Invariant Pattern Recognition by Means of Fast Synaptic Plasticity
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A two layer neural system for shift-invariant pattern recognition is proposed. Model
neurons are endowed with “physiological dynamics” involving membrane potentials
and axonic spikes. Synapses between the two layers are plastic and change according
to spike coincidences (Hebbian rules). The first neural network (encoder network) ex-
tracts features from a presented pattern and codes the neighborhood relationship of
features by coincident activity of neurons. The second network (memory network) has
stored several patterns. During recognition of a presented pattern the neural system
establishes a strong projection between the first and the second layer, enhances activ-
ity in the set of those neurons, which represent the presented patterns, and suppresses
activity of other neurons. Synaptic plasticity according to Hebbian rules allows to gen-
erate a projection which preserves feature neighborhood relationships. The recognition
system is designed according to suggestions of v.d. Malsburg (1981).

1. Introduction

Neural modeling has attracted much attention in the scientific community. Cogni-
tive science and artificial intelligence are beginning to embrace dynamical models like
neural networks for information processing. These models share some properties of
biological networks, such as fault tolerance, massive parallelism without a system-wide
clock cycle and high connectivity and can contribute to our understanding of collective
computation in systems with a large number of simple elements. The Hopfield model
[1] and related networks, in particular, have provided insight in dynamics of associa-
tive memories. In this paper we address the problem of shift-invariant recognition of
patterns where neural modeling has shown promising preliminary results [2]. The in-
variance problem is one of the central problems of pattern recognition and still awaits
a satisfactory solution.

Pattern recognition can be divided into two different problems — the problem of encod-
ing a presented pattern invariant of its size, position and slight distortions of its form,
and the problem to compare an encoded pattern with several stored pattern. Associa-
tive memories can only tackle the second task. They have the ability to search in the
space of Hamming distances, i.e. to look for that pattern stored which is most similar
to the presented one. Therefore, it is necessary to normalize a presented pattern, i.e.
to shift, to rotate and to change the size of a pattern, before the associative abilities
of distributed memories can be envoked.

Invariant encoding of a presented pattern can be achieved by separation of absolute
information on pattern position, size or form from internal relations between different
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Fig. 1.

Schematical description of the neural sys-
tem designed for invariant pattern recog-
nition. Information flows from model
retina R to encoding layer C which ex-
tracts features from the presented pat-
tern. Layer M plays the role of an asso-
ciative memory which has stored several
patterns. Black triangles indicate excita-
tory synapses, small white squares show
inhibitory synapses. Large squares indi-
cate neurons sensitive for different fea-
tures denoted by numbers (labels).

parts of the pattern. A concept for invariant pattern recognition has been proposed
by v.d. Malsburg [3]. He suggests that neighborhood relationships are encoded by
correlated neural spikes. Neurons signalling spatially distant parts of a pattern do not
show coincidences in their firing behaviour. Coincident firing of neurons indicates that
these neurons extract neighboring features from a pattern.

2. Layered neural system for invariant pattern recognition

The neural system we are studying consists of two neural layers and a retina (R).
Schematically, the system is shown in Fig. 1. The model retina serves as an input
channel of the neural system. Patterns appear at an arbitrary position on the retina
and will be transfered to the first neural network, the encoding layer (C). The retina
is much larger than the presented patterns. Therefore, it is necessary to recognize the
patterns independent of their actual position. In computer simulations of the neural
system we restrict ourself to the case of one-dimensional patterns. The model discussed
can be generalized to two—dimensional patterns.

A first neural network — the encoding network (C) - extracts various features from the
presented pattern. The C-layer has the same size as the retina. Reduction of resolution
which normally occur during feature extraction is not considered. We separate the
problem of feature extraction from the problem of invariant recognition. A further
simplification is introduced by the assumption that exactly one feature is extracted at
each site of the pattern. Neurons which represent these features are shown in Fig. 1 by
small squares containing a label for the feature for which the cell is sensitive. Activity
of a labeled neuron at position z indicates that the corresponding feature is present at
.

A second network (M) which serves as associative memory has stored several patterns.
These patterns are represented by sets of neurons also called “neural assemblies” [4].
One of the patterns is presented to the system and should be recognized. In Figure 1
layer M contains a pattern which is activated in layer C. By correlated firing of small
clusters of neighboring neurons in both layers a presented pattern can be recognized
and distinguished from other stored patterns.
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3. Synaptic connectivity

The synaptic connectivity from retina R to layer C is a one-to-one projection.
The synapse connecting receptor j with neuron ¢ of the C-layer has the strength
R;; = R&;;. This simple connectivity neglects the question how certain features are
extracted from a presented pattern. In our model the projection from retina to C-
layer has only the function to transmit receptor activity and to activate corresponding
neurons in layer C.

Synaptic interactions between neurons of layer C are organized in form of “near ezc:-
tation, far inhibition”. Neighboring cells are excited by a firing neuron, more distant
neurons are inhibited. The synaptic strengths have values

W, if |{ — k| < Le
WSS = -W, ifLe<|i—k|<L; (1)
—¢W; if |i — k| > Li

with range of excitation Le = 2 and range of inhibition L; = 4. Synaptic strengths are
chosen as We = 1, W; = —1; the ratio between near and far inhibition has the value
¢ = 0.1. The center—surround—connectivity brings about small clusters of neurons of
size 2Le which fire nearly simultaneously. Thereby, neigborhood relations | — k| < 2L
between two neurons 1, k are encoded in simultaneous spikes. Layer C with its center—
surround-organization encodes a pattern specific feature neighborhood relationships
(feature topology). This encoding allows to identify a presented pattern with a pattern
stored in a shift-invariant format, i.e. in a format which solely represents the feature
topology of a pattern.

Synapses between neurons of layer M which belong to one pattern have also a center—
surround organization, i.e. the synaptic strengths assume values also given by (1). As
in layer C, firing neurons of layer M encode their neighborhood relations in simulta-
neous spikes. Synapses between neurons belonging to different patterns are inhibitory,
ie. Wi = —AW; if ¢ € {pattern v} A k € {pattern u} A v # u with A = 0.1. Inhibition
between different patterns yields competition between different neural sets. The assem-
bly with the feature topology which matches the input in C has the largest probability
to fire with high spike rate; the activity of alternative representing different feature
topologies is suppressed. assemblies. Synapses inside layer C and layer M possess no
plasticity.

With fast plastic synapses between layer C and layer M the correct classification of
a presented pattern as one of the stored patterns is achieved. These synapses are
excitatory and evolve in time according to Hebbian rules [4]. At the beginning of a
recognition task inter-layer synapses are weak and preserve feature labels, i.e. there
exist only synapses between neurons sensitive for the same feature types F;. The initial
synaptic strengths are

WM©) = W™ s 5. (2)

Inter-layer connection between an activated set of neurons in layer C and two sets of
neurons in layer M are shown in Fig. 2. In the first case (left picture), neurons in C
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Fig. 2.

Comparision of two connectivity structures between layer C and layer M.
Excitatory synapses exist between all neurons representing the same feature
type.

and in M have identical feature topologies. Therefore, there exists initially an ordered,
topology conserving projection between both layers. Activity of a cluster of neurons
in layer C yields strong excitation of those neurons in layer M encoding the same
part of the pattern. These neurons will fire with high probability. In the second case
(right picture) the inter-layer synapses connect two sets of neurons in C and in M,
respectively, with different feature topology. There are initially only isolated synapses,
but no ordered projection.

4. Dynamics of Membran Potentials

The dynamics of neurons are described in our model by two variables, membran po-
tentials and axonic spikes. The dynamics of the membrane potentials involves two
processes, relaxation of the membrane potential and neural interaction as determined
by the somatic integration rule. Axonal spikes are generated whenever the membrane
potential reaches a threshold value. A detailed description of the neural dynamics is
given in [5]. Postsynaptic excitation by presynaptic spikes is described by an exponen-
tial activity function with decay time Ty = 1ms

Gp(Atp/7) = exp (—ﬁ:ﬁ), with Aty =t—t. (3)

Aty = t — to;, measures the time elapsed since the last spike of neuron k at t?c. The
kinetic equations of the membrane potentials U;(t) which also include the stochastic
fluctuations are given by a system of non-linear coupled Langevin equations

duf = _ZE‘_ 1 | wlolAl n- L € {c,M
e i plAt) ( [Ak ()] + Wﬁ(t)) e{em}. (4

Upper index L denotes the layer of neuron ¢. The first term in (4) approximates the
relaxation of the membrane potential U,(t) to its resting value Uy = 0mV within a
time interval Tp = 2.5ms. The second term in (2) describes the communication of the
postsynaptic cell ¢ with the connected neurons and receptors and adds a Gaussian white

noise £(t) with strength n/4/Tg/2. Noise in an isolated neuron produces a Gaussian
R
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distribution of the membrane potential Uj(t) with mean value Uy = 0mV and variance
= 10mV. Afferent activity A{(t) of a neuron i in layer C consists of receptor activity
and of interaction between neurons of layer C, i.e.

At®
4560) = TR + W) ®)
J

with ¢,k € C and 5 € R. Contributions to the postsynaptic potential of neurons in
layer M are due to the interactions between the two layers and due to the interactions
within layer M, i.e.
At; At
A = LwWMGH (L) + L wiMGH(Zh) (6)
7 Ty T Ty

with i,k € M and j € C. The coupling constant w® and the strength of noise n depend
on the layer index L € {c,m}. Typical values are w® = 50mV/ ms, wM = 100mV/ ms
and n® = n™ = 10mV. The sigmoidal function o[4;(t)] with a linear behaviour for
small A;(t) and a saturation value for strong activity prevents potential changes which
are unphysiologically large. Total and relative refractory periods are taken into account
by the function p[At;] which suppresses the sensitivity of neuron ¢ to afferent excitation
during a total refractory period Ty = 5 ms. The function also lets the neuron gradually
regain its sensitivity to incoming excitation or inhibition during a relative refractory
period of 5 ms.

Continuous time evolution of potentials in our model is interrupted when the neu-
ron reaches the threshold Uz = 30mV and fires a spike. Instantaneously, the mem-
brane potential is set to a value normally distributed around the refractory potential
Up = —15mV. In this event the time of the last spike t? is updated and the memory
function G;(At;/Ty) is set to the value 1. This behaviour is represented as follows:

. t =1t
if U;(t) > Up, then {Ui(t) — Up+ £(0). (7
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The reaction of a neuron to a receptor input depends on the coupling constant wb (we
assume R;; = 1). In case of strong coupling the excited neuron will always reach the
threshold whereas weak coupling causes only small postsynaptic potentials which never
reach the threshold. Figure 3 shows the probability that a neuron which received a re-
ceptor spike at ¢ = 0ms will fire within 5 ms. This probability is presented as a function
of the coupling strength w R, for four different noise levels (n =0,5,10,15mV).

5. Plasticity of interlayer synapses

In our neural system for invariant pattern recognition we introduce synaptic plasticity
on a time scale of 0.2—0.5s [5]. According to the Hebbian rules the synaptic dynamics
is assumed to depend on synchronicity or asynchronicity of the pre- and postsynaptic
spikes. In addition to the Hebbian rules we require for synaptic modifications that
the mean spike rate of both neurons considerably exceed the spontaneous spike rate
vs ~ 5s~1. In the case of synchronous firing both neurons satisfy this condition and
the synapse will be strengthened. If only the presynaptic neuron fires with a high spike
rate the synapse WS-M(t) is weakened after each presynaptic spike.

Plasticity of synapse WS-M (t) connecting neuron j of layer C to neuron ¢ of layer M is
governed by the equation

dweM WEM(t) — WM A
] Y =L :yG;) OF. F. 8
dt Tw + nG] (TM) K'(Gu ]) F; F;» ( )

it WEM(t) € [0,1]. The first term describes relaxation of WEM(2) to the initial value
WCSM = 0.2, the respective time constant being Tyy = 1—2s. The second term describes
changes of the synaptic strengths between neurons of the same feature type (F; = F}),

the corresponding time scale is 1 = 0.3 s~1, k takes the value 1 if both neurons are
firing within Tj; = 4 ms and the value -1, if only the presynaptic neurons is active; in
all other cases x vanishes (for details see [5]). In case WM (t) ¢ [0,1], WM (t) relaxes
to WM,
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Fig. 5.

Synaptic strengths between C-layer and M-layer at time ¢ = Oms, t = 300ms, ¢t = 800 ms.

6. Simulation of the system

In this section we describe a simulation of the suggested neural model. Two patterns of
32 features drawn out of 16 feature classes are stored in the memory layer. Each feature
occurs twice in each pattern. The two patterns can only be distinguished according to
the topology of features, i.e. according to the proper sequence of features. The pattern
stored are
123456789101112131415161611164914271238135 1015 and
312281571311151364911148913165166101447125 10 12.

In order to test the performance of the system the first pattern is presented to the
system in R, respective C. The system should respond by activating only the first
pattern in M, not the second pattern.

An important question for encoding feature neighborhood relations by spike correla-
tions concerns the number f of feature classes. How many feature classes must be
chosen, that a short part of the pattern is unambiguously characterized by the corre-
sponding features? For an average cluster size b of activated neurons it is necessary
to choose f >> b feature classes. Otherwise, each activated cluster is equivalent to all
other clusters and the activation of layer M is rather diffuse. We cannot expect that
an ordered projection from layer C to layer M arises if f<b.

In the simulation we choose the paramters w®, wM in such a way that the mean cluster
size of active neurons is about 2L + 1 with Le = 2, L; = 4. The simulation lasts from
t = —1000ms to t = 1000ms; for ¢ > O the synapses between layer C and layer M
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are plastic. The mean activity of the two neural assemblies of layer M representing
the presented pattern (bold curve) and the second pattern (thin curve) are shown in
Fig. 4. For t < O the assembly representing the presented pattern fires with a slightly
higher activity than the alternative assembly. After the synapses WSM became plastic
the mean activity of the pattern with the correct feature topology is enhanced and
activity of other neurons is suppressed. The correct pattern is selected and recognized
by the system solely on account of topological correspondence.

The evolution of synapses WS-M is shown at three different time instances in Fig. 5.
The size of the symbols [J is proportional to the synaptic strengths. The row index
marks neuron j of layer C, the line index marks neuron i of layer M. The symbols [
outside the three rectangles show the mean activity of the corresponding neurons in C
and in M. At time ¢t = 0 we obtain a sparse matrix of synaptic connections WS-M with
a non-vanishing diagonal in the upper part. During the recognition task the diagonal,
which corresponds to the correct one-to-one projection between the presented and the
stored pattern, is strengthened and the other synapses are reduced.

7. Summary

We have demonstrated that invariant pattern recognition of labeled patterns is possible
with a two layer neural system endowed with plastic connection between the two lay-
ers. The neighborhood relations between features are encoded in spike correlations of
neurons which represent these features. Thereby, patterns consisting of an equal num-
ber of features with different arrangement of these features can be distinguished. The
dynamics of synapses converge fast enough that this mechanism can support invariant
pattern recognition also under biological constraints.
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