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1. Historical Sketch of Brain Theory

The foundation of modern brain theory! is based on the epochal work of the
physiologist Sherrington and the anatomist Cajal at the beginning of the twentieth
century. Both established the modern view of neural networks as heterogeneous
systems composed of single subunits, the neurons. They rejected the theory of Golgi
and others that the brain is a continuous net of axons and neurons. Sherrington
investigated the electrical firing of neurons and introduced the terminus “synapse”
for the connection between the individual neurons. These ideas which drove away
the animal ghosts of the continuum theory have been spectacularly confirmed half
a century later by electron microscopy photographs of neurons and synapses.

In the forties of this century two mathematicians, McCulloch and Pitts, formulated
a mathematical theory which allowed us to describe the behavior of neurons as
boolean units. In this theory the complex dynamics of neurons is modeled by a
logical element which switches to the “on”-state if enough afferent spikes excite the
neuron, and, otherwise, rests in the “off”-state. The afferent excitation is summed
up linearly and compared with a threshold value to determine the neural state at
the next time step. The theory of McCulloch and Pitts is based on the conviction
that information is transmitted by action potentials between the neurons. Only a
firing neuron can communicate with other nerve cells. The most prominent princi-
ples of the hypothesis that neurons can be described by logical units hold also in
the light of modern neurobiology. These fundamental ideas have survived until
today and have entered in nearly all theories of neural networks.

Other important biological findings about nerve nets refined the picture of neural
networks. Dale stated in the thirties that neurons can produce only one type of
neurotransmitter and, therefore, can either inhibit or excite connected neurons, not
both. At the same time the unidirectional natures of synapses as connections with a
prominent direction was discovered. Twenty years later detailed electron micros-
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copy photographs proved these findings and revealed the.structure of synapses with
the synaptic cleft, the presynaptic axon terminals and the postsynaptic dendritic
membrane. The presynaptic membrane contains vesicles with neurotransmitters
which are ejected into the synaptic cleft and change the electrical properties of the
ionic channels in the postsynaptic membrane. Thereby, a postsynaptic electrical
potential is induced.

The physiologist Hebb outlined a framework of how the various neurons can act
together. He introduced the notion of “neural assembly” as a group of cooperating
and densely connected neurons. The neurons of such an assembly should excite
each other and should strengthen their mutual synapses under the influence of their
activity states. Coincidences of pre- and postsynaptic spikes should be the condi-
tion for synaptic growth. Hebb was the first scientist who looked for serious con-
cepts to understand the dynamics of neural networks and who tried to connect the
neurons and their dynamics with the behavior of higher vertebrates or men. Hebb’s
coincidence hypothesis has entered in many modern theories of learning and in our
days becomes confirmed by physiological discoveries on the molecular structure of
synapses and on the mechanisms of their plasticity.

During the ten years from 1955 to 1965, often characterized as the “golden decade
of cybernetics,” all these ideas were introduced in various models of neural net-
works, a prominent one of these proposed by Caianello. He evolved his theory of
“Thought Processes and Thinking Machines” on the basis of McCulloch’s, Pitt’s
and Hebb’s ideas. At the same time Rosenblatt constructed a layered network
model with simple connectivity between the layers to recognize and associate pat-
terns. His “Perceptron,” however, showed remarkable limitations later proven by
Minsky and Papert. The failure of the “Perceptron” and other problems disap-
pointed the hope that thinking and intelligent behavior of humans could be
explained with the help of fast computers and on the basis of cooperating neural
assemblies in a few years. The area of “Artificial Intelligence” originally located
within theoretical biology separated from the neuronal basis and pursued a more
abstract, algorithmic approach.

New impulses, originating from thermodynamics far from equilibrium, from non-
linear optics and from non-linear mechanical systems, have initiated a renaissance
of brain theory in the late seventies. The experience with simple hydrodynamical
systems which show complex formation of structure and internal patterns has sug-
gested that the principles of self-organization, cooperation and competition between
units with non-linear dynamics could also be essential features in the neural devel-
opment and information processing of the brain. This more dynamical view has
solved the problems of how the information of the neural wiring is genetically
stored and how the local variability of the brain structure and fault tolerance of the
brain function can be explained. The formation of neural projections between
‘neural nets, i.e. the retinotopic projection? and the building of memories with asso-
ciative and fault-tolerant properties34 were simulated by non-linear dynamics which
involves the electrical activity of neurons as well as changes of the synaptic
connectivity.



Hopfield® found a concise description of an associative memory, in some respects
the “harmonic oscillator” of brain theory. His system of spin-like neurons with
dense connectivity obeys a Hamiltonian dynamics with dissipation, i.e. the network
settles down in the next local minimum found in the phase space. The structure of
the phase space reveals many minima and is equivalent to that of a spin glass, a
current research topic of condensed matter physics. The results from spin glass
physics have influenced brain theory and initiated new investigations. The emerging
technology of massively parallel computers with thousands of processors also stim-
ulates the research in this area.

In our own work we have followed both avenues in the history of brain theory, the
avenue of modelling the brain in close agreement to physiological principles, and
the avenue of experimenting liberally with digital algorithms which are crude
caricatures of the way the brain processes information. In Section 2 of this paper
we present results of computer simulations of neural assemblies made up of
neuronal units modelled in close analogy to their physiological counterparents. The
main new result of our work is that electrical noise apparent in 11 physiological
recordings of neural tissue appears to play an important role in higher brain func-
tion. In Sections 3 and 4 we investigate algorithms which reproduce brain structure
and function, albeit in a way which is hardly reminiscent of the biological system.
The algorithms in Section 3 are concerned with the self-organization of information
representation (mapping) and the control of motor tasks in the brain and in robots.
The algorithms in Section 4 address the problem of optical pattern recognition. The
results presented in Sections 2, 3, and 4 have been published previously in the pro-
ceedings of the conference “Neural Networks for Computing.”s

2. Autoassociative Neural Network with “Physiological” Neurons

Recently, we simulated the activity and function of neural networks with neuronal
units modelled after their physiological counterparents.” Neuronal potentials, single
neural spikes and their effect on postsynaptic neurons were taken into account. The
neural network studicd was endowed with plastic synapses. The synaptic modifica-
tions were assumed to follow Hebbian rules, i.e. the synaptic strengths increase if
the pre- and postsynaptic cells fire a spike synchronously and decrease if there
exists no synchronicity between pre- and postsynaptic spikes. The time scale of the
synaptic -plasticity was that of mental processes, i.e. a tenth of a second, as pro-
posed by von der Malsburg.? In this Section we present the model network with
deterministic dynamics and we extend our previous study and include random fluc-
tuations of the neural potentials. Such fluctuations can always be observed in elec-
trophysiological recordings.® We will demonstrate that random fluctuations of the
membrane potentials raise the sensitivity and performance of the neural network.
The fluctuations enable the network to react to weak external stimuli which do not
affect networks following deterministic dynamics. We argue that fluctuations and
noise in the membrane potential are of functional importance in that they trigger
the neural firing if a weak receptor input is presented. The noise regulates the level
of arousal. It might be an essential feature of the information processing abilities of
neuronal networks and not a mere source of disturbance to be suppressed. We will



demonstrate that the neural network investigated here reproduces the computa-
tional abilities of formal associative networks.2-4

The neural system investigated is composed of a set of interconnected neurons, the
membrane potentials of which evolve according to deterministic rules and
according to stochastic fluctuations. The connections to sensory organs or to other
neural networks are taken into account by a primary set of receptors which send
input to the neurons. The receptor-neuron connections form a local, static
projection of the activity pattern presented by the receptors as modelled by a one-
to-one or a center-surround connectivity. The system is schematically presented in
Fig. 1.

2.1 Dynamics of the Membrane Potential

The dynamics of the membrane potentials involves two processes, the relaxation of
the membrane potential and the neural interaction as determined by the somatic
integration rule. Axonal spikes are generated whenever the membrane potential
reaches a threshold value. The postsynaptic excitation by presynaptic spikes is
described by an exponential activity function with decay time Ty, = Ims

A
Gi(Ayfr) = exp(— ——T—tk—) (2.1)

At, = t—4, measures the time that has elapsed since the last spike of neuron k at
Lok
The kinetic equations of the membrane potentials U, (#) which also include the

stochastic fluctuations are given by a system of non-linear coupled Langevin
equations

avi(y U (0 n
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The first term in Eq. 2.2 approximates the relaxation of the membrane potential
U; (9) to its resting value U, = OmV within a time interval Tz = 2.5ms. The second
term in Eq. 2.2 describes the communication of the postsynaptic cell i with the con-
nected neurons and receptors, and adds a Gaussian white noise &(7) with the
strength #n//Tx/2 . The noise produces a Gaussian distribution of the membrane
potential U (f) with mean value U,=O0mV and variance n = 10mV. Afferent
impinging activities in addition to the noise are integrated to the total postsynaptic
excitation 4; (f). The activity of the presynaptic neurons k or receptors j are
weighted by the time-dependent synaptic strengths S;(7) or the static receptor con-
nection strengths Ry, respectively,

40 = ) SedGBITY) + Y RaGRARITy). (2.3)
k k
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Figure 1. Schematic presentation of the neural model investigated: Receptors send spikes
to a network of neurons. The resulting activity of the neural network is affected by an
activity-dependent alteration of the synapses Sy(#), i.e. the network experiences a feedback
as indicated.

The sigmoidal function [ 4; ()] with a linear behavior for small 4, () and a satu-
ration value for strong activity prevents potential changes which are
unphysiologically large. The total and relative refractory periods are taken into
account by the function p[At] which suppresses the sensitivity of neuron i to
afferent excitation during a total refractory period T = 5ms. The function also lets
the neuron gradually regain its sensitivity to incoming excitation or inhibition
during a relative refractory period of Sms.

The continuous time evolution of the potential in our model is interrupted if the
neuron reaches the threshold Ur=30mV and fires a spike. Instantaneously the
membrane potential is set to a value normally distributed around the refractory
potential Ur = —15mV. In this event the time of the last spike #, is updated and the
memory function Gy(At/Ty) is set to the value 1. This behavior is represented as
follows:

=1,
if U;(t)> Uy, then < U (1)~ Ug, 2.4)
G,' (Ati/t) = 1.

The reaction of a neuron to a receptor input depends on the coupling constant w
and the connection strength R,. In the case of strong coupling the excited neuron
will always reach the threshold whereas weak coupling causes only small
Postsynaptic potentials which never reach the threshold. Figure 2 shows the proba-
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Figure 2. The probability to reach the threshold within 5ms after a receptor spike depends
on the coupling between receptors and neurons. The gain of the curve strongly depends
on the noise level 5. In our computer simulations we have employed in most cases the
value 1 = 10mV and wRy, = 45mV.

bility that a neuron which received a receptor spike at ¢ = Oms will fire within Sms.
This probability is presented as a function of the coupling strength wR; for three
different noise levels (n = 0,6,10mV). Due to the synapse dynamics the mean spike
probability of the neuron w4 (¢) is time-dependent and can be shifted by learning.

2.2 Synaptic Plasticity in the Stochastic Neural Network

In our neural network with stochastic firing we introduced a plasticity of the syn-
apses on a time 'scale of 0.2—0.5s.2 According to the Hebbian rules the synaptic
dynamics were assumed to depend on the synchronicity or asynchronicity of the
pre- and postsynaptic spikes. In addition to the Hebbian rules we require for syn-
aptic modifications in the present study that the mean spike frequencies v;, v;” of
both neurons exceed considerably the spontaneous spike rate v, ~ 5s~!. If both
neurons satisfy this condition in the case of synchronous firing the synapse can be
strengthened. If only the presynaptic neuron fires with a high spike rate the synapse
S, (1) is weakened after each presynaptic spike. Details are described in Ref. 2.

The plasticity of the synapse with the strength S;(f) connecting neuron k to neuron
i is governed by the equation
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0, else.

Equation 2.5(a) holds both for excitatory and inhibitory synapses. The first term
describes a relaxation process which leads to the gradual loss of stored information.
The second term effects a change of the synaptic strength. The influence of this
term decays exponentially with the presynaptic activity Gy(A#/Ty) . The short decay
time T, = 2.5ms guarantees the Hebbian synchronicity condition for synaptic
changes. The function x(G, G,) switches between increase of the synaptic strength
(x = 1), decrease (x = —1) and passive relaxation (x = 0) of the synapses to the
initial value Sj,(0). The characteristic time Q-' determines the time scale for syn-
aptic modifications. The values assumed for Q! were in the range 0.2 —0.5s.

2.3 Learning and Association of a Pattern

The neural network presented showed remarkable associative properties in spite of
the stochastic fluctuations of the membrane potentials. Starting from a homoge-
neous structure of synaptic connections with equal numbers of excitatory and
inhibitory neurons the network learned a pattern presented by the receptors and
associatively reconstructed the original pattern when only incomplete or disturbed
patterns were presented.

The simulations of the network were carried out in three different stages. During a
first stage which lasted 0.3 —1.5s the neural network had to learn the pattern brain,
synchronously presented by the receptors with a frequency of 50s~!. A homoge-
neous background noise with a spike rate of 10s~' was superimposed on the
pattern. The coupling constant wR; was set to 45mV which effected the firing of
about 75 percent of excited neurons. In a second stage lasting 50ms the receptors
rested quiescent and the electrical activity of the network relaxed to the sponta-
neous spike rate. During a third stage the receptors presented the test pattern bra n
which differed from the originally learned pattern by the letter i being left out.

Figure 3a shows the activity of the network at the beginning of the learning phase.
At t = 180ms the receptors corresponding to the pattern brain had just fired. Within
3ms, 75 percent of the excited neurons reach the threshold and fire. The other
neurons are only gradually excited and fail to fire. The network reaction to a
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Figure 3. The activity function G{(At,/T),) is shown for an untrained (2) and an instructed
(b) network. At the beginning of the learning session (t=181ms, 182ms, 183ms) 75 percent
of the excited neurons fire after a receptor spike. At the end of the learning stage
(t=981ms, 982ms, 983ms) nearly all excited neurons have synchronized their firing

behavior and reach the threshold.

receptor input at the end of the learning stage is shown in Fig. 3b. Due to the
acquired excitatory synaptic connections between neurons receiving input directly
from the pattern brain (pattern neurons) the assembly reacts more synchronously
and the fault level, given by the number of pattern neurons which fail to fire,
nearly vanishes.

The success of the learning session is documented in Fig. 4. The incomplete test
pattern bra n is associatively restored by the network. The neurons representing the
missing letter i react with a delay time of 1-—3ms, i.e. they fire nearly synchro-
nously with the neurons excited by the test pattern.

The synchronization of the neural activity and the associative abilities of the
network can be understood on account of the synaptic structure acquired during
the learning session. Figures 5a and 5b show the afferent synapses of neuron (37,4)
[presented by a star] after the training. All the neurons representing the pattern
brain have developed saturated excitatory or inhibitory synapses to the reference
neuron. During the association task the excitatory synapses saturated at a strength
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Figure 4. Network activity during the association task: The network associates the missing
letter i by excitatory interaction within 2 milliseconds (t=1021ms, 1021.5ms, 1022ms).

value S, support the firing of the reference cell, whereas the inhibitory synapses sat-
urated at —S; do not prevent the reference cell from firing. Afferent synapses of
the feference cell (37,4) coming from a background neuron rest at the initial syn-

aptic strength.
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Figure 5. The size of the squares and the diamonds encodes the changes S;(f)—Sy(0)
which the excitatory and inhibitory synapses acquired during the learning session, respec-
tively.



Due to fluctuations of the membrane potential which raise the sensitivity of the
neurons the network can also learn a pattern which at any given time is only par.
tially presented by the receptors. At each time interval the invisible fraction of the
pattern (50 percent of the receptors) is chosen randomly. The uninstructed network
has to learn the total pattern from the detected spike coincidences. The evolution of
the synapses is demonstrated for the case of the afferent synapses of neuron (37,4)
which represents the dot on the letter i. During the learning stage which lasts 3.7
the network has built up a synaptic structure which contains the information of the
whole pattern (Fig. 6). This simulation demonstrates that the synchronization of al|
pattern receptors at any given time is not a necessary condition for learning,.

2.4 Conclusion

We have presented a model neural network with a high level of endogenous noise
acting on the cellular potentials. This noise, which is inherent in all biological
neurons, does not destroy the abilities of the network to learn and associatively
reconstruct patterns. On the contrary, the noise controls the level of arousal and
makes the network capable to react to a weak receptor input otherwise neglected.
We argue that noise has a functional importance in neural systems. The explicit
simulation of single spikes allows us to test the influence of single neural events
which are averaged over by mean spike rate models.# In addition, the nonspecific
influence of large neural nets (neural activity bath) on small neural assemblies can
also be studied by stochastic dynamics.

On the basis of the Hebbian rules which detect synchronicities between pre- and
postsynaptic spikes, a second condition for synaptic changes is introduced to
protect the synaptic structure against destruction by spontaneous activity. The
mean spike rates v of the pre- and postsynaptic neurons have to exceed consider-
ably the spontaneous spike rate v, for an increase of the synaptic strengths. For a
decrease of the synaptic strengths the postsynaptic spike rate must be considerably
below v,. With this modified rule the network can also learn highly noisy patterns
and patterns which are presented by a partially asynchronous receptor activity.
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Figure 6. Evolution of the afferent synapses of neuron (37,4) for the time ¢ = ls (a) and
t = 3.6s (b) during the learning stage. 50 percent of the pattern brain is invisible.



3. Topology Conserving Mappings in the Brain

It has been known for a long time that the brain has a modular structure. This is
especially conspicuous in the neocortex, which is the brain structure most predomi-
nant in man, and which forms essentially a folded, large, two-dimensional neural
sheet. Different cognitive abilities, such as touch, audition, vision, and motor capa-
bilities reside in precisely circumscribed regions of this sheet, the so-called brain
areas. These areas can be subdivided further, corresponding to different subtasks
of each modality. Each area consists of a two-dimensional arrangement of groups
of neuronal cells, called cortical columns, with each group devoted to the proc-
essing of a small part of the overall information impinging from input pathways
upon its area. For the processing of information in the brain, neural activity is
mapped between external sensory regions and cortical areas, or between two cor-
tical areas. It is a very important organizational feature of the brain that these
mappings are continuous, i.e. that neighboring neuronal groups are connected to
neighboring cortical sites of the cortical or sensory regions to which they are
mapped. As a consequence, neuronal wiring in the brain preserves the relation of
neighborhood, i.e. the neuronal wiring establishes mappings which are topology
conserving.

Due to the huge amount of neurons to be connected, the cortical “wiring diagram”
cannot be prespecified in detail genetically but must self-organize during the
ontogeny and maturation of the brain. In fact, it has been observed that the evolu-
tion of such mappings is shaped by sensory experiences. This has been revealed, for
example, by neurophysiological experiments which show that the somatosensory
map is plastic even through adulthood and can adapt to a changing sensory envi-
ronment, e.g. brought about by changing “calibration” of the sensors or sensory
injury and loss. 10-12 ‘

To understand the principles inherent in the evolution of such mappings, we have
studied the formation of the connections between the touch receptors distributed
over the skin of a hand and the somatosensory cortex, using a mathematical model
originally put forward by Kohonen.!%.!! In this model, the somatosensory cortex is
represented as an array of vectors u(x), each vector u(x) corresponding to a
neuronal group situated at location x in the cortex. The value of u(x) specifies the
position of the receptive field of the group, which is the region of the skin the
group is connected to. Initially the connections are completely unordered, i.e. each
group is connected to a sensor at a random position in the skin. Each touch stim-
ulus, delivered to the hand at a location y, is assumed to create a local region of
excitation in the neuronal sheet, which is centered around that particular neuronal
group whose receptive field lies closest to the location of the stimulus, i.e. whose
Vector u(x) matches y best. All neuronal groups in this activated region are now
Supposed to readjust their connectivity to get their receptive fields closer to the
location y of the stimulus, which is mathematically realized by shifting their vectors
u(x) towards the stimulus location y by an amount decreasing with increasing dis-
tance from the center of the excited region. It turns out that the cumulative effect
of such local adjustments, caused by a sufficiently long lasting train of touch
Mfimuli, is capable of establishing a completely ordered mapping between the



Figure 7. Model of the hand surface used in the simulation.

neuronal groups and the touch receptors. This is illustrated in Figs. 7 through 12 in
a simulation for the case of the mapping between the surface of a (model-) hand
(shown in Fig. 7) and an array of 30x30 vectors, representing a cortical region of
900 neuronal groups. In Fig. 8 we see the initial state of the connectivity, depicted
in two different ways. In the upper diagram the array of neuronal groups is
projected onto the hand surface via the vectors u(x): each array element x is shown
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Figure 8. Initial state of the connectivity between hand surface and cortical array.
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Figure 9. Connectivit

y between hand surface and cortical array after 500 adaptation steps
due to model stimuli.

2 a point at location u(x) in the hand surface and the projected positions of ele-
ments which are nearest neighbors in the array are connected by lines. The lower
diagram shows the array itself. For each element a letter indicates the position of
the skin receptor it is linked to, with the letters D,L,M,R,T referring to the regions
given in Fig. 7. Dots indicate elements so far unconnected to receptors in the hand
(for mathematical convenience these elements are given values of the vector u lying
in the region S not belonging to the hand). Both diagrams show that the initial
Connectivity is completely unordered. The following pictures show the gradual evo-
lution of an ordered mapping under a train of touch stimuli scattered randomly
Over the hand surface. Figure 9 shows partial order already after 500 touch stimuli,
Whereas in Fig. 10, after 20,000 touch stimuli, a very regular connectivity has
tvolved. If finger M is amputated, i.e. in the continuation of the algorithm, no
further touch stimuli originate from region M (see Fig. 11), the connections

between the cortex and the receptors are redistributed such that the neuronal

ffoups which were connected to the removed region M finally get devoted to the

jacent areas L, R and T (Fig. 12). This behavior is in good qualitative agree-
‘Ment with physiological experiments, e.g. carried out in the brains of monkeys.!3-15
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increased activity in the superior colliculus,!5!6 suggests that topology conserving
k

the internal teacher becomes completely

ensable and thus free to dedicate itself to other tasks. We studied this process
n

d.
of

the brain can take over the

.

, a topology
17 The motio

r the task to be performe

tion and execution of motor tasks. In
initially the movement has to be generated fully

step until it becomes increasingly automatic with further

. This process of learning could be brought about by an internal teacher,
tent, rendering the execution of the tas

Figure 10. Ordered connectivity between hand surface and cortical array after 20,000
e acquisi

adaptation steps.
that they can be involved as well in the generation of output. The presence of

topology conserving mappings of variables concerned with motor responses, €.8.
of the pole was simulated in discrete time steps and monitored by an array

restricted to the mediation between sensory input and a cortical target field, but
the mapping of the next movement vector for a saccade of the eyes to a location 0

There is neurophysiological evidence that the role of such mappings need not be

who teaches, by a series of consciously generated movement instances

conserving mapping the correct input-output relation fo
by the model task of learning how to balance a pole against gravity

As a consequence of the gradual formation of the map,

more and more automatic until, finally,

part of the teacher to an ever larger ex
disp

mappings may also subserve th
learning a new motor capability,

consciously and step-by-

practice
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Figure 11. State of Fig. 4 after removal of region M, i.e. the middle finger.

vectors u(x). Initially a teacher generated a sequence of balancing forces capable of
balancing the pole. As in the previous example, each vector codes for a certain
state of the pole, here represented by two successive pole inclinations, separated by
one time step of the simulation. In addition to this “sensory part,” a third compo-
nent codes for an “action”: here the action specifies the value of a force, which is
to be applied over one time step, whenever the state of the pole matches the
“sensory part” of the vector. The “sensory input” to the array is now generated by
the motion of the pole and consists of a sequence of pairs of successive pole incli-
nations. At each time step the unit x*, whose “sensory part” matches the state of
the pole most closely, is taken to be the center of the region of local adjustment of
the values u(x) in the array. Such an adjustment consists of refining the “sensory
parts” of the vectors of all units lying within a small neighborhood of unit x*.
These units are matched more closely to the latest pair of successive pole inclina-
tions and at the same time their “action part” is altered towards the force value
supplied by the teacher. In the course of time the balancing force delivered by the
teacher at each time step is replaced gradually by the output evoked by the “action
part” of the array element residing in the center of the region of adjustment.
Finally the contribution of the teacher vanishes and the control is exerted by the
‘array alone. Figure 13 shows the gradual improvement of the balancing capability
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Figure 12. Readaptation of connectivity after 50,000 further iterations, subsequent to state
in Fig. 11.

of the array at three different stages of learning. For both the “sensory” and the
“action” parts of all array elements, random entries were taken as starting values.
After learning for 100 seconds of simulated time, the array can balance the pole
moderately well (bottom diagram of Fig. 13). The performance has improved after
500 seconds (middle diagram) until, after 1000 seconds (low diagram), only very
little fluctuation around the unstable vertical pole position remains during a bal-
ancing trial.

In the course of the learning process the array has achieved two things simultane-
ously: First, it has established a mapping between inputs and appropriate responses
by having learned the relation between the state of the pole and a necessary force
to keep the pole balanced. Second, it has distributed the values of the “sensory
parts” of its vectors u such that they populate only that region of the state space of
the pole, which is actually visited by the motion.

However, this kind of learning still requires a teacher. Where does the teacher get
its instructions from? Even motions such as that of a simple invertible pendulum
may require preplanning if there are restrictions upon the available control force.
For instance, if the initial state of the pendulum is the stable resting state, it may
be desired to turn it into the inverted unstable equilibrium position by applying 2
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Figure 13. Balancing Capability of Array after different Periods of Learning. Each
diagram shows the time evolution of pole inclination 6 (vertical) during the first 50
seconds under the control of the array after releasing the pole from a resting position with
6 = 70°. Lower diagram: after 100 sec of training; Middle diagram: after 500 sec of
training; Top diagram. after 1000 sec of training.

suitable torque at its pivot. In this situation the direct approach of simply turning it
up may fail if the admissible torque for the task is too weak. Instead, the pendulum
first has to be swung back and forth several times before the weak torque suffices
to complete the motion. To plan a motion trajectory for tasks of this kind, we have
considered a formulation of the task as a path search problem in the phase space of
the system.!8 The solution of this problem can then be achieved using a physical
analogy from the realm of diffusion. The computation can be performed in a fully
parallel and “neuronal plausible” manner. In order to apply this method, the phase
space of the system is discretized into a lattice of nodes, and possible transitions
between nodes are represented as directed links. The presence of a link depends on
the equation of motion and the available constraints on the control force. The
given initial state and the desired final state of the motion can then be represented
by a starting node A and an end node B in the lattice. The problem to find a tra-
jectory between these two states is now transformed to the search for a lattice path,
the path consisting of a series of oriented links connecting A and B. This latter
search problem is solved by considering B as the source of a fictitious substance,
which spreads over the lattice by diffusion. The steady state concentration of this
substance can be calculated by a simple relaxation algorithm. The path sought is
found by starting at A and following the steepest gradient of the concentration
until B is reached.

The application of the method to the example mentioned above, i.e. moving a pen-
dulum from the stable to the unstable position, is presented in Figs. 14 through 16.
Figure 14 shows the discretized portion of the phase space of the pendulum, with
the links indicating transitions possible with a maximum torque of 0.5 (a torque
value of 1 corresponds to holding the pendulum fixed in horizontal position). If the
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Figure 14. Discretized portion of the phase space for the pendulum described in the text.
The angle 6 is measured with respect to the vertical axis.

task is to bring the pendulum from the downward resting position into the upward
resting state, a torque of 0.5 is not sufficient to achieve this via a direct path.
Instead, the pendulum first has to be swung through a few oscillatory cycles to
accumulate kinetic energy. The trajectory found by the above method, therefore,
first spirals outward from its left starting point until it reaches its destination (Fig.
15). The resulting inclination angle versus time of the pendulum is shown in Fig.
16.

Although, in its present formulation, the method consists of a “neural-like” compu-
tation, it is unlikely that this particular algorithm may be realized in this manner in
actual brains. Nevertheless it is important to explore ways to formulate tasks com-
monly solved by our nervous system in a manner amenable to highly parallel,
neural-like computation, as only by experimenting within a broad spectrum of dif-
ferent algorithmic alternatives can we hope to finally come closer to the actual

working principles of the brain.

Figure 15. Trajectory found by the algorithm. Starting point A is the left focus of the

. . . — o . . Target point
spiral, corresponding to the pendulum resting downward (6 = 180°, 0 = 0). Ta
B is the right end point of the trajectory, corresponding to the upward position of the

pendulum (@ = 0°, 6 = 0).
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Figure 16. Time evolution of the angle 8 of the pendulum corresponding to the simulation
of the trajectory in Fig. 15.

4. Stochastic Spin Models for Pattern Recognition

4.1 Introduction

In this Section we exploit, for the recognition of patterns, the properties of physical
spin systems to assume long range order and, thereby, to establish a global inter-
pretation of patterns. For this purpose we chose spins which can take a discrete set
of values to code for local features of the patterns to be processed (feature spins). A
Hamiltonian is chosen for the system which entails a field contribution and inter-
actions between the feature spins. The field incorporates the information on the
input pattern. The spin-spin interaction represents a priori knowledge on relation-
ships between features, e.g. continuity properties. The Hamiltonian is chosen such
that the ground state of the feature spin system corresponds to the best global
interpretation of the pattern. The ground state is reached in the course of local
stochastic dynamics, this process being simulated by the method of Monte Carlo
annealing.!? Our study is related to work presented in in Refs. 20 and 21.

Spin systems are characterized by a set of values for the spin variable S, j» a lattice
on which they are defined, and by an interaction energy. In the two-dimensional
Ising model the spins take the values +1 and the interaction energy is defined by
the Hamiltonian

E=-1 Y 5,85 - Y Hys,, @.1)
<(i’j)’(k’[)> (ilj)
where the brackets indicate summation over nearest neighbors. In the

ferromagnetic case (J/ > 0) the first term, the exchange interaction, gives a negative
contribution if neighboring spins point in the same direction. This term creates a
tendency for an alignment of all the spins. The second term describes the inter-
action of the spins with a local magnetic field H, ; tending to align the spins locally
with the field. The regularizing effect of the exchange interaction will be utilized in
the following to solve pattern recognition tasks under the constraint that pattern
features are expected to vary continuously.



4.2 rediure dpins

For the purpose of picture processing, the spins are chosen to code local features of
a pattern. Examples for attributes coded by such feature spins are intensities, dis-
parities between corresponding points in a stereogram or edges of different
directions. Several different types of feature spins, interacting with each other and
with external fields, may be needed to solve a specific pattern recognition problem.

At finite temperatures the feature spin system shows fluctuations like its physical
counterpart. Certain values of a feature spin at a certain lattice point are more
probable than others. One may consider the value of a feature spin as the hypoth-
esis that the picture has a certain local attribute at this point.

At high temperatures all hypotheses are equally probable. After carefully cooling
down to low temperatures (simulated annealing!?) the fluctuations eventually disap-
pear. At zero temperature the feature spins take definite values indicating the final
global hypothesis about a pattern.

The final hypothesis, i.e. the ground state, achieved by the system after cooling
down to low temperatures depends on the interaction among the feature spins as
well as on the interaction with the external field. The interaction among the feature
spins contains an a priori global knowledge on relationships to be expected to hold
between the features of a pattern. Correct interpretations of patterns must meet
certain constraints, e.g. the constraints of continuity, which have to be realized by
the feature spin configurations in the final hypothesis. Such configurations can be
achieved by a properly chosen interaction between the feature spins. For example, a
Potts model type interaction between intensity spins yields a smooth change of
brightness. The external field serves to communicate the pattern to be processed to
the system of feature spins. Examples for pattern attributes coded by the external
fields are local brightness or edges of various directions.

4.3 Stereo Vision

Whereas a certain degree of depth vision can be obtained from perspective dis-
tortion or from hidden parts of a scene, full stereo vision is a result of binocular
perception. The projections of an object in both eyes differ slightly from each
other. This difference (disparity) allows the reconstruction of the three-dimensional
information. Figure 17 shows an image pair of dot patterns appearing completely
random when viewed monocularly. But when viewed one through each eye the two
pictures fuse showing a three-dimensional structure (square hovering over the
ground). The absence of higher level structures in the patterns shows that disparity
alone can be used to obtain three-dimensional information from a stereogram.

To obtain stereo information the disparity of corresponding points in. the two
retina projections of an image must be determined. The problem is to assign corre-
spondences between points of the two pictures. This is a difﬁc.ult task because of
the so-called “false target problem”?? occurring in its extreme in Julesz patterns.23



Figure 17. Julesz pattern23 with 50% black dots. This random-dot stereogram of 50x50
- pixels is generated by copying the right image from the left one, shifting a square-shaped
region of 30x30 pixels slightly to the left and filling the gap caused by the shift with a new
random pattern.

Every black pixel could correspond to every other black pixel. To restrict all pos-
sible combinations of points from both pictures to physically plausible correspond-
ences the following matching conditions must hold:

e Compatibility: Black dots can only match black dots and vice versa.

e Continuity: The physical feature disparity varies smoothly almost everywhere
over the image.

® Uniqueness: Except in rare cases each point from one image can match only
one point from the other image.

Figure 18. Ground state of the disparity spin system corresponding to the Julesz pattern in
Fig. 17.
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Figure 19. Julesz pattern of an eight level pyramid.

The following spin model is designed to find the correspondences between the
pixels of both pictures of a random-dot stereogram and to measure the disparities.
This information will be contained in the ground state of the spin system.

4.4 A Spin Model for Stereo Vision

The feature coded by a spin is the disparity of corresponding pixels. A disparity
spin with a value S;; € {0, = 1, ..., £ N} at lattice site (i) stands for the hypothesis
of a correspondence between the pixel (i) in the right picture of the stereogram
and the pixel (i, + ;) in the left picture shifted S; ; units to the right. Both pixels
are assumed to correspond to the same original point of an object and to have the

disparity S; ;.

The Hamiltonian of the disparity spin system is split into two contributions
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Figure 20. Behavior of the disparity spin system for the Julesz pattern in Fig. 19.
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These terms reflect the continuity and the compatibility conditions, respectively.
The distance of an observer to a point on the surface of an object is a smoothly
varying property. To achieve a corresponding property for the values of the dis-
parity spin, a Potts model interaction is chosen

Eexchange ==/ Z F (Si, o Sk,l) ’

<(i, ), (k.0)>
F(Si’j, Sk,l) = q, if Si,j = Sk’[ + 1; q< 1.
0, else

If the value of a disparity spin is S; ; and if this hypothesis is correct, the pixel (i, j)
in the right picture and the pixel (i,j+ S, ;) in the left picture have identical sur-
roundings. If the disparity hypothesis S;; is wrong the surroundings may be com-
pletely different. Therefore, the comparison of the neighborhoods of the two points
assumed to correspond to each other indicates a possibly correct match.

Whereas many features can (and for real pictures must) be used for comparison, we
restrict ourselves in the present application to the most simple choice and compare
the pixel intensities in a square shaped region only. Comparison is established by
the following energy contribution

B = ), G(S,.),
()
k=i+w I=j+h (4.4)
lef igh
G(S;,,) = Go Z Z Ikalis,., ,— Hif t' :

k=i—-w I=j—h

Here Ht and Hf$" denote the intensity of the pixel (i, ) in the left and in the
right picture of the stereogram and G, = [(2h + 1) 2w + 1)]-! is a normalization
constant. Correct disparity spin configurations are characterized by low energy con-
tributions.

For the input pattern shown in Fig. 17 the disparity field obtained is presented in
Fig. 18. Starting from the temperature 7 = 1.5 the annealing process was stopped
at a low temperature T = 0.01. For the interaction parameters in Eq. 4.3 we have
assumed the values J = 2 and ¢ = 0 and for the maximal disparity the value N = 5.

A more complicated stereogram containing the three-dimensional information of an
eight level pyramid is shown in Fig. 19. The solutions of the disparity spin system



(N = 10) with interaction parameters J = 2 and g = 0.2 are shown for three tem-
peratures in Fig. 20.

At the high temperature T = 0.8 the fluctuations of the disparity spin values are
large. This is demonstrated by a snapshot of the dynamics shown in Fig. 20a.
Figure 20b illustrates that at the intermediate temperature T = 0.3 the system still
fluctuates; however, the disparity field already indicates the presence of different
disparity planes. Figure 20c shows that at the low temperature T = 0.1 the fluctu-
ations almost disappeared and that the disparity spin system achieves the correct
interpretation of the Julesz pattern, an eight level pyramid. -

4.5 A Spin Model for Picture Restoration

Restoration of noisy pictures can be simplified if expected relations between picture
attributes are known. As an example, we consider a chessboard-like pattern as
input for a picture restoring system. There are several a priori qualities present in
such a pattern: the intensity in a square is constant, at a square’s border are
straight edges in a vertical or a horizontal direction, and edges are continuous. A
system of feature spins instructed with this knowledge can restore noisy chessboard
patterns. Such system entails three kinds of feature spins

¢ Intensity spins which take the values +1 for black and white colors, respec-
tively.

® Horizontal edge spins which take the values +1 for intensity changes from
white to black, the value —1 from black to white and the value 0 in the case of
an absence of any edges.

® Vertical edge spins which follow corresponding rules.

The intensity spins are defined on a square lattice. The edge spins are located
between neighboring intensity spins.

The Hamiltonian of the picture restoring spin system can be written

_ VEiifieta + Ep_pfieia + Ey_yfieia
Erotal = {+ E i+ Ey_y+E,_,+E_,+E #-3)
i—i h—h v—v i—h -y

where the indices i,4,v refer to intensity, horizontal and vertical edge spins, respec-
tively, with the corresponding fields ifield, hfield, vfield. To implement the conti-
nuity condition for the intensity spins ;€ {—1, + 1} an Ising-like interaction is
assumed. To implement the continuity property of edges, an attractive interaction
in the proper direction is employed for the horizontal edge spins H; ;€ {—1,0, + 1}
as well as for the vertical edge spins V, ; € {—1,0, + 1}.

E_i=—J Z L il (4.6)
<(i, ).k, )>



Table 1. Compatibility condition table T(ij,k) where ij denote pairs of intensity spins and
k denotes the edge spin in between.
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4.7)

To obtain compatibility between the hypotheses of edge spins and intensity spins an
interaction energy favoring consistent configurations is added
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Figure 21. Input pattern and restored chessboard pattern for the feature spin system
described by Egs. 4.5 through 4.10.



Eip = —Jio Z Ty j fivr,p Hij)s
(i,))

Eiy = =iy ), TUijp jins Vi)
%))

4.8)

Here T contains the compatibility condition listed in Table I.

The pattern to be processed is coded as a field F,; e { +1, —1} corresponding to
black and white pixels at position (i, j). The interaction between intensity spins and
the field is chosen like in the Ising model

Ei_ifietla = —Jifield Z 1 ; F j. (4.9)
&)

The field for edge spins codes intensity changes. The interaction between edge spins
and the corresponding fields is

Entfictd = ~Iigieta ), 3(H p(Fipr,j~F, )I2)

.7 (4.10)
E,_yfietla = —vfield Z o(V; jp(Fy jy1—F3, )I2) -

)]

As input for the picture restoration spin system we chose a distorted chessboard
pattern, measuring 20x20 pixels. Twenty percent of the pixels were randomly
reversed from black to white and vice versa. The resulting pattern is presented in
Fig. 21a. The aim of the restoration process is to find the chessboard closest to this
picture. The interaction parameters assumed for the restoration are J; = 1, J, = J,
=45, Jy = Joy = 45, Jpea = 1, Jhpes = Jypea = 3. The temperature was
lowered in 12 steps from an initial value of T = 8 to the final value of T = 0.05.
Figure 21b shows the result: the chessboard pattern has been restored to a very
large degree.
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