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Abstract. — A network of spinlike neurons with asymmetric exchange interactions and
stochastic spike response which can learn and recall time sequences of biased patterns is
proposed. Noise makes synapses with delayed response or with time-dependent strength,
previously proposed for storage of time sequences, superfluous. An accurate timing of pattern
sequences requires a sufficient number N of neurons. The performance of the suggested
network is described by Monte Carlo simulation, in terms of a Fokker-Planck equation and, for
N— =, in terms of a Liouville equation.

Neural networks with spinlike neuronal units and symmetric synapses possess a highly
structured phase space with many local minima in a global energy function. Little [1],
Hopfield [2] and others([3, 4] have shown that such networks can be used as content-
addressable memories. For this purpose the synaptic connections (exchange interactions Ji)
are chosen such that the equilibrium states of the network coincide with states which
represent stored static patterns. In this letter we address the problem of a content-
addressable memory for temporal patterns. Previous attempts to construct such memories
have relied on nonsymmetric synaptic interactions with temporal features: the synapses
transmitted the interaction with a time delay [5-8] or the synapses changed their interactive
strength in time[9, 10]. Such synapses have been observed only in very few and very
specialized neural systems and, therefore, should not be invoked for temporal storage in
brains.

We show below that spinlike networks can realize storage of temporal patterns with
synaptic interactions which are neither time dependent nor exhibit a delay. The networks
proposed in this letter require only two new features: 1) synaptic interactions must be
sufficiently nonsymmetric, 2) noise must be present. Both features are considered to be
natural attributes of biological networks. The asymmetric synapses in our model as in
models suggested previously [5-9] provide directed projections between equilibrium states
of the network and, thereby, define a sequential order among stored patterns. Noise
triggers transitions between consecutive patterns. Because of this, stochastic attribute
transition times are not precise. However, if stored patterns are represented by large
enough sets of neurons, fluctuations in the transition time decrease.
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Our network is composed of N neurons described by dynamic variables {S;})-,. Neuron ¢
is either firing (S; = 1) or quiet (S; = 0). The variables are updated asynchronously according
to a probabilistic rule which represents the action of noise in the system:

1, with probability f;(t),
0, with probability 1-—f;(¢),

where f;= (1 + exp[— (h; — U)/T])~* ) for a molecular field &; = ZJ,k Si. The parameters U

and T are the threshold potential and the network temperature

The patterns S* = {S;}?~, which we intend to store in our network are biased, i.e. consist
of only a small fraction of firing neurons with S;=1 without the requirement of statistical
independence of the S}. This allows to store meaningful, i.e. nonrandom patterns. Storage of
patterns with low level of activity (see also [11]) appears to be closer to the behaviour found
in brains. We will assume the orthogonality condition ) ¢ S;S¢=4,.

Storage is achieved in our network by a choice of exchzfnge interactions which differ from
that of the Hopfield network. The exchange interaction J; is composed of a symmetric and
an antisymmetric part. The symmetric interaction between neuron k and ¢

m

Je=> 1SS — E y-S"S“
! .
consists of an excitatory and an inhibitory contribution. The first (excitatory) term induces a
cooperation between neurons which represent the same pattern v. The second (inhibitory)
term gives rise to a competition between all the stored patterns (0.1<y<1.0). The
resulting dynamics selects asymptotically a network state which coincides with that pattern
with the largest overlap with the initial state.

In order to retrieve the patterns S* in the sequence v=1, 2,...,m, we modify the
symmetric exchange interaction JY%. We first eliminate the weak inhibition between
predecessor-successor patterns in the sequence, i.e. between S’ and S**!, and add an
excitatory (positive) projection from S* to $**! and an inhibitory backward-projection from
S+l to S%

Jik - i £v‘S};_ 2 Y S[l + av—l v-lSv— ﬁv+1 €v+l Sslrc+l S:. (2)
v=1
v #|>1

If the network is in state S, the obvious effect of the added excitatory and inhibitory
contributions is to excite §**!, and when this state is sufficiently presented to inhibit S*. This
induces the consecutive retrieval of patterns §°, §°*!,..., 8™ when the network starts in a
state exhibiting dominant overlap with pattern S°. We found parameter values U = 0.35 and
T = 0.1 suitable to realize such retrieval.

A salient feature in the choice of the exchange interaction (2) and the orthogonality

condition Z e'S;S¢=34,, is that the molecular field depends solely on the magnetizations

(") The theory presented below requires only a sigmoidal shape of the function f;, i.e. it does not
depend on the analytical expression given here.
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() =3 S¢S, (t) which measure the overlap of pattern S§* with the momentaneous

network state S(?). The network, therefore, can be completely described by the dynamic
variables x'(t),v=1,...,m and the probability f; in (1) can be replaced by

™o -1
@)= (1 + exp [— = T U]) ) 3
V= av—l ‘;bv—l + _ﬁv+1 xv+l - Zm y m x
r=1 NEV ’

b—ul>1

where £” is the molecular field of all heurons t for which Sy =1 holds. (Neurons which are not
active in any stored pattern according to (2) are strongly inhibited by a molecular field
E = — 3 ym/e* Nx+.) The introduction of the variables z* (f) drastically reduces the dimension

of the f)‘hase space of the network, namely from 2" to m. This reduction results from the fact
that the parameters a’, 2, v, U, Tin (1), (3) do not depend on the neuron index 4. In case of
networks with more heterogeneous interaction parameters, our model can also be applied
and corresponds then to a mean-field approximation.

The result of a Monte Carlo simulition of our model is shown in fig. 1. The network
considered has stored 8 patterns and is described by @*(f),v=1,...,8. The functions z*(¢)
each are seen to assume small resting values except for a brief period when the z* rise close
to the value one. The ordering of these periods implies that the network jumps consecutively
from one pattern to the next. As an illustration we present in fig. 2 a second Monte Carlo
simulation of a network which can retrieve a sequence of six patterns representing the
numbers 1, 2, ...,6. The second and fourth network states show the network during the
brief periods when patterns are switched.
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Fig. 1. Fig. 2.

Fig. 1. - Simulation of the network with the parameters v=8, &=0.001Vv,a'=0.1, g = 1.0, T=0.1,
U=0.35. The curves show the evolution of the magnetizations z*(¢) as a function of time.

Fig. 2. — Network activity monitored over a Monte Carlo simulation with parameters o« =0.1,
£'=10Vy, T=0.1, U=0.35. The network recalls the stored pattern sequence 1,2,...,6.

To study the dynamics of our network, we derive a master equation which describes the
probability that the network assumes specific 2* values at time ¢. A closed and simple master
equation in terms of #* can be derived since the evolution of the network depends only on the
magnetizations x = {2’ ()", and since the asynchronous updates (1) affect always only a
single x’(2).
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Because of the asynchronous update of neurons, different magnetizations x* are coupled
only through the spike probability f* given in eq. (3). (Note that x* can assume the values
0, &, 2¢, ..., 1.) Summing up processes which increase or decrease the probability p (x, t) to
find the system in a state with magnetization #’, one obtains the master equation

Natp(x t)—E——[p(x +)@+e)(A—f(a+e))+
+tp@—)1l-2+)f @—-)—p@@) @+ @) -2 @), @)

where the arguments z*, p#v of p(x,t) and of f*(x, ) which remain unaltered are
suppressed on the r.h.s.. The first term on the r.h.s describes the transition of a firing
neuron belonging to pattern v to the resting state (S;(f) = 0), the second term describes the
inverse process. The last term accounts for processes which decrease the probability to find
the magnetization 2*. The asynchronous updates of neurons establish a characteristic time
scale of /N for one spin flip, where 7 corresponds to one Monte Carlo step (MCS).

In the limit of large patterns (¢’— 0) the discrete master equation becomes a continuous
equation in x. Taylor expansion of (4) to order (¢")? results in the Fokker-Planck equation

a — “ — e v — — v
ratp(x, t)—z‘,l[ F’;o+28 szp] 6))

with F*= — (2’ —f*) and D’ = o’ + f* — 2¢’f*. In the limit of infinitely large patterns (¢’ =0)
eq. (5) simplifies further and assumes the form of a deterministic Liouville equation [12]. In
this limit the vector of magnetizations x obeys the kinetic equation [13]
L= — @ - ). ®)
The threshold U in (3) has to prevent fluctuations from activating patterns in wrong
succession, but should not be as large as to suppress all pattern states during a transition
from pattern v to v+1, when 2 and «**! assume values around 0.5. To satisfy these
requirements, U has to be in the range T'< U <0.5. Inserting such U into (3) yields f*=1
and f*=~0, u ¢ {v,v+ 1} when the network occupies the v-th pattern state, i.e. for a* =3,
These considerations allow us to investigate the transition from pattern v to v+1 by
projecting the dynamics onto the plane spanned by {z’, *!}. In fig. 8 the magnetizations
z'(t) and 2'*!'(t) corresponding to the solution of (6) for the initial state
(@’ (0), 2*1(0)) = (1, 0) are compared with the magnetizations obtained from a Monte Carlo
simulation.
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Fig. 3. - Time dependence of magnetizations «'(¢) and «**!(t). The solution of (6) is compared with
magnetizations received from Monte Carlo simulations.
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The transition time =,,,.; necessary for the network to evolve from pattern state v to
pattern state v+ 1 can be calculated analytically [14]. The derivation will be published
elsewhere. The transition time increases with decreasing projection strength o’ and
diverges for a critical temperature T* defined by the condition that the minimal force
F*Y,._, which drives the network towards the succeeding pattern v+ 1 vanishes. For
temperatures below 7%, the pattern state v remains stable for an infinite time. In the limit

" ¢— 0 one can actually tune the network to stay for an arbitrary time in the pattern state v
and then to jump to the next pattern v+ 1.

The analysis above for infinite networks can serve as an approximation for finite
networks [12]. For this purpose (5) can be transformed to variables y*/¢’, where the Y
measure the deviation from the solution of (6). With increasing pattern size the time
variance ¢ of a single transition decreases as \/: Another consideration concerns the
question in how far patterns may overlap and still be properly recalled. An overlap is
tolerable as long as it conserves the recall order of the patterns. However, such overlap can
strongly affect the transition time between consecutive patterns. The dynamics of a network
with nonorthogonal patterns stored can be described in terms of the enlarged set of
variables x'v-*(t) which count all neurons active at time ¢ and belonging to all of the
patterns vy, ..., v. An analysis of the resulting dynamics shows that an overlap between
consecutive patterns corresponds to an enhanced projection strength from v to v+ 1. An
appropriate choice [14] of a” allows to tune the transition time =, ,,,, for a given overlap x""*!,

We have demonstrated that networks of spinlike neurons can store and recall time
sequences of patterns by means of nonsymmetrie, time-independent and instantaneous
exchange interactions. The transition between patterns during recall is triggered by global
noise. The fluctuations of the transition times decrease with increasing network size.
Without demonstration we like to point out that the performance of the storage device could
be enhanced if the global noise is made time dependent [14].
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