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ABSTRACT

A class of neural networks with adaptive threshold and global inhibitory inter-
actions is proposed. The networks are capable of nearly optimal storage of sparsely
coded patterns, i.e. patterns with low level of activity. We present a replica symmetric
solution of the mean field equations for the noise free case. The network shows the
following, remarkable properties: 1) For low level of activity a the storage capacity
increases as ~[aIna]™?; up to 0.38 bits/synapse can be stored. The network capacity
approaches the theoretical upper bounds derived by Gardner (1988). 2) Spurious
states representing superpositions of stored patterns can be suppressed by global in-
hibition; 3) The network is not opinionated, i.e. by assuming a state of low activity
it categorizes respective inputs as not similar enough to any patterns stored.

*Part of this contribution will appear in Phys. Rev. A

tNew address: Computer Science Department SAL, University of Southern California, Univer-
sity Park, Los Angeles, Ca 90089-0782

iNew address: Department of Physics, University of Illinois, 1110 W. Green Street, Urbana, Il
61801 :



1. Introduction

During the last few years a new wave of interest in simple models of neural
systems swept physics, computer science and biology. The ability to build mas-
sively parallel computers, but also a breakthrough in understanding long-range spin
glasses lead to various research activities on neural networks. One of the most in-
tensely studied neural network models had been the one introduced by Hopfield.
The model shows some remarkable computational capabilities, e.g. it functions as
a fault tolerant associative memory. The computational capability emerges from
dissipative network dynamics: relaxation to fixpoints representing stored patterns
constitute the computational process of information retrieval. The mathematical
tools of statistical mechanics of spin glasses allowed a systematic evaluation of the

computational capabilities of the Hopfield model [1].

Starting from the Hopfield model search for neural networks with larger storage
capacity and better recall behaviour began and followed two main strategies. The
first and direct way to enhance storage capacity is to look for alternative synap-
tic connectivity rules which deviate from Hopfield’s suggestion. We will follow this
path and propose a sparse coding scheme with suitable connectivities. An alterna-
tive strategy to enhance storage capacity is based on iterative learning algorithms.
These algorithms [2-4] derived from the well known perceptron algorithm, correct re-
call errors occuring during pattern association and, after a training period, produce
a connectivity structure which guarantees optimum associative storage. Unfortu-

nately, computing the optimum connectivity structure is very time consuming.

The question about the maximum amount of information which can be stored
in neural network can be formulated as the following optimization problem first
studied by Gardner [4]. Given a set of patterns to be stored in a network, how
many connectivity structures do exist which garantee perfect recall of the whole
pattern set? This optimization problem can be interpreted as an inverse problem of
statistical mechanics, i.e. we define a set of pattern states of a neural network and
look for suitable synaptic interactions to stabilize these equilibrium states. Gard-
ner’s approach yields upper bounds for the number p. of correlated or uncorrelated
patterns which can be stored and recalled in a neural network without errors. In the

limit of strong correlations between patterns, i.e. for low activity in the network, p.



increases as p ~ —N/(aln a) where a denotes the percentage of active neurons in

a given pattern.

2. Model for an Optimum Associative Memory

In this contribution we propose a neural network which stores biased patterns
of small activity level a, i.e. patterns which correspond to only a small fraction of
neurons firing*. The model can be interpreted as a generalization of the original
Hopfield model [6] for arbitrary level of activity a. The network obeys the condition
of Gardner for optimum storage of strongly correlated patterns, albeit tolerates a
certain percentage of recall errors. If one whishes to develop a network with com-
pletely accurate recall our model yields a good initial connectivity to be improved

by an iterative algorithm.

Storage of biased patterns in Hopfield networks was first proposed in [7]. How-
ever, the proposed model exhibits decreasing information content when the network
activity, i.e. a, is decreased. An asymmetric version of our model had been proposed

earlier in context with storing sequences of patterns in neural networks (8, 9].

Our network is composed of N neurons described by dynamic variables {S’,}fil
Neuron ¢ is either firing (S; = 1) or quiet (S; = 0). The variables are updated
asynchronously according to a probabilistic rule which represents the action of noise
in the system. With probability f; = (1 + exp[—(h; — U)/T])_1 for a molecular
field h; = 3 JixS) the chosen neuron ¢ fires at time ¢t + At, otherwise it is quiet.
The parameters U and T are the threshold potential and the network temperature.
The patterns ¥ = {S,‘}l]-\_/_:l, which we intend to store in our network, are correlated
and are chosen according to the distribution P(£Y) = aé(&¥ — 1) + (1 — a)é(£Y) with
a small. The low average activity of neurons in the brain [10] suggests that the
memory model considered, i.e. one for storage of patterns with small a, has a close

correspondence to biological memories.

The synaptic connections between neurons are chosen according to the cell as-

*Independent of us Feigel’man and Tsydocs [5] have suggested the same neural network, albeit
without global inhibition, and have discussed its properties in the limit ¢ — 0.



sembly hypothesis of Hebb by the rule
Wi = ——l—z@ O -a) -5 itk (1)
ik a(l—a)N aN

The first term in (1) describes the formation of cell assemblies, i.e. sets of excitatorily
interacting neurons which represent patterns ». The second term implies inhibition
between all neurons of the network and enforces discrimination between different
patterns. Synapses between two neurons are symmetric, i.e. Wy = Wy, self-
interaction is forbidden. If one interpretes the W;; given by (1) as interactions
between the spin variable S;, an energy (Hamiltonian) H can be associated with

any configuration of spins {S,}f\_’;_l

H = - ZZ{, (éf —a SSk-i- ES’Sk+UZS (2)
2a(1—a by

The existence of a Hamiltonian allows a statistical mechanical analysis of the net-

work.

3. Finite Number of Patterns Stored

In case of a finite number p of stored patterns the network state can be com-
pletely characterized by two sets of parameters. The kind of parameter (v =
1,2,...,p)

1
vo_

m = U@ -a(s)) Q
denotes the overlap of the network state with the pattern state v diminished by
the random correlation between different patterns. The brackets { ...) denotes
averaging over the random variables {¥, whereas ( ...) stands for thermal averaging.

The second kind of parameter
1
e= —{T(S)). - )

measures the total activity in the network. The sum m¥ + az counts the number of
neurons active in the actual network state S¥ which are also active in pattern v. All
states with macroscopic overlap with one pattern v are stable states of the Monte

Carlo dynamics, i.e. m# = m 6,,. Superpositions of several patterns, so-called



spurious states, can be destabilized by global inhibition. To suppress superpositions

of s patterns a minimal inhibition strength ~. is necessary, i.e.

1-(2s-1)a=U
= a K 1. 5
Te s(1 = (s—1)a) (5)
We find a hierarchy of spurious states with decreasing stability when more patterns
are superimposed. There exist parameter values for U and # for which no spurious
states exist in the network. This feature is essential because it allows the network

to store time sequences [8].

The network state with no activity (m¥ =0 Vv, 2 = 0) is always an equilibrium
state for positive threshold U > 0. This state plays the role of an indicator which
signals that the network has no pattern associated to an initial state, i.e. the network
responds with no activity if the initial state differs in too many bits from any stored

pattern.

Studies of a network with two random patterns stored show that form and size
of the bassins of attraction depend on the threshold U and on the inhibition term 7.
For large values of U or « the network tolerates only a small discrepancy between

an initial state and a stored pattern for associative pattern reconstruction.

4. Infinite Number of Patterns Stored

In case of infinitely many patterns stored (a = p/N finite) the analysis of the
signal to noise ratio provides much insight into the properties of the network. As-
suming that the network stays in pattern state ¢! the part of field hp which stabilizes

neuron : in pattern state ¢; ! takes the two values

W =

{1—a—U forfl-l:l (6)

—a-U forf}zO.

The overlap of pattern 1 with the infinitely many patterns v > 1 effects a Gaussian
noise with variance ( (h{ )2) = aa. The resulting signal to noise ratios assume
the values py = (1 —a — 4 — U)/y/aa and pg = (a + v + U)/+/aa for an active and
a quiet neuron, respectively. The optimal threshold is given by the condition that
p1 = po, i.e. Uppt = 1/2 — a — v with the resulting optimal signal to noise ratio
popt = 1/v/4aa. This expression shows that the structural noise with strength v/aa,



generated by overlap with infinitely many patterns, limits the storage capacity in
our network. The requirement that pop: should not exceed a critical value yields a

rough estimate of the storage capacity ac = 1/a.

5. Analysis of Storage Capacity

We want to investigate the storage capacities of the network in case of an infi-
nite network storing infinite patterns. For this purpose we have to investigate the
stability of pattern states, i.e. investigate in how far structural noise with strength
vaa can destabilize the pattern states £. For calculating the free energy density of
the network we assume that a network state has macroscopic overlap with a finite
number s of patterns. Averaging over the p — s patterns with microscopic overlap
with the network state considered yields an additional noise source. Following Amit
et al [1] the partition function of the network can be evaluated by means of the
replica method [11]. We find five different sets of order parameters which describe
the network. The first two orderparameters are identical to that which characterize
the network when only a finite number of patterns are beeing stored. Three further
mean field parameters describe the randomness due to the storage of infinitly many

patterns. The third order parameter is

1 2
= FZs0h) @
and corresponds to the Edwards-Anderson parameter in spin glass theories. The

fourth and the fifth parameters are

2
1 1 s
r —a(l—-a)gs (m}i:(ﬁz )(Sz)) (8)
2
1 1 v 1y 2 o
y=a(1_a),§s<(;ﬁ;<e,-—a)sz)> S(retv+3)  ©

and characterize the mean and thermal fluctuations of the overlap between the

thermodynamic state and the patterns which are not condensed.

The order parameters derive their importance from the fact that the free energy

density f for the network can be expressed in terms of them. In fact, one can derive



for the free energy density the expression

9 -
S % I 9 _4oB .-
f _2(1—a)z,,:m + 5 @ +a<U+ x 5 (rq — zy)

2ﬂ( (1-0)-%) /Dz In[1 + exp 52] )

where we have defined [Dzf(z) = _C}o %exp (___é‘:) f(z), C = Bz - q) and

> =3, %m” + g§H-(y —r) + /aarz. One seeks to determine now for which
values of the order parameters the free energy density assumes minimum values.
After a lengthy calculation one can show that the corresponding order parameters

are solutions of the equations

m’ = [De{ (¢ - 0)f(82)) (100)
v =2 [D:( 5(69)) (10)
1 1
g =z — E/DZ« T3 (da) (g@) ) (10¢)
SBu-r) = ~U et 5 (10d)
ro= a —qC)2 (10e)
where f(z) = 1/(1 + exp(—=z)). For a discussion of the solutions of these equa-

tions we study the special case that the network has macroscopic overlap with only
one pattern, i.e. m” = md, 1, and that the temperature is zero. For m¥ = mé, 1

equations (10a-c) are

m = ! ; : (erfc(—(bl) - erfc(-—@o)) (11a)
z = %erfc(—@l) + ! -;aerfc(—(bo) (110)
1-C 2 _ 2
C = NCETTT (a exp(=®1°) + (1 — a) exp(—dy ) (11¢)
with
a C
¢, = (m U—-~z+ 51—_—0) and
¢ = ( z+ g_C_)
0= \/2aa.1: Ttz c)
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Fig. 1: Storage capacity a. multiplied by a (bold line) as a function of ~[lna]™! (U = 0.7, y =

0.0). The thin lines denote (o, a) values with constant information (0.1,0.2,0.3 bits) stored per
synapse. The symbols O, [0, A indicate contour lines of (e, a) values for which networks recall

with 0.95 (), 06.97 (O) and 0.99 (A) accuracy.

The parameters r and y can be expressed in terms of the other parameters and have
been inserted into (1la—c).

Equations (1la—c) have to be solved numerically. As long as solutions with
m + az < 1 exist, the network can be assumed to work properly. One investigates
then for which values a¢ of a the solutions of (11a—c) do not satisfy the condition
m+ax < 1. This value is called the critical storage capacity and corresponds to the
maximum fraction of patterns stored. This analysis shows a remarkable dependence
of the critical storage capacity a. on the activity parameter a. Storage in the network
is limited by the variance of the structural noise, i.e. by the value of (1 —C)/v2aaz.
The dependence of the critical storage capacity ac is shown in Fig. 1. In the range

—1/lna < 0.17 ac scales as

0.1991
lna

+1.394-1073. (12)

aqe & —

In the limit of extremely small activation (a < 10~%9) the storage capacity is given
by ac = C(U)/(alna) where C(U) depends on the threshold U (C(0.7) = 0.22).
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Fig. 2: Critical storage capacity for networks with different inhibition strength (U + v = 0.7).
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Fig. 3: Recall error 1 — m — ax at a. for networks with different global inhibition (U + v = 0.7).

Feigel’'man and Tsodycs have shown C(1) = 0.5 [5]. The functional dependence
of a; on a originates from the growth of lg'}iqerfc(—@()) in (11b) which destabilizes
the solution m” = mé, 1. The scaling behaviour (12) coincides with the upper
bound determined by Gardner [12] who derived for the optimum storage capacity a

dependence a; ~ —[alna]™! as well. This coincidence suggests that storage in our



network for small a is nearly optimal.

One can analyze the properties of the solutions of equation (1la—c) for values
a < ac and determine the recall error, defined as R = 1 — (m + az) as well as the
information stored in the network in units of bits/synapse [see below]. One can then
seek solutions of the equations (11) with m! £ 0 A m2£0 A m¥ =0 Vv > 2. Such
solutions correspond to situations when the memory errouneously retrieves patterns
which are superpositions of stored patterns. Such network states are referred to
as spurious states. Such states do not exist near a. since in this region they are
destabilized by structural noise. The region in the (o, a)-space where spurious states

exist is located below the dashed line in Fig. 2.

The dependence of the critical storage density ¢ on a for networks with global
inhibition is shown in Fig. 2. The threshold U is adjusted to different inhibition
values according to the formula U ++ = 0.7. a is seen to increase for intermediate
activation levels a. The range of the increase depends on the parameter 7, i.e. on
the strength of global inhibition. The critical storage capacity for small activity
levels a depends only very slightly on ~.

The recall error R at the critical storage density a. for various values of v is
shown in Fig. 3. In the limit « — 0 all recall errors vanish. Such behaviour has
also been found for matrix memory models [13]. Figure 3 shows that the error
rate of networks with strong global inhibition at @ = a, can grow to values larger
than 30 percent. This result implies, that in case strong inhibition is required to
prevent spurious states, acceptable recall behaviour can be expected only at low

mean activity levels.

The effectivity of the network as an associative memory can be evaluated by
calculating the information content per synapse, i.e. the number of bits stored by
one synapse. We obtain the information content of a network by calculating the
entropy of the pattern states diminished by the loss of information due to errors in

the equilibrium state. The entropy of the network state assumes the value
Sy = —amln(am) — a(1 — m)In(a — amt) — a(z ~ ™) In(az — amA)
(1-a(l+z-m))n(l —a(l +z—7m))

(M = m" 4 az) whereas the entropy of an arbitrary pattern state is S p=—alna—

(1 — a)In(l1 — a). The total information stored in the network in units of bits

10



is I{e,a) = aN?(Sp — AS)/In2 with the loss of information accounted for by
AS = Sy — Sp. InFig. 1 the contour lines in the (a, ) space with I/N? = 0.1,0.2,0.3
are shown. The phase diagram shows clearly that more information can be stored
in a network with a sparse coding scheme, i.e. small a. A quantitative analysis
reveals that for U = 0.7 and ¥ = 0 the information content per synapse I/N? is as
large as 0.38 bits/synapse. The case of clipped synapses can be treated as in the
Hopfield model [14] and yields a slightly reduced information content (I = 0.28 for
a=107%, U =0.75).

6. Conclusion

In this letter we have proposed a neural network which can store and recall
patterns with low activity, i.e. sparce patterns. The system has been analyzed by
means of methods developed for statistical mechanics of spin glasses. The network
proposed assumes optimum storage capacity a¢. Since many interesting information
processing tasks involve sparse coding, the proposed network appears to be a most

promising candidate for practical applications of model neural networks.
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