.1 simulated minutes per wall-clock hour, respectively.

The second feature that proved critical was our method’s
ability to account for the regulation of resource use by the
modeled cells. Naively using FBA alone led to some cells
simultaneously taking up glucose and acetate in a manner
at odds with experimental data. By requiring the colony to
obey a phenomenological model of the acetate switch, this
pathological behavior was ameliorated, and the potential
for acetate crossfeeding to emerge within wild-type E. coli
colonies was more realistically modeled.
It is worth noting that our use of precomputed FBA

tables, while offering vast speedup over on-the-fly eval-
uation, does carry some drawbacks. The most pressing
of these is that the modeler must have some notion
of the substrates that are likely to play a role in the
colony’s collective metabolism before a simulation can be
launched. Our choice to model only glucose, oxygen, and
acetate was informed by earlier work simulating signifi-
cantly smaller clusters of cells [10] and some preliminary
FBA calculations. Nevertheless, this choice can in some
ways limit the scope of the simulations. For example we
knowingly ignore the potential for succinate crossfeeding
(which was deemed unimportant due to the low pre-
dicted succinate production rate of anaerobically-growing
cells) as well as possible toxic effects due to the pro-
duction of ethanol within the colony (although, because
the ethanol and acetate production rates are compara-
ble, the concentration of ethanol should not rise signifi-
cantly above the maximal acetate concentration, ∼ 5.8 ×
10−3 M, which is approximately 2 orders of magnitude
below the concentration at which cellular growth is sig-
nificantly inhibited [46]). Incorporating larger numbers
of substrates into a lookup table is straightforward, but
can be time consuming as it increases the dimensionality
of the table, and in turn, the number of FBA calcula-
tions required to produce it. Ultimately, the choice of
using table lookups or on-the-fly FBA solving comes down
to a choice between computational speed/resolution and
model flexibility/universality. With enough prior knowl-
edge of the phenomenon to be simulated, a table-based
method vastly out-performs on-the-fly solving, but for
purely exploratory simulations in which large numbers
of metabolites are simulated simultaneously, an on-the-
fly method may potentially yield novel behaviors that the
modeler did not anticipate.
Although our methodology represents an important

step in using FBA in both a spatially- and temporally-
resolved manner, neither it, nor any other current imple-
mentation, can fully account for all biologically significant
phenomena. One important example stems from the
inherent determinism of the method which yields only
average behaviors. Stochastic gene expression has been
shown to give rise to significant metabolic variability, even
among cells in otherwise identical environments [6]. The
method we present does not account for this type of
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cell-to-cell variability; the cells in a given lattice site are
assumed to behave identically, engaging in the optimal
metabolism possible given their local substrate availabil-
ity. Additional uncertainties arise in the number of cells
that actually seed a given colony; our simulations assume
a single cell, but it is difficult to experimentally verify the
exact number of cells left in a given location when an
agar plate is streaked. These effects are evident even at
the macroscopic level—while the heights and widths of
experimental colonies show considerable variability (see
Figure 6), our simulated colonies show none. A natural
way forward in this regard is to shift toward an agent-
based modeling approach where individual cells may be
represented within a continuous field of diffusing sub-
strates. This could allow for stochastic gene expression
to be explicitly accounted for within each cell; the gene
expression state of a cell might be sampled from experi-
mental distributions and used to apply constraints within
the cell’s metabolic network in a manner similar to that
of [6]. Additionally, by resolving individual cells and their
intercellular forces, an agent-based approach may better
account for the early development of the colony as it tran-
sitions from 2D to 3D growth [44]—a behavior that is
poorly accounted for in our current implementation.
Our modeling technique can be applied to the study of

communities involving many different microbial species.
Several different cell types—each employing their own
metabolic model—can be simultaneously simulated, and
because the different cell types can transform into each
other, regulation systems much more complex than the
acetate switch described here can be studied. Beyond
obvious future studies of biofilms, perhaps the most excit-
ing applications of this technique may come in the form
of tissue and tumor modeling. Like the colony mod-
els presented here, steep oxygen gradients are known
to form within cancerous tumors that profoundly affect
their metabolism [47]. Within certain cancers these oxy-
gen gradients have even been reported to give rise to
lactate crossfeeding in a manner strikingly similar to
the acetate crossfeeding seen in our simulations [48,49].
There are already several flux balance models of different
human cancers available in the literature [50,51]. These
can be leveraged to build new 3D models capable of
studying everything from environmental fluctuations and
metabolic reprogramming within a cancer to the interac-
tions between cancers and their surrounding tissues.

Methods
Simulation methods
All FBA calculations were performed using the freely
available COBRA toolbox [3] and the iJO1366 E. coli
genome-scale metabolic model [4,52] with default uptake
rates for M9 salts and trace elements. FBAwMC cal-
culations were performed using crowding coefficients

taken from [31]. Our 3DdFBA simulation code outlined
in Algorithm 1 was written in CUDA and C/C++ and
was run on the Keeneland GPU supercomputer (NVIDIA
M2090 GPUs), our own GPU cluster (NVIDIA C2050
GPUs), as well as a desktop workstation with a single
NVIDIAGTX780 GPU. The simulations required approx-
imately 2.2 GiB memory and achieved speeds of approxi-
mately 27.5 simulated minutes per wall-clock hour on the
C2050s, 40.1 simulated minutes per wall-clock hour on
the GTX780, and 50.0 simulated minutes per wall clock
hour on the M2090s. Our code is available at http://www.
scs.illinois.edu/schulten/software/index.html.

Microbiological methods
The E. coli strain and plasmids containing gfp under the
control of the aceB, the acs, and the gapA promoters
that were used in this study are listed in Additional file
1: Table S3. Also listed are a promoterless plasmid used
as a negative control (see Additional file 1: Section 1.4.4
and Additional file 1: Figure S11), and a plasmid contain-
ing the iLOV [41] gene under control of the constitutive
phage λ promoter which was used as another control. The
bacteria were grown at 37 ◦C in liquid culture (LB) and
on solid medium (1.5% agar with 2.5 g l−1 glucose, M9
salts, and trace elements) containing 25 μg/ml kanamycin
(Km) [53]. The trace element solution (including FeSO4,
ZnSO4, MnSO4, CuSO4, CoCl2, sodium borate, sodium
molydbate, and ethylenediaminetetra-acetic acid (EDTA))
used was prepared in accordance with [28]. Liquid cul-
tures were grown in a shaking incubator.

Construction of a transcriptional gapA promoter-gfp fusion
The preparation of plasmid DNA, DNA digests, agarose
gel electrophoresis, cloning, and transformation of E. coli
cells were performed following established protocols [53].
The DNA fragment containing the promoter region of
gapA was PCR amplified from a liquid E. coli K12 culture
with primers that were engineered to contain a XhoI 5’
end and a BamHI 3’ end (see Additional file 1: Table S4).
The PCR products were cloned into the low copy num-
ber cloning vector pUA66 (Additional file 1: Table S3),
bringing the PCR products in correct orientation to exert
control over gfp nexpression. The resulting plasmid carry-
ing the gapA promoter fusion was introduced into E. coli
K12 via electroporation. The correct promoter insert was
confirmed for the plasmids via PCR.

Imaging of bacterial colonies
Bacterial colonies for imaging were grown on M9
medium agar plates supplemented with 0.25% glucose,
trace elements, and Km. Imaging was performed at 24,
36, 40, and 48 hours after innoculation. Bright field
and fluorescence images were captured using an Axio
Zoom.V16 fluorescence microscope equipped with an

http://www.scs.illinois.edu/schulten/software/index.html
http://www.scs.illinois.edu/schulten/software/index.html
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ApoTome.2 structured illumination device (Zeiss) for
optical sectioning. This microscope was chosen because
it enabled observation of individual colonies growing
directly on streaked plates without requiring the prepara-
tion of specialized agar-coated microscope slides or any
physical disruption of the colonies or agar. Five individual
colonies were viewed during 2 independent experiments.
Each colony was imaged from bottom to top by optical
sectioning in 5 μm steps. The Zen 2011 software (Zeiss)
was used to create images and the AxioVision (Zeiss) soft-
ware was used for calculating the average fluorescence
intensity of each of the 40-hour colonies (chosen because
these colonies were large–roughly 1.5 mm in diameter—
but still significantly smaller than the 3.2 mm agar pad
used in our simulations, thus avoiding possible bound-
ary effects when comparing simulation and experiment).
This average was computed over the cylinder whose base
inscribes the bottom of the colony and whose height is
the same as the colony; at each imaged plane, the aver-
age intensity within the circular projection of the base
onto the plane was computed, then all of these values
were averaged to give the average over the entire cylin-
der. Colony diameters were measured using the bright
field images and colony heights were measured as the dis-
tance between the first and last focal planes that clearly
indicated fluorescence. In addition to the 40 hour time
point, heights and diameters were computed for colonies
grown for 24, 36 and 48 hours. Finally, cells grown in
liquid culture were imaged using a Zeiss Axiovert 200M
microscope. These images showed that the presence of
the various plasmids used in our study did not effect the
architecture of the cells (see Additional file 1: Figure S13).

Additional file

Additional file 1: Supporting Information Text, Tables, and Figures.
PDF document containing supporting information, including text, tables
and figures.
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