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Storing Sequences of Biased Patterns in Neural Networks
with Stochastic Dynamics
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Abstract: A network of spin-like neurons with asymmetric exchange interactions and
stochastic spike response is proposed. The network can store and recall time sequences
of regular and random biased patterns. The patterns can overlap. The performance of
the suggested network is described by Monte Carlo simulation, in terms of a Fokker—
Planck equation and, for a very large number N of neurons, in terms of a Liouville
equation. We provide analytical expressions for the timing of the recall and analyze the
scatter of the recall around the limit of precise recall N — oco.

1. Introduction

Presently many investigators [2-7] begin to focus on neural networks capable of tempo-
ral recall since it is generally realized that brain function cannot be separated from the
temporal dimension. The natural computational mode of the brain involves a contin-
uous, ever changing stream of afferent (e.g. sensory) and efferent (e.g. motor control)
data. Technical applications for neural computers will likewise require computational
characteristics in the time domain, for example in robotics where one needs to recognize
temporal patterns or to generate motor output. In this contribution we demonstrate
the possibility to store and recall temporal sequences of patterns of control signals, in
particular, we investigate the accuracy of such recall. The latter investigation appears
to be expedient for it must be realized that scatter of temporal patterns, when it is
additive in the time-domain, gives rise to a diffusion-like spread in time which must be
controlled if precision is to be attained other than through sensory feedback.

Little [8], Hopfield [9] and others [10,11] have shown that neural networks with spin-like
neuronal units and symmetric synapses can be used as content-addressable memories.
For this purpose the synaptic connections (exchange interactions W;;) are chosen such
that the equilibrium states of the network coincide with states which represent stored
static patterns. Recently (1], we proposed a neural network model which solves the
problem of a content-addressable memory for temporal patterns. Previous attempts
to construct such memories have relied on non-symmetric synaptic interactions with
temporal features: the synapses transmitted the interaction with a time delay [3-6] or
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the synapses changed their interactive strength in time [2,7]. Such synapses have been
observed only in very few and very specialized neural systems and, therefore, may not
serve for temporal storage in brains.

We have shown in 1] that spin-like networks can realize storage of temporal patterns
with synaptic interactions which are neither time-dependent nor exhibit a delay. The
networks proposed in [1] require only two new features: (1) synaptic interactions must
be sufficiently non-symmetric, (2) noise must be present. Both features are considered to
be natural attributes of biological networks. The asymmetric synapses in our model as
in models with time-dependent or delay synapses provide directed projections between
quasi-equilibrium states of the network and, thereby, define a sequential order among
stored patterns. Noise triggers transitions between consecutive patterns. Because of
this stochastic attribute transition times are not precise. However, if stored patterns
are represented by large enough sets of neurons, fluctuations in the transition time
decrease.

The following contribution extends the investigation in {1] in two respects: (1) we con-
sider the case that the patterns involved in the recall overlap (random biased patterns);
(2) we analyze the scatter of the recall around the deterministic, i.e. precise, recall
dynamics attained in the limit of infinitely large networks.

2. Model Network

Our network is composed of N neurons described by dynamic variables {S; }fil Neuron
i is either firing (S; = 1) or quiet (S; = 0). The variables are updated asynchronously
according to a probabilistic rule which represents the action of noise in the system

) 3 {1, with probability f;(t)

S; (t + = . .
0, with probability 1 — f;(t)

where f;(h;) = (1 + exp[—(h; = U) /T))~? is the probability that neuron ¢ fires at time
t + 7/N if it is excited by the molecular field h; = Sk W;rSk. The asynchronous
updates of neurons establish a characteristic time scale of 7/N for one spin flip where 7
corresponds to one Monte Carlo Step (MCS). The parameters U and T are the threshold
potential and the network temperature. The threshold potential U defines the scale for
neural interaction. In case of h; > U the neuron fires with certainty, in the opposite case
(h; < U) the neuron is quiescent. The temperature T, a measure of the fluctuations
of neural potentials weights the excitation h; of neuron 1. In neural networks with
strong fluctuations (T > 1) the neuron fires with probability % independently of its
interaction with other neurons. In case of vanishing temperature T' the spike probability
f; converges to the Heaviside step function ©(h;), i.e. O(h;) = 1for h; > U and
©(k;) = 0 for h; < U. The theory presented below requires only a monotonic behaviour
of the function f; with asymptotic values fi(o0) = 1 and f;(—o0) = 0, i.e. does not
depend on the analytical expression given here.

The neural network described by (1) would be of Hopfield type and store a set of
patterns SY = {S;}ﬁ__l, v =1,...,m if the exchange interaction WPk were chosen
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wh = N71%; (ZS}’ - 1) (ZS,;’ - 1). Associative storage in a Hopfield network re-
quires that the stored patterns consist of fifty percent of active neurons and that
the values S/ are statistically independent such that the orthogonality condition
i (251-" - 1) S¥ = N/2 6,, is satisfied. The patterns S” which we intend to store
in our network are biased, i.e. consist of only a small fraction n¥ of firing neurons with
SY = 1, without the requirement of statistical independence of the SY (n¥ = T; SY).
This allows to store meaningful, i.e. non-random, patterns. Storage of patterns with
low level of activity [see also 12] appears to be closer to the behaviour found in brains.
The impossibility to store sequences of unbiased patterns [9] is caused by the existence
of spurious stable states, i.e. mixtures of only few patterns. In our network which stores
biased patterns, there exist no spurious states which disturb the proper recall of the
sequence, an observation which is also reported by Amit et al [12].

Storage is achieved in our network by a choice of exchange interactions which differ from
that of the Hopfield network. We construct the synaptic interaction between neurons
in a hierarchical manner. The formation of neural assemblies representing the stored
patterns is achieved by an excitatory symmetric interaction

m
Wh = 3 esysg (2)

1
v=1

where €/ = 1/n" is a normalization constant. The interaction (2) connects all those
neurons which fire simultaneously in at least one of the m patterns by an excitatory
synapse. In contrast to Hopfield’s learning rule the large number of background neu-
rons are not connected through excitatory (W;; > 0) interactions. This seems to be
plausible since two neurons which belong to the background and, therefore, never fire
simultaneously should not considered to be correlated with respect to their activity and,
hence, should not interact directly.

With choice (2) for the interaction all patterns {SY} which overlap sufficiently with
the initial state of the network will be retrieved, i.e. are represented in the asymptotic
state of the network. In order to select a finite number of patterns one needs to invoke
a negative (inhibitory) additional contribution to the exchange interaction

I m m m_y,ou
Wh=- 3% % aRstst ©)
y=1 p=1
[v—un|>1

Here « is the average strength of the mutual inhibition, e.g. 4 = 1.0. The particular
inhibitory term chosen here introduces a competition between the neurons of any stored
pattern v and all other neurons except those of the preceeding and subsequent patterns
v 1 during the retrieval dynamics such that only that pattern g closest to the initial
state is represented asymptotically. The inhibitory term (3) provides the network with
the ability to make a decision for a single pattern, for example to associate asymp-
totically to a mixed input pattern 0.7SY + 0.3S# the stored pattern SY and not the
~ superposition S + SH,
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In order to retrieve the patterns SY in the sequence v = 1,2,...,m we add positive
foreward and negative backward interactions Wfk between consecutive patterns in the
sequence, i.e.

m .
Wx;c = Z (au—leu—lsz—l _ ﬁv+lev+lsllcl+l) Szy' (4)

v=1

If a network is in state S” the obvious effect of the added excitatory and inhibitory
contributions is to excite S¥ +1 and, when this state is sufficiently presented, to inhibit
S¥. This induces a consecutive retrieval of patterns S7, sot+l ..., S™ when the network
starts in a state exhibiting dominant overlap with pattern S7.

The actual synaptic strength between two neurons ¢ and k is defined as follows

(WS, if W)#0

?

m
wh, if W=0A zls,? (sp~t+sp*h) #£0
v=

Wi = W m m (5)
i v £ £ st
y=1 »p=
|u—vi<1

This expression describes a hierarchical construction of neural interactions: all neurons
which represent the same pattern are connected by excitatory synapses; all neurons
which do not fire simultaneously in one of the m patterns but belong to succeeding
patterns receive positive foreward and negative backward projections; all neurons which
belong to different, not consecutive patterns inhibit each other strongly. To realize
consecutive recall of patterns §o 8ot ..., 8™ we found parameter values U = 0.35
and T = 0.1 suitable.

In case of exactly orthogonal patterns, i.e. for ¥, €S/ S;‘ = by, Vi,v, (5) can be
expressed in closed form

m m
m - - -
Wi = Z evslxc/ _ Z ,Y_N_S’;: + o lev 1.5';: 1 _ ﬂ"+ley+15ku+1 S,:’. (6)
v=1 p=1
' lv—n|>1

3. Simulation of Temporal Recall for Overlaping Patterns

The result of a Monte—Carlo simulation of our model is shown in Fig. 1. The network
considered has stored 10 random biased patterns with a mean activity level of 0.1, i.e.
only 10 percent of the neurons in each pattern are active. The correlations Cyy between
two patterns v and g, defined as the number of neurons which fire in both patterns is
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Fig. 1.

Simulation of the network which
stores 10 random biased patterns
with only 10 percent of the neurons
active. The curves show the evolu-
tion of the magnetizations z¥(t) as a
function of time. The network con-
sists of 3000 neurons which are all
connected with each other.
(Network parameters:

a¥ = -0.15,4Y = 2.0 Vv,

7=20,T = 0.075,U = 0.35)

Magnetizations x*(t)

Time t/MCS

given by the matrix Cop=3%;8¢ Si" . For the example studied Cyy has the form

31031 29 27 29 23 30 29 38 35\
(31 293 38 28 39 21 21 37 21 20
29 38 296 22 38 28 42 29 36 26
27 28 2227132 24 28 28 26 20
C — 29 39 38 3231237 32 33 31 20

vp = 23 21 28 24 3727330 27 29 29 |°
30 21 42 28 32 30 30127 31 31
29 37 29 28 33 27 27 299 28 29}

38 21 36 26 31 29 31 28 311 24
\ 35 20 26 20 20 29 31 29 24 265

i.e. the patterns all overlap in about 1 percent of the neurons.

The magnetizations £¥(t) = T, ¢ S¢Sk (t) which measure the overlap of pattern S¥
with the momentaneous network state S(t) each are seen in Fig. 1 to assume small
resting values around 0.1 except for a brief period when the zV rise close to the value
one. The ordering of these periods implies that the network consecutively jumps from
one pattern to the next.

4. Theory of Temporal Recall for Orthogonal Patterns

In the following we focus on the special, analytically tractable case of a network with
patterns stored for which holds the orthogonality condition 2, €“SY S{‘ = by for all pat-
terns v and p. In this case a salient feature in the choice of the exchange interaction (6) is
that the molecular field k; depends solely on the magnetizations z¥(t) = ¥; ¥ SYS; (t)
and not on the neuron index ¢. The network, therefore, can be completely described by
the dynamic variables z¥(t), v =1,... »m; the probability f; in (1) can be replaced by

(1 + ezp (-— EV:; U)) - (7)

v
mn
.

N

¥ (x())

m
oY = au—lzu—1+zv_ﬂu+lzu+1__ Z o
p=1

lv=ui>1
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Fig. 2.
Simulation of the network with

1.00 8 patterns stored and parame-
ters v = 8,nY = 100 Vv,a’ =

Magnetization x"(t) of Pattern v

0.75 4 01,8 =10,7=01,U=035.
The curves show the evolution
of the magnetizations z¥(t) as a

0.50 7 function of time.
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where TV is the molecular field of all neurons i for which hold S} = 1. (Neurons which
are not active in any stored pattern according to (6) are strongly inhibited by a molecular
field £ = — ¥, ymn¥z#/N.) The introduction of the variables z¥(t) drastically reduces
the dimension of the phase space of the network, namely from 2N to m. This reduction
results from the fact that the parameters o¥,8",7,U,T in (1,7) do not depend on the
neuron index i. In case of networks with more heterogeneous interaction parameters,
i.e. a neuron—-dependent foreward projection strength o; from pattern v to v + 1, our
model can also be applied when the interaction parameters are represented by their
respective mean values.

The accuracy of the timing of the recall improves when the number of neurons which
represent the patterns increases. To demonstrate this important aspect we present in
Figs. 2,3 two Monte—Carlo simulations of a network model in which the patterns stored
have the size n¥ = 100 and n¥ = 1000, respectively. The dynamics of the network
considered is described by z¥(t),v = 1,...,8. A comparision of the results in Figs.2,3
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demonstrates that fluctuations in the transition time decrease with the size of stored
patterns.

To study the dynamics of our network we derive a master equation which describes
the probability that the network assumes specific ¥ values at time t. A closed and
simple master equation in terms of z¥ can be derived since the evolution of the network
depends only on the magnetizations x = {z¥(t)}™., and since the asynchronous updates

(1) affect always only a single z¥ (t).

4.1 Markov Process

Because of the asynchronous update of neurons different magnetizations z¥ are coupled
only through the spike probability f¥ given in Eq. (7). (Note that z¥can assume the
values 0,€”, 2¢¥, ..., 1.) Summing up all neural processes which result in the probability
p(x,t) to find the system in a state with magnetization z¥ one obtains the rate equation

p(x,t-f—%) = i e"lN [p(z”+e")(z"+e") (l—f”(:c”-f—e”))

v=1
+ p(zl/_ eV) (1 _zU+€V) fl/ (zl/ __GV)
2 () + () (-2 (1- (z”))] ®)

where the arguments z#, # v of p(x,t) and of f¥ (x,t) which remain unaltered are
suppressed on the r.h.s. The first term on the r.h.s. describes the transition of a firing
neuron belonging to pattern v to the resting state (5;(t) = 0), the second term describes
the inverse process. The last two terms account for processes which do not change the
magnetization z¥, i.e. that an active neuron fires again and a quiescent neuron remains
in the resting state.

4.2 Fokker—Planck Equation

In the limit of many neurons (N — o) and of large patterns (¢ — 0) the discrete
rate equation (8) becomes a continuous equation in time ¢ and in the magnetizations x.
Taylor expansion of (8) results in the partial differential equation

T 9 T nY . ;] 8
N 3 plx,t) = 3 N2 [— sinh (e"%;) F'p + (cosh ( "%;) - 1) D”pJ

with F¥ = —(z¥ - f¥) and D¥ = z¥ + fY =22V fY. Neglecting terms of order (e¥)3
and higher one obtains the Fokker—~Planck equation

0 n a _, v
1‘5 (x,t)’:Z -WFP-}-?(Q:L-VZDP" (9)

v=1

In the derivation of (9) we have assumed self-excitation of neurons (W; # 0). Without
self-excitation the transition from the discrete rate equation to an equation continuous



—_ — Fig. 4.
= Time dependence of magnetizations
t 08 F 1 =z¥(t) and z¥ +1(z). The solution
®o of (10) is compared with the result
é A ) from Monte Carlo simulations.
o 0.6 .
8 .
S 04 x"(t) .
o
N
3
g 02 .
-]
]
= 1 h

5. 10. 15. 20.

Time t/MCS
in x reproduces (9) except for an additional (diffusive) term o, 2¢” [5%7::" pai—u fv ]
on the r.h.s.

4.3 Liouville Equation

In the limit of infinitely large patterns (¢/ = 0) Eq. (9) simplifies further and as-
sumes the form of a deterministic Liouville equation [13]. In this limit the vector of
magnetizations x obeys the kinetic equation

T %z" = - (z”—f"(x)) . (10)

An equation of this kind has also been derived by Peretto & Niez [14].

4.4 Estimate of Recall Parameters

The threshold U in (7) has to prevent fluctuations from activating patterns in wrong
succession, but should not be as large as to suppress all pattern states during a transition
from pattern v to v + 1 when z¥ and zV*! assume values around 0.5. To satisfy these
requirements, U needs to lie in the range T < U < 0.5. Inserting such U into (7) yields
fl~1land fF =0, p¢{v,v+ 1} when the network occupies the Vth pattern state, i.e.
for z# = 8yuy. These considerations allow us to investigate the transition from pattern v
to v +1 by projecting the dynamics onto the plane spanned by {z”,z" +11, In Fig. 4 the
magnetizations z¥(t) and z” +1(t) corresponding to the solution of (10) for the initial
state (:z:"(O),:z:" +1(O)) = (1,0) are compared with the magnetizations obtained from a
Monte Carlo simulation. »

We introduce now an analytical approximation for the transition of (z¥,z" +1) from
(1,0) to (0,1). This approximation allows us to determine some important network
constants, e.g. the time for the transition from pattern v to v +1 or the minimum value
of the synaptic strength parameter o needed for the suggested mechanism of temporal
recall.
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We first derive an estimate of the minimum a” value. For this purpose we consider the
component F¥*+! along the axis z¥ = 1. The minimum value $**1 of F¥+! is

zvV=1

_.__2_T____ (11)
14++1-4T

1
vl _ U —o¥ —2T h(————-)
X «a arcos Wia

The condition “*1 > 0, which assures that the transition can be completed, determines
the minimum value of V.

QV'}'I v+l +

= —X

To estimate the time needed for the transition we approximate the initial phase of the
transition by means of a quadratic expansion of F¥*+1 P around x”*! and by the
corresponding solution of (10). The resulting magnetization z“*1 coincides with the
exact z¥+1 up to the time r* where assumption z¥ = 1, equivalent to f¥ = 1, fails. The
time 7*

T‘ — T t w v+1
= Jovtr, | R \VorrX

w (1-Uyp-2T
+ arctan (\/ o ( ﬂf-{»l - XV+1>)] . (12)

has been obtained from the condition 1 — U — g¥*+1z¥+! = 2T, (w = /1 —47/2T).

The behaviour of z¥,z¥t1 at times t > r* is dominated by the asymptotic values
of f, i.e. fY =~ 0 and f¥*! ~ 1. The magnetizations evolve asymptotically as
z¥(t) = exp (—(t — V) /7), z¥T1(t) = 1 — exp (—(t - r”+1)/r) towards (0,1), i.e. the
(v + 1)* pattern. The time constants r¥ and 7**! involved can be determined numer-
ically or approximated by r¥ =~ 7¥*1 ~ 7*. The transition time 7,,_,, ;1 from pattern v
to v + 1 is defined as the time spend between the moment when z¥*1 starts to grow,
i.e. at t = 0, and when, subsequently, z¥1?2 starts to grow, i.e. when the minimal force
FY+? becomes positive,

min

1 2T
> 0.
2\/T)+1+\/1—4T (

Solving (13) for time ¢t we obtain the transition time 7,,_,,, 4.1 which consists of the terms
7* and of the relaxation time into pattern v + 1, i.e.

14
FFt) = U+ tiziti- '7&::;’ + 2Tarcosh ( 13)

min N

(14)

avtl + ymn¥ [N
TV—'U+1 ~ 7'* + 7 ln( QV'}'Z .

Figure 5 shows the dependence of the transition time 7,,_,, 41 on the noise as measured
by T for three different projection strengths a”. The transition time diverges for a
critical temperature T* defined by the condition @ +1 = 0. If the minimal force which
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drives the network towards the succeeding pattern v + 1 vanishes the pattern state v
remains stable for an infinite time. In the limit ¢/ — 0 one can actually tune the network
to stay for an arbitrary time in the pattern state  and then to jump to the next pattern
v+1. Figure 5 also shows an alternative operation mode for the network proposed. By
changing the temperature T in time, i.e. to switch from a temperature value below 7™*
to a value above T, the stability of the pattern states can be controlled. If T is smaller
than T* the network relaxes to the pattern state which has the largest overlap with the
initial state and remains there for an arbitrary long period. For T larger than T* the
network evolves from one pattern state to the next according to the synaptic forward
projection. In our network with time-dependent global noise the rythm of the pattern
sequence reflects the variation of temperature T.

4.5 Accuracy of Recall

The analysis above for infinite networks can serve as an approximation for finite net-
works [13]. In the limit of small diffusion coefficients DY in (9) the dynamics of the
magnetizations is dominated by the drift term. Fluctuations described by the diffusion
term only induce a small broadening of the probability p(x(¢)). Van Kampen intro-
duced a finite size approximation which can be applied in the limit of large but finite
patterns. For this purpose (9) is transformed to variables

v g’ —z¥ (t)

y - \/67

which measure the deviation from the solution z¥ () of (10). The resulting probability
distribution I1(y,t) for the y” obeys the m-dimensional linear Fokker—Planck equation

[e# D¥(x(t)) &2
e e—uayyy"ﬂ + — 5y IIj.

(16)

(15)

T At = 3 [—ZW

v=1 p=1
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T T T T Fig. 6.
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Equation (16) can be solved exactly and yields the m-dimensional Gaussian distribution

1 1 __
I(y,t) = Wexp (—5)'- 1}') (17)

as shown by van Kampen [13]. The covariance matrix E obeys the equation

d
58 = AE +EAT +D. (18)

with the abbreviations

120 3d ek
SR "
D = diag (D'(x(t),...,D™(x(t))) (20)

If we choose a well-defined initial state x(0) all elements of E(t) vanish and II(y,0)
assumes the form of a 6—function, i.e. II(y,0) = é(y).

Figure 6 shows the evolution of the radius /TrE/m of the distribution II(y,t). During
the transition from one pattern to the next Il(y,t) is distorted by the force field F¥ and
narrows when the network relaxes to the next pattern state. The peaks as well as the
minima of the radius {/TrE/m evolve as v/t as expected for diffusive processes. It is
obvious if the y” are inserted in (17) that the variance of the transition time of a single
pattern transition decreases as v/e” with increasing pattern size n.

Another consideration concerns the question in how far patterns may overlap and still
be properly recalled. An overlap is tolerable as long as it conserves the recall order
of the patterns. However, such overlap can strongly affect the transition time between
consecutive patterns as the random overlaps in the simulation of Fig. 1 demonstrates.
The dynamics of a network with non—orthogonal patterns stored can be described in
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terms of the enlarged set of variables z¥1»k(t) which count all neurons active at time
t and belonging to all of the patterns vj,...,v;. An analysis of the resulting dynamics
shows that an overlap between consecutive patterns corresponds to an enhanced pro-
jection strength from v to v + 1. An appropriate choice [15] of a” allows to tune the
transition time 7,_,, 41 for a given overlap z"V*t1,

5. Summary

We have demonstrated that networks of spin-like neurons can store and recall time
sequences of patterns by means of non-symmetric, time-independent and instantaneous
exchange interactions. The result of a Monte Carlo simulation of a neural network which
has stored random biased patterns demonstrates that also nonorthogonal patterns can
be stored in our network. The transition between patterns during recall is triggered by
global noise. The fluctuations of the transition times decrease with increasing network
size. The scatter of pattern recall is investigated in terms of a finite size approximation
for small diffusion coefficient and is found to obey a v/t law as typical for diffusive
processes.
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