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Abstract. We consider a neural network model in
which the single ncurons are chosen to closcly resemble
known physiological properties. The neurons are
assumcd to be linked by synapses which change their
strength according to Hebbian rules on a short time
scale (100 ms). The dynamics of the network — the time
cvolution of the cell potentials and the synapses — is
investigated by computer simulation. As in more
abstract network modcls (Cooper 1973; Hopficld
1982; Kohonen 1984) it is found that the local dy-
namics of the ccll potentials and the synaptic strengths
result in global cooperative properties of the nctwork
and enable the network to process an incoming flux of
information and to learn and store patterns associa-
tively. A trained net can associate missing details of a
pattern, can correct wrong details and can suppress
noiscin a pattern. The nctwork can further abstract the
prototype from a serics of patterns with variations. A
suitable coupling constant connccting the dynamics of
the ccll potentials with the synaptic strengths is derived
by a mcan ficld approximation. This coupling constant
controls the neural sensitivity and thercby avoids both
extremes of the network state, the state of pcrmanent
inactivity and the state of epileptic hyperactivity.

1 Introduction

Recent rescarch in brain modclling and nevral nct-
work theory follows two main paths. The followers of
one path scek to describe the circuits of small neural
asscmblics and their system thcoretical tasks. Stent
and coworkers (Stent et al. 1978) have simulated the
swimming movcement of the leech identifying the
oscillatory and fecdback mechanisms in the lecch
ncural network. Kandel and Schwartz (1982) have
investigated the changes of the plastic synapses in
Aplysia, a marine mollusk, and interprete this cpcial
mecchanism as learning.

The foliowers of the sccond path describe the
information processing propertics of ncural networks
by simulating a large number of formal ncurons which
do not resemble closcly physiological neurons but
rather physical spins with two or morc intcrnal statcs.
Modecls of this kind introduced by Little (1974) and by
Hopficld (1982, 1984) and the more involved modcl of

" Edelman (1982) propose simplifications of the single

neuron behavior arguing that the essential propertics
of information processing systems which lie in their
global bchavior arc reproduced well. Details of the
ncuroanatomy and ncuronal functions, e.g. the synaptic
conncctivity and the cell potentials, are described in a
rather abstract fashion. The simple behavior of the
network constituents allows to simulate neural as-
semblics containing scveral thousands of formal
ncurons. If also symmetric synaptic interactions arc
choscn this formal ncuronal system is equivalent to a
spin glass and the concepts of statistical mechanics can
be applicd to understand the macroscopic behavior of
such systcms (Perctto 1984).

The qucstion ariscs however, in how far this
behavior of formal ncuronal systems also arises if the
constitucnts and their dynamic propertics are de-
scribed in a morc realistic fashion. We want to
investigatc in this article the information proccssing
properties of a neural network composed of “physi-
ological™ ncurons. The ncurons are interconnccted by
synapscs, communicate among cach other and obtain
input from a primary sct of ncurons, the receptors.
Physiological properties like the firing rate of a single
ncuron arc reproduced by the millisecond dynamics of
the cells. The synapses between pairs of neurons
possess plasticity and change their strengths on a time
scalc of 300 ms according to the synchronicity of the
activity of the two ncurons involved. This approach as
advocated by v.d. Malsburg (v. d. Malsburg 1981,
1985; v. d. Malsburg and Biencnstock 1985) allows to
account for the formation of short tcrm memory traces.
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Initially, the synaptic strengths are chosen at random
resembling a completely uninstructed state of the
network. With this model based as closely as possible
on physiological laws we hope to avoid model ar-
tefacts. We like to show that such physiological
neural networks are capable of autoassociative
memory and recognition.

The self-instruction (learning) of the network is
simulated in three stages. In a first stage the receptors
activate the network with the pattern to be learned.
Synchronous activities of pre- and postsynaptic
neurons in the network strengthen the excitatory
synapses according to the Hebbian rule (Hebb 1949;
Palm 1982) and promote a cooperative interaction
between neurons belonging to those features of the
pattern which are simultaneously excited in the re-
ceptors. This stage of initial learning lasts for 300 ms.
Alterwards, the receptors are quiescent for 20 ms and
the network relaxes to the unexcited state. This second
stage is then followed by a third period which examines
the success of the self-instruction of the network by
requiring different associative tasks. For this purpose
the receptors are made to present to the network, for
example, the input of the first learning stage, albeit with
some features missing. The self-instructed network has
to demonstrate that it can restore these features.

In another course of self-instruction the receptors
present to the network an initial input pattern with
strong noise of asynchronous activity superimposed.
The network has to demonstrate its ability to filter
out this noise and to restore the pattern.

In a third course of self-instruction the network
abstracts a prototype pattern from a set of patterns
differing in details from one another.

2 Initial Synapses in the Model Network

The neural system discussed in this paper is a 2-dimen-
sional network of “physiological” neurons arranged on
a rectangular lattice. Each nerve cell receives input
from a primary set of receptors. These receptors may
be interpreted either as sensory cells which receive
information about the physical world or as a more
peripheral set of neurons in the cerebral cortex which
collects and processes patterns and projects them onto
another area, our network, for further processing. In
the latter case the receptors may also change the
strengths R;; of their synaptic connections to the
network, but in our model we neglect this possibility.
The receptors are the input devices which present the
learning and test patterns without changing their own
propertics.

Figure 1 schematically represents our model and
the flux of information leading from the receptors to
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Fig. 1. Schematic presentation of the model investigated: Re-
ceptors send spikes to a network of neurons. The connectivity
between the receptors (labelled by j) and neurons (labelled by i, k)
is given by the matrix R, the connectivity between the neurons is
given by S,(#). The resulting activity of the neural network is
affected by an activity-dependent alteration of S,(1), ic. the
network experiences a feed-back as indicated. As a result, the
relationship between the input of the neural network - the
receptor activity - and the output — the neural activity - is highly
non-linear

the neuronal net. The activity of the neurons is
interpreted as the output of the network. The back-
ward bended arrows indicate the feed-back due to the
effect of the neuron activity on the synaptic strengths
Sa(1) between neuron k and i in the neural network.

The connections between the receptors and the
“physiological” neurons have a local center-surround-
organization with peak value R. Receptors j which are
lying in the neighbourhood of the receptor i are
connected with the neuron i by excitatory synapses,

.whereas receptors arranged in the immediate sur-

rounding of this excitatory center have an inhibitory
effect on neuron i. Indices labelling the neurons and the
receptors shall always be read as double indices for the
cell position (x, y). The area on the receptor set which
affects the neuron i is much smaller than the size of the
network. Therefore, the connections between the re-
ceptors and the neurons constitute a continuous
projection of the input pattern onto the neural net, the
projection being locally convoluted with the center-
surround function.

In Fig. 2 the connection strengths between the
receptors j and the neuron i are shown. The connec-
tions between receptors and neurons support activity
areas with a diameter L, and suppress the longer
ranged noise which is part of the background.

The synapses S, (1) which carry action potentials
from cell k to cell i are initially chosen at random, i.e.
S:(0)= + S with equal probability for an excitatory or
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Fig. 2. The strengths of the receptor-neuron connections have a
cenler-surround org: tion. The synaptic strength R;; b
receptor j and ncuron i d ds, as indicatcd, on the di
between the position of i and j, ic. on [i—jl, in the casc ofa 1-dim.
situation

an inhibitory synapse. Hence, the nctwork is initiaily
completely uninstructcd, and no memory traces can be
found in the network at the beginning of the learning
stage. The neurons in our model possess excitatory and
inhibitory synapses. This feature differs from the
properties of physiological neurons which can either
excite or inhibit other neurons, not both. We decided
to offend Dale’s law (Dale 1935) for the sake of
computational simplification. We cxpect that for large
populations of neurons the crror introduced is not
significant.

The ratio R/S betwcen the peak value of the initial
receptor-neuron connection and the absolute value of
the neuron-ncuron synapscs detcrmines the coupling
of the nctwork to the sct of receptors. If R/S> 1 the
nctwork is very strongly coupled to the receptors,
whercas in the case R/S=x1 the nctwork dynamics is
dominated by the synaptic communication between
the ncurons.

3 Dynamics of the Membrane Potential

The fast dynamics of a ncuron involves its membrane
potential which changes on the time scale of a few
milliscconds. The membranc potential characterizes
the state of the neuron, specifies the sensitivity of the
cell and its ability to firc an action potential in the next
milliseccond. A membrane potential considerably
below the resting value indicates that the neuron is
strongly inhibitcd by other ncurons in the nctwork.
Conversely, a ncuron with its membrane potential
above the resting potential is sensitive to the incoming
flux of action potentials and, if further excited, will
reach the threshold.

321

In our model two important contributions to the
dynamics of the potential are included. A first term
describes the relaxation of the membranc potential to
the resting potential. This relaxation is due to the
Ohmic resistance and the active transport of joncs
across the ccll membranc and takes place on the time
scalc T,=25ms. In Jiving ncrve cclls the resting
potential lies at —70 mV. In our simulations we shift
the scale of the electric potential and choose the resting
value as zero.

The second term describes the change of the
membrane potential due to interactions with other
neurons. If the cell k which forms a synapse with
neuron i has fired, a postsynaptic potential appears in
cell i. The value of the postsynaptic potential corre-
sponds to the synaptic strength S;(2). Cell i contin-
uously sums up the various excitatory and inhibitory
postsynaptic potentials. If a threshold of Uz =30 mV is
cxceeded the neuron fires an action potential and
excites or inhibits nerve cells to which it connects. Sub-
threshold potentials relax to the resting polential as
described by the first term.

Our model simplifies the dynamics of an action
potential. If the neuron k fires, a monotonously
decreasing function G{4t,/T,) describes the differen-
tial change of the postsynaptic membrane potential in
neuron i. The cffect of the spike of neuron k on the
postsynaptic ccll i decays.with the characteristic time
Ty=1ms. The evolution of the membrane potential
can be considered as a rencwal process (Abcles 1982)
where only the latest spike enters into the interaction
with another neuron. The dynamics forget the past of
the nerve cell longer ago than the latest spike because
a spike compictely rescts the internal state of the firing
ncuron.

The various processcs to restore the cell membrane
after firing arc described by two refractory periods, a
total refractory period and a relative refractory period.
During the total refraclory period the neuron pos-
scsscs no seositivity for any synaptic stimulus. The
neuron gradually gains the capability to build up a
potential during the relative refractory period. These
two refractory periods limit the maximal spike fre-
quency of the neuron and prevent the nerve cell from
permanent firing. The total refractory period lasts for a
period Tr=5ms. The cflect of the relative relractory
period decays on a time scale T;/2.

The kinetic cquation which describes the evolution
of the membrane potential and which includes all
aspects discussed is

U/ Tat woldtJolA 0],
il UpsU)SUg; (1)
—UJTg, celsc.

du;

dt
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The first term in (1) describes the relaxation to the
resting potential, the second term the effect of the
communications of the ith neuron with the receptors
and with other neurons. The key parameter which
scales the neuronal communication is the coupling
constant w. This constant w will be determined in
Sect. 5.

¢[41.] in (1) is a function which accounts for the
existence of the total and the relative refractory period.
At;=1—1t,; measures the time that has passed since the
last spike of neuron i at ty;. A,(1) in (1) is the activity
function which sums up all spikes converging on the
cell i and weighs them with the corresponding synaptic
strength §;,(1). Afferent contributions of the receptors,
firing with an input frequency T,~ ', are also included in
A1)

A1) =Z,8,G(4t/Ty) + rjRilek(Alik/Tu)' (2)

o[ A(1)] in (1) is a sigmoidal function which represents
saturation in the afferent signal. Potential changes
beyond (wTy) ! are restricted to a saturation value. A
sensitive neuron with vanishing membrane potential,
which is maximally excited by the saturating afferent
activity (wTy) ™", reaches the threshold potential U,
after the interval Ty,. In our model differential changes
of the potential greater than the saturation value do
not occur. Postsynaptic potentials below (wT;) ! are
counted linearly, ie.

A1), il [AIS(eT) ™
U[A.-(!)]={ (@I, i A>Ty~ 3)
(T, i A(<—(oTy)'.
The factor g[41;] in (1) has been chosen such that

the sensitivity of the neuron i is suppressed by means
of the stepfunction @(4t;— T;) or reduced within the
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Fig. 3. The refractory state of the neuron afler the firing at 1=0
is accounted for by p(41). During the absolute refractory period
{0, T¢] the neuron is insensitive to afferent activity. During the
relative refractory period the sensitivity is gradually restored
and reaches the asymptotic value Uy

total and the relative refractory period, respectively.
We choose the following functional form represented
in Fig. 3

etan1=0n,-1)(1-6,(2 'T'/,T)) G

G; occuring in (1), (2), and (4) is a memory function
which describes the influence of the last firing of the
neuron i on the network dynamics. For simplicity we
choose an exponential dependence

G,-(At,»/r):np(—%), with At;=1—14;. (5)

When the threshold potential is reached and the
cell fires, the continuous time evolution of the mem-
brane potential U,(41/T,) is interrupted. At that
moment the past of the neuron is forgotten, the
membrane potential is set to the refractory value Uy
and the memory function G(41,/T,) starts again with

the value 1 to=1,

if U()2U,; then { U)="Uy, 6)
G{dtj)=1.

4 Behavior of a Single Neuron

We investigate first the time evolution of 2 neuron i
connected with a single receptor j. In this case the
activity function A,(r) in (2) is restricted to one term
which measures the input from the receptor j. The
system of coupled first order differential equations (1) is
reduced to

du, U, i
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Fig. 4. The postsynaptic potential induced by a single receptor
spike as calculated according to (6) is compared with the
experimental data of Kuffler and Yoshikami. The data are
rescaled 10 the maximum of the solution (8)

In the casc of a singlc receptor spike at 1=0 this
cquation can be solved analytically. For the solution
wc assumec a vanishing initial value U;(0) and a ncuron
initially in the sensitive state. The solution yiclds a two-
cxponcntial description of the postsynaptic potential

TRTy
et 20 oo £) ()
@®)

Figure 4 compares the time-dependence of (8) with the
obscrvations of Kuffler and Yoshikami (1975). The
good agreement demonstrates that the present modc]
describces satisfactorily the potential dynamics of single
ncurons.

5 Rescaling of the Network:
The Effective Excitation Time

Two different dynamic ficld variables cnter the net-
work dynamics, the ccll potentials U(4t/T;) and the
synaptic strengths S;(t). The dynamics of these vari-
ables procecds on two very different time scales, the
potentials U/4t,/T,) being the fast variables, the
synaptic strengths S, (z) the slow variables. The cou-
pling constant  of the two ficlds U(4t,/Ty) and Sy (1)
dominates the time cvolution of the fast variablcs, the
cell potentials U (4t;/Ty). In order to prevent the state
of permancnt (cpileptic) fiting or of quiescence in the
nctwork the coupling constant of the synaptic
strengths and the cell potentials has to be adapted to
the network parameters, i.e. to the number of synapses
per neuron, to the time constants Ty, Ty, Ti, T, defined
in (1) and to the ratio R/S of the mcan receptor-ncuron
conncction valuc R and the initial synaptic strength S.

In this scction we will develop an expression for the
coupling constant w. For this purpose we seck the
mcan-ficld cquation for the ccll potential of neuron i,
excited by thec mcan affcrent activity of the other
ncurons. We introducc a new time constant, the
cflective excitation time T of a ncuron. In the mean
field approximation, a scnsitive, quiescent ncuron
(U481 Ty)=0) will reach threshold after the interval
Tz and, hence, will firc with a frequency
(Te+2T5) '~(15ms)~? il it is cxcited by a mcan
afferent activity of the same spikc frequency.

The mecan of the neuron and reccptor activity A1)
of (2) is nceded for this description. The sum
Z,Sa(0)G,(41,/Ty) which appears in this equation must
be averaged over the possible synaptic strengths and
over time. We assume that both averages arc independ-
ent, i.c. the randomly choscn synaptic strengths S;,(0)
are not corrclated with the memory functions
G,(41t,/Ty) of the ncurons k. The distribution of the
sum X,S;(¢) in an cquilibrated network with just as

323

much cxcitatory as inhibitory synapscs in the limit of
many synapscs approaches a Gaussian distribution
with mean value 0 and variance

45=S)/N. ©)
The variance cstimatcs the fluctuation in the affcrent
ncuronal interactions which are responsible for the
firing of a ncuron. N determincs the number of aflerent
SYnapscs per ncuron.

To computc the time avcrage of thc mcmory
function G,(4t,/Ty) we regard the firing of the ncrve
cell as a renewal process with a spike frequency 1/t and
a constant probability dt/t to firc in the interval dr.
Then the distribution function of the interval between
two spikes decays exponcntially with the characteristic
time 7 and has the form

p(41)= %exp (A— -‘—:—!) . (10)

We average G,(44,/Ty) with the distribution function
(10) of 41, inserting the inverse ncuronal spike fre-
quency t=T;+2T; and obtain

! t—1t"
(ZuSaGu(44/Ty)) =4S _f dr'p(t—1t)exp ( - T)
Ty
Tt 2T+ Ty

The contribution of the receptors Z;R;;GNAt5/Ty)
to the activity function 4,(¢) in (1) is also averaged over
time and over thc distribution of the conncction
strengths R;;. The intervals between two receptor
spikes again are assumed to be cxponentially dis-
tributed according to (10) with the input time 41§ =T,.
The average conncction strength (R;;) is sct 1o R, the
peak valuc of the center-surround-function. We obtain
the average receptor contribution to the activity
function A1)

=45 (11

T
4GPy =R-—Y 12
GRuGD =Ryl (12)
and the averaged activity function A(t)
T
(PSPy=45 ——2 - 13)

R )
T2+ T, T+ Ty

If in (1) the function A(t) is rcplaced by (PSP) we
obtain thc mean-ficld cquation

dU; U;

—_—=— . 14
@ 7., +oU(PSP) (14)
The solution of (14) with the initial value U,(0)=0
detcrmincs the coupling constant w if we introduce the
sclf-consistence condition that the threshold potential
U is reached at time T. The coupling constant w as a
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Fig. 5. The coupling constant o) Ty), determined by (15),is shown
as a funciion of the effective excitation time Ty

function of the effective excitation time Ty is given by
the expression represented in Fig. 5,

((PSP)TR (1 —exp( ;‘f)))_l (15)
R

Equation (15) furnishes a choice of the coupling
coefficient @ [see (1)] which assures that the neural
network avoids the states of epileptic hyperactivity or
of abnormal quiescence. For this purpose one sets the
parameter T to a desired value in the range of 1 msto
3ms. A need for the application of (15) arises, for
example, if one wishes to fit the average firing rate
(T;+2T;) ! in the network to an experimental value.
If one would alter for this purpose solely one of the
parameters Tg, Ty, Tp, R or S in (1), the network
dynamics could become completely unstable. A rescal-
ing of the synaptic strengths S;,(t) through the choice
(15) of the coupling constant w avoids this difficulty.
Another situation in which the need to apply a
rescaling according to (15) arises is a change of the
number of synapses per neuron.

6 Learning Through Synaptic Plasticity

In our model of learning, information is stored nonlo-
cally in the synaptic connections of the network. The
time evolution of the synapses, two orders of magni-
tude slower than the evolution of the cell potentials,
couples adiabatically to the firing of the neurons and
averages over many pre- and postsynaptic signals
according to Hebbian rules. During the learning
process which lasts between a tenth of a second and a
few seconds the synapses between pairs of neurons are
changed according to the activity states of the pairs.
The synaptic evolution on a time scale below a second,
first suggested by v. d. Malsburg (1981) and Little and
Shaw (1975), until now is only a hction. However, the

idea appears to be worthy of consideration since it
endows neural networks with remarkable abilities as
the results of this paper (Sect. 7) demonstrate. Experi-
mentally, there exist only vague indications of a stable
synaptic plasticity on the time scale below a second
(Freeman 1977) since longer lasting effects of the
synaptic changes are difficult to detect in electrophysi-
ological experiments.

In our model, the plasticity of the synapse with the
strength S;(r), connecting neuron k to neuron i,
evolves on the time scale Q™' =300 ms and is governed
by the equation

- 52050 | 06, (a1 w6, 6.
s
Ba_l o szisuzss 16)
= Su()—Su(0) else
S0 S0,

which holds for excitatory and inhibitory synapses.
_ Su()— S1(0)
T
ation of the synapses to their initial values with the
relaxation constant Tyx1-2s. This term describes
that stored information is forgotien. The second term
in (16) causes the growth of the synapses. This term is
governed by the function x(G;, G,) which distinguishes
four different activity states of a pair of neurons i and k
as presented below

The first term accounts for the relax-

| _Gddt/Ty)| Gudt/Th)| x(GiGy)| dSu/dt

(a) | >e™! >e”! +1 >0
)| <e? >e”! -1 <0
(c) | >e! <e”! -1 <0
d) i <e™! <e”! 0 =0
. (17

These values of k(G;, G,) enter (16). The reader
should note that according to (16) the synaptic
strengths do not change signs, i.e. excitatory synapses
remain excitatory, inhibitory synapses remain in-
hibitory. The upper and lower bounds of the synaptic
strength values S,(1) are given by S,=17S and
$,=0.018.

The first state (a) in (17) denotes an activity of the
neuronal pair when both the pre- and postsynaptic
cells i and k fire synchronously within an interval
T,y =15 ms. The rule k(G,, G,)=1 in this case has been
introduced by Hebb (1949) and implies growth of
cxcxtalory synapses and weakening of the mhnbuory
synapses in this state.

In the second state (b) only the presynaptic ncuron
has built up an action potential and the post-
synaptic cell remains quiescent. In this case the factor

x(G;,G,)=—1 according to (16) diminishes thc
excitatory synapses and increcases the slrcnglhs of the
inhibitory synapses.

In the third state () only the postsynaptic cell has
fired. The result on the synapses is the same as that for
state (b).

In the fourth state (d) ncither the postsynaptic ccll
k nor the presynaptic cell i is active. In this state the
seccond term in (16) has no effect.

Figure 6 shows the changes which the strength S;, of an
excitatory synapse experiences if the presynaptic
neuron k fires at ¢t=0 and the postsynaptic ccll i
answers with a spike at t=tg. If no interval separates
the two spikes (1, =0) the synaptic strength S, grows
most strongly (solid line). A time delay shorter than

2e+1 . .
413—-=TyIn + resuits in an asymptotic

synaptic strength above the initial value. If the interval
between the two spikes cxceeds 4t3 the synaptic
strength asymptotically decreascs below the initial
valuc.

The rules (17) promote the cooperation of cells
activated at the same time and build up a cell assembly
of cxcitatorily connccted and cooperating neurons.
This assembly scparates itsclf from the sct of cells with
an asynchronous activity by inhibitory synapses to
that sct.

If more than one pattern is to be Jearned by the
network an additional mechanism has to bc intro-
duced which protects the pattcras Jcarned earlier from
destruction by pattcrns learned later. The synapscs
which contribute to a learned pattern are cither very
large, i.c. in the range G, =[0.9 §,, S,] if excitatory, or
are very small, i.c. in the range G,=[—-0.1S,, — S}, if
inhibitory. Synapscs in these two ranges, thercfore,

Synaptic Strength Su(t)

Time t/ms

Fig. 6. Time-dependence of the synaplic strength S_.(l) in rc-
sponsc to onc spike in the pre- and in the postsynaptic ccll for 4
different spike intervals 41, For 41=0 the synapse grows by a
maximum amount, an interval 41=20ms causcs a strong
decrcase of Su(1). (solid line: 4t=0 ms, dashed line: dt=1 ms,
dotted line: 4v =S5 ms, dash-dotted line: 41=20 ms)
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must be guarded, i.e. their dynamics is to be slowed
down. For this purpose the time scale of the synaptic
changes Q7' is adapted to the current value of
synaptic strengths. A decrease of the synaptic strength
(k= —1}in the ranges G, and G, should require much
morc time than an increase (k= +1). The functional
form of the factor , chosen in our model for this
purpose and represented in Fig. 7 is

0 {Q&(l +1)+Qak(1—x), if S,€G,vS,eG,;

e, clsc. a8)
The paramcter a employed here lics between 0 and 0.2
(0<2=0.2). The switching between the two values of
0

0

afl

_SU —SL SL SU Sih

Fig. 7. Hysteresis in the synaptic growth factor £, : An increase o:
the synaptic strength S,,(1) cvolves an order of magnitude faster
than a decreasc if the synapsc has reached the upper saturatior:
boundarics S, and —§;

Table 1. Nctwork paramclers

Constants of the Fast Dynamics
Ty=10ms Timc constant of a ncural spike
Tx=25ms Rclaxation time of the membranc potential
Tr=50ms Refraclory period
T,=10ms Time between two receptor spikes
Te~15s  Effective excitation time, tuning
parametcer of the network activity
RiSx)/N

Coupling ratio between receptors
and ncural nctwork

Ur=30mV Threshold potcntial

Uy=0mV  Resting potential

Ug=-—15mV Refractory potcntial

Constants of the Slow Dynamics
Tu=150ms Coincidence interval of two spikes
T;=10s Synaptic rclaxation
2=1/(300 ms)Time scale of synaptic changes
ax0.1 Hysteresis factor

S$.=17S Maximal synaptic value

§5,=001S  Minimal synaptic valuc

L=15 Dimcnsion of the excitatory center
Li=35 Di ion of the inhibitory surr ding
N=150 Number of synapses per ncuron

S=x60 Synaptic strength (arbitrary units)
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Q, leads to a hysteresis effect which protects the stored
information against overwriting by a later pattern.

The kinetic parameters which determine the
neuronal dynamics of our model network are collec-
ted in Table 1.

7-Behavior of the Network with Receptor Input

The neural network proposed shows astonishing abil-
ities to process and store information. This is demon-
strated by simulation calculations. We will show that a
homogeneous, i.e. uninstructed, network changes its
synaptic structure and, as a result, its electrical activity
patterns under the influence of stationary patterns. For
a better visualization of the abilities of the network we
chose the words brain and FEET (Fig. 8a and c) as
input figures to the network.

The figures brain and FEET are offered to the
network with a frequency T;~1ms. The memory
functions GR(At#/T,) of the receptors representing the
figure brain are synchronously set to the value 1 after
the interval 7;. The input frequency of the receptor
activity GR(418/Ty), chosen for convenience, can be
critizised as unrealistically high. With a more sensitive
network, ie. T~1 ms, the neurons could be excited
by a much lower spike frequency of the receptors. The
synchronicity of the receptor activity is postulated as
a2 hypothesis and is not discussed in our model. We
suppose by this hypothesis, that the synchronous
receptors detect the same features, i.e. the pixel inten-
sity or the colour, and, therefore, belong to the pattern.
The stochastic activity of the receptors can be syn-
chronized by lateral connections, as briefly discussed
by v.d. Malsburg (1981).

In the first simulation, described in Sect. 7.1, we
present the figure brain to the network and analyse the
changed connectivity. The success of the instruction is
examined by an associative task. The network has to
restore the letter i missing in the test figure (Fig. 8b).

In the second simulation, discussed in Sect. 7.2, the
network is required to learn and to associate two
figures, brain and FEET. The problems arising from
the interference of the two figures are analysed and the
necessity of the hysteresis in the synaptic growth
discussed in Sect. 6 is demonstrated.

A third simulation course, discussed in Sect. 7.3,

deals with the abstraction of a prototype figure from a
series of figures varying to a small degree. The net-
work disregards the variations in the figures to be
learned, i.e. abstracts the prototype figure.
Fig. 8a—d. Learning patterns (a,c) and test patterns (b,d)
employed in our simulations. A “*” indicates that the receptor at
that position fires with a rate 7;™ %, ic. the fanction G} 41}/ T)is
set 10 1 at this rate, and evolves according 1o (5) between these
times
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In a last simulation, described in Secct. 7.4, the
reaction of a trained nctwork to a noisy figore is
studicd.

In all four simulations wc analysc the cvolution of
the nctwork monitoring the membrane potentials
U4t/ Ty) and the information whcther the neuron has
fircd or not. The mcmbrane potentials Uf(4t,/Ty)
describe the millisccond dynamics of the ncuron.
Potentials of the ncurons representing the associated
part of the test figure provide a mcasure of the success
of lcarning and association.

7.1 The Learning of the Figure **Brain™

The first simulation has threc different stages. In the
first stage the uninstructed nctwork Icarns the presen-
ted figure brain and changes its synaptic connections.
In the second stage the receptors arc quicscent and the
membrane potentials relax to the resting state. In the
third stage the success in Jearning is tested by the
associative task to restore the missing letteriin the test
figure. The following tablc summarizes the chronolog-
ical order of the different stages.

0-300 ms: learning of the figure brain
300-320 ms: relaxation of the membrane potentials
320-360 ms: association of the missing i in the figure
: bran.

The sccond stage has becn introduced to assure
that the potential U(4t/Ty) and thc memory function
G (4t/Ty) relax and that no after-effects of the millisec-
ond dynamics can deccive the associative restoration
of the test figure. The interval of 20 ms in which the
network receives no input spikes from the receptors
guarantees that only the changed synaptic strengths
and not the mecmbranc potentials contain information
about the lcarncd figure.

The rcaction of the network after the prescntation
of the figure brain in stage 1 is represented in Fig. 92
which shows the mcmbranc potentials after 30 ms.
Most of the ncurons which receive input from re-
ceptors belonging to the figure (figure neurons) have
fired and are resting in the refractory phase or have
reached already the sensitive phasc and are again
summing up postsynaptic potentials. The neurons in
the immediatce surrounding of the pattern which do not
receive input from those rcceptors (background
ncurons), are inhibited by the center-surround-
connectivity R;; between the receptors j and ncurons i.
A few of the background ncurons in the upper half of
the network are cxcited at the beginning of the Iearning
course becausc they are conmnccted to the figure,
neurons by enough excitatory synapses. These conncc-
tions raisc their membrane potential, although not
above threshold.
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Fig. 9a,b. Membrane potentials aflcr 30 ms (a) and 300 ms (b).
The values of the membrane potentials are divided by the
threshold value Uy, and arc represented by the next value if
posilive. The symbol “*” indicates thal the ccll potential has

" reached the threshold. If the memory function G{4t,/Ty) exceeds

1/e the integer isitalicized. Negative potentials are represented by
a blank, or by an italic zero 0, if G{41,/T,,) exceeds 1/e

After 300 ms (Fig. 9b), i.c. at the end of the learning
stage, the background cells arc strongly inhibited and
only the neurons belonging to the figure show a
positive membrane potential or are in the refractory
state.

_ The strong inhibition of the background ncurons
by the figurc ncurons originates from the altered
synaptic connectivity of the network. The figure
neurons during the learning stage have fired between
20 and 30 spikes, whereas the background cells have
never reached the threshold. This activity leads, ac-
cording to (17), to altcrations of the synaptic strengths
Sal0).

In Fig. 10 we represent, both before and after the
lcarning stage, the strengths of the synapses which
conncct the ncuron (37,4) [the ncuron recciving input
from the receptor which represents the point of the i in
brain] with the other ncurons. According to the
kinctics Jaid down in (16), (17), the synapscs between
two figurc neurons k and i, i.. ncurons which have
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often fired synchronously, are strengthened. The syn-
aptic strengths S;(1) of these synapses are saturated
cither at the value S, =99, if the corresponding synapse
is excitatory, or at the value —S;= —1, if the corre-
sponding synapse is inhibitory. Excitatory and in-
hibitory synapses connecting the figure neuron (37,4)
to background neurons are saturated at the lower
boundary values S, or —S,, respectively. Figure 10 also
demonstrates the nonlocal properties of the storage.
Each neuron contains in its synaptic connections a
blueprint of the pattern stored in the network.

After the relaxation of the membrane potentials in
stage 2, the network is excited in stage 3 by the test
figure, the latter being identical to the pattern brain
Jearned in stage 1, except that the letter i is missing. The
time evolution of the membrane potentials during the
first few milliseconds of this association task is repre-
sented in Fig. 11.

The neurons which obtain input spikes from the
receptors react immediately with a raised membrane
potential. At 1=2324 ms, 4 ms after the beginning of the
association test, several of the neurons belonging to the
new figure bra n have fired and the potentials of the
remaining neurons exceed the value 20mV. At
1=1325 msall except three neurons of this set have fired
a spike whereas the potentials of neurons representing
the missing i have reached threshold or are just below
threshold. Figure 11 also illustrates the mechanism

underlying the associative properties of the network.
The figure neurons are connected excitatorily with
each other, as shown by Fig. 10. If a subgroup of the
figure neurons, e.g. the neurons of the letters a and n,
fires spikes strong postsynaptic membrane potentials
are evoked in the neurons of the missing letter i. These
postsynaptic potentials compensate the missing re-
ceptor inputs and stimulate the postsynaptic cells to
fire, too. The firing of the pattern neurons which are
stimulated by other figure neurons and not directly by
the receptors is delayed for only about 1 to 2 ms. At
time 1=326 ms all cells of the letter i have fired. The
network has restored the test pattern, associating the
missing figure components.

7.2 Learning and Association of Several Patterns

The pattern brain in the preceding simulation has been
stored with high redundancy. Each cell contains
information about the whole pattern and the storage
capacity of the synaptic structure is not exhausted at
all. Now we will investigate the possibility to store and
associate several independent patterns with partial
overlap. For this purpose we simulate the learning and
storage of the patterns brain and FEET, represented in
Fig. 8a and c, the overlap of which involves nearly a
fourth of their neurons. This simulation should de-
monstrate that more than one pattern can be stored in
the network. We do, however, not investigate its full
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Fig. 11a—c. Mcmbranc potcntials during the association task
described in Sect. 7.1 (for definition of the potential valucs sce
Fig.9)

storage capacity which by far exceeds the information
content of the two patterns considered here (Palm
1980; Hoplield 1982). The chronological order of the
different stages of this simulation is the following:

0-300 ms: lcarning of the figure brain
300-320 ms: relaxation of the membrane potentials
320-720 ms: learning of the figure FEET
720-740 ms: relaxation of the membrane potentials
740-800 ms: association of the missing letter i in brain
800-820 ms: relaxation of the membrane potentials
820-880 ms: association of the incomplete letter E

in FEET.

DY

Fig.12a,b. Membranc potcntials during the simulation de-
scribed in Sect. 7.2. The state of the network is shown at theend of
the two learning stages (for definition of the potential values see
Fig.9)

The membrane potentials evolve during the first
300 ms, the Jearning stage of the pattern brain, exactly
as in the simulation described in Sect. 7.1. When the
receptors present the sccond pattern some interference
cffccts between the stored pattern brain and the
presented pattern FEET arise in the network. At the
beginning of the second learning stage, the neurons
belonging to both figures try to inhibit the neurons
which belong only to the sccond figure FEET. During
the first learning stage of the pattcrn brain, the ncurons
which rcpresent FEET but not brain have constituted
part of the background and, therefore, have become
inhibitorily connected with the brain-neurons. If the
receptors are coupled strongly enough to the network
(R/SzVﬁ) these inhibitory connections are suppres-
sed and the learning of the sccond pattern is not
disturbed by the information alrcady stored in the
network. In Fig 12b, at =700 ms, the end of the
second Jearning stage, the membrane potentials reflect
the presented pattern FEET.

The association properties are tested by the test
patterns, Fig. 8b and d. The network associales the
missing letter i and completes the letter E without any
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Fig. 13a—d. Membrane potentials of the simulation described in Sect. 7.2 during the association of the first (a, b) and of the second test

pattern (c, d) (for definition of the potential values see Fig. 9)
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Fig. 14a,b. Strengths of the
synapses which originate from the
neurons (37,10) and (33,4) after the
learning of the two patterns brain
and FEET (for definition of the
synaptic strengths values see

Fig. 10)
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faults. The millisecond dynamics of the membranc Pattern n

potentials during the association tests shows no signifi-
cant differences to the simulation in Scct. 7.1. In
Fig. 13a—d the successful association of both patterns
is demonstrated. ’

More insight into the information storage is gained
by considering the synaptic structure. Figure 14 repre-
scnts the strengths of the synapses which connect
neuron (37,10) (a) and ncuron (33,4) (b) with their
respective neuronal surroundings. These two ncurons
belong to the pattern brain (37,10) and to the pattern
FEET (33,4), respectivcly. The synaptic changes corre-
spond to the results of the preceding simulation where
only one pattern is presented.

In Fig. 15 we represent the synaptic structurc of
neuron (37,4) which belongs to both brain and FEET.
The synapses connecting this ncuron to neurons of the
second figure grow from the lower boundaries S, and
—S,, where they have saturated after the first lcarning
stage, to the upper saturation boundaries S, and —S,.
The inverse process, the decrcase of the synapscs
connccting ncuron (37,4) to ncurons of the first pattern
brain, is prevented by hysicresis in the synaptic growth
factor (scc Scct. 6). According to the rule (17b) the
synapscs between cell (37,4) and ncurons of the pattern
brain are diminished during the Icarning of the pattern
FEET, but this process is rctarded by an order of
magnitudc and changes the respective synapses by
about 5 percent only. As a result, information about
the pattern learned carlier is conserved.

7.3 Abstraction of a Prototype Figure

Another property of the nctwork, the abstraction of a
prototype figure, will bc demonstrated now. In this
simulation the receptors present a serics of figures
which contains thc word brain and two moving
horizontal bars. Every 20 ms the network reccives a
new pattern of the scries, the bars being diplaced
cyclically by one pixel row. Figure 16 shows two
consccutive patterns of the scrics presented to the
nctwork.
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Fig. 16a,b. Two successive paticrns of the scrics of patterns
prescated to the network in the simulation described in Sect. 7.3,
The pattern consists of the word brain and two moving bars
(comparc 2 and b)

The result of the association test after the lcarning
stage of 300 ms is shown in Fig. 17. The success of the
reconstruction proves that the network disregards the
moving bars and lcarns only the invariant figure brain.
If the modified synaptic strengths of the network are
analysed at ¢t =300 ms, only very small traces originat-
ing from the added bars can be detected. Synchronicity
between the ncurons representing the pattern brain
and the ncurons representing the bars has occured so
rarcly that the synaptic changes according to the rule
17a arc ncgligiblc in comparison to synaptic rclaxa-
tion.
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Fig. 17. The network instructed by a series of patierns as shown
in Fig. 16 associates the missing i without faults

7.4 Noise Suppression by a Trained Network

In the preceding three simulations the network had to
restore, after the learning stage, an incomplete but
stationary test figure. A trained autoassociative net-
work with the dynamics as in (1) is also capable to
suppress, from the test figure, strong non-stationary
background noise which contains no correlations over
an interval greater than 1 ms. In the following simul-
ations all receptors belonging to the second test figure
fire simultaneously with a frequency of 1 ms™’. In
addition to this synchronous firing, the receptors
representing the background fire uncorrelated noise
spikes with an average spike frequency 1 ms™".

In Fig. 18a—, respectively, the activity G}(415/T)
of the receptors, the afferent activity Z;R,;,G(41}'/Ty)
entering in (2), and the network reaction are shown.
The receptors present an extremely noisy picture to the
network. The local averaged intensity, which is defined
as the spike frequency of the receptors, does not
discriminate the figure from the noisy ground. Only the
simultaneity of all spikes belonging to the test figure
separates the information from the meaningless noise.
A neuron has to sum up the activity of several
milliseconds to reach the threshold. A figure which
involves strong correlation in time raises the proba-
bility of activating the neuron, whereas an uncorre-
lated noisy pattern facilitates relaxation of the mem-
brane potential and inhibition of the neuron.

The center-surround-organisation in the receptor-
neuron connections diflerentiates the input pattern
twice (Marr 1982) and filters out a homogeneous
background activity. As a result strong noise also has
the effect that the afferent activity Z;R,;GX(41}/T,)
decreases together with the local differences in the
activity function G}‘(AI,'»‘/TU). Therefore, the neurons
must be made more sensitive than in case of an
association test with undisturbed figures to let associ-
ation succeed.
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Fig. 18a—c, The simulation of the neural network as described in
Sect. 7.4: Shown are the memory function G}‘(A:}/T;,) (a), the
afferent contribution IR, ij(Atf/Tu) of the receptors (b) and the
membrane potentials of the neurons which react to the receptor
input. (c) The input pattern contains the test pattern of Fig. 9d
and a strong background noise. The receptor-neuron connec-
tion strength R is given the value 1. The network suppresses the
noise and filters out the hidden information

Neural membrane potentials are shown in Fig. 18c.
The cooperating neurons representing the pattern
FEET have resonantly coupled to the noisy input
pattern and inhibit the background neurons, although
these also receive receptor spikes.

If the receptors present only noise, i.c. a pattern
without a synchronous component, the situation
changes drastically, as shown in Fig. 19. Neurons react
with an intermediate spike frequency of (150 ms)™'.
No correlated firing of the neurons representing one of

the two stored patterns is detected. The membrane
potentials vary stochastically between the refractory
and the threshold potential as demonstrated in
Fig. 19¢c.

The simulation summarized in Fig. 20 demon-
stratcs that both lcarncd patterns can be restored cven
in the presence of strong noisc. The Jearning stages are
chosen as in the simulation with two lcarning patterns,
described in Sect. 7.2. The association and restoration
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Fig. 192—c. The simulation of the ncural nctwork as described in
Scct. 7.4: Shown are the memory function GJ(41]/Ty) (a), the
affcrent contribution Z;R,,GF(41t]/T,) of the reccptors (b) and the
mcmbrane polentials of the ncuroas which react to this input.
The input patiern is a strong background noisc only. No
cooperating neuronal asscmbly is excited and the network reacts
only with an inter spike frequency of (150 ms)™?
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of a pattern with strong background noise is testec
according to the following time table:

740-780 ms: First Test Pattern with Strong Noisc
780-840 ms: Noisc

840-880 ms: Sccond Test Pattcrn with Strong Noisc
880-940 ms: Noisc.

In Fig. 20a and b we represent the total activity
Z,G(4t/Ty) of the assembly of those neurons which
represent cither the pattern brain or the pattern FEET
We first consider the asscmbly of ncurons representing
the figure brain. The total activity of this assembly is
represented in Fig. 20a. When the first test input
(Fig. 8d) is prescnted from ¢ =740 ms 10 t = 780 ms the
assembly of the pattern brain fircs ncarly synchro-
nously. Howcver, when only noisy input is received i
the interval t=780 ms to t=840ms this assembly
reacts with a low spike ratc. The noisc input does not
stimulate firing of the whole assembly but only elicits
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Fig. 20a, b. The simulation of the ncural nctwork as described is
Scct. 74: shown arc the aclivity response of the assemblie:
representing the figure brain (a) and FEET (b). During the
interval {740 ms, 780 ms] the test figure 8b with added noise wa:
presenicd. During the interval [840 ms, 880 ms] the test figure 8¢
(c) The input patiern is a strong background noisc only. N¢
coopcraling ncuronal assembly is excited and the network
rcacts only with an intermediate spike frequency of (150 ms)™?
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very few neuronal spikes. When the pattern FEET is
presented in the interval t=840 ms to r=2880 ms the
assembly corresponding to brain exhibits a level of
activity which is significantly below the response
during the 740 ms to 780 ms interval. The response is
due to those cells which are common to both the brain
and the FEET neuronal assemblies.
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Fig. 21a—c. The memory functions G{Ar/T,) of the simulation
7.5 are shown at the beginning, i.e. 1=20ms, (a) and at the end,
ie. at 1=400ms, (b) of the learning stage. The patiern to be
learned has to be abstracted from the figure brain disturbed by
strong noise. In the association stage the figure bra n is presented
without noise. The response is shown in (c). The values of the
memory functions which ly between 1 (firing) and 0 (resting state)
are coded by integer numbers, i.e. 9 stands for G{41,/7,,)=09 etc.
“*" denotes a nevron which is firing momentarily and a blank
indicates neurons momentarily at rest

This simulation shows that the network can dis-
tinguish between a test pattern embedded in strong
noise and a pattern which contains only noise and no
underlying information. The noisy patterns can be
restored associatively.

7.5 Learning of a Noisy Pattern

In a final simulation we test the ability of an untrained
network to learn a pattern which during the whole
learning stage is disturbed by a strong background
noise. The noise is presented by an additional back-
ground activity of the receptors with an average
frequency of (2 ms) ™. Except for this noise the simul-
ation repeats the three stages of Sect. 7.1. Figure 21
presents the neuronal activity G(41,/T,,) at the begin-
ning (t=20ms) and at the end (t=400ms) of the
learning stage. At the beginning the network fires with
an intermediate spike frequency of (50 ms)~ . Several
background neurons are observed to fire excited by the
noise.

During the learning stage the activity of the
background neurons is stochastic and uncorrelated,
whereas the neurons corresponding to the figure brain
fire synchronously and, thereby, build up excitatory
connections. At the end of the learning stage, the
assembly of figure neurons inhibits the background.
Apart from a few mistakes the network has re-
cognized the figure brain and has separated it from the
background. However, the time the network needs to
detect the correlations in the pattern and to store the
presented information in the current simulation is
longer than the time needed in the case of undisturbed
learning. Also the time between two neuronal spikes
exceeds the average inverse frequence T+ 27} of the
undisturbed Jearning.

The association test is presented in Fig. 21c. The
missing letter i of the figure is associated without fault
after 4ms. The faults which developed during the
learning stage in the figure bra n, i.e. in the letters b and
r, cannot be corrected.

8 Conclusion

We have presented a network model with neural units
which are closely related to their physiological coun-
terparts with respect to the dynamics of their mem-
brane potential. The neural units are coupled by plastic
synapses the dynamics of which is governed by few
Jocal rules. These rules induce global cooperation and
competition and, thereby, endow the network with the
ability for noise filtering and for associative storage
and recall of large patterns. The basis of the rules of
synaptic plasticity is the discrimination between states
of pairwise synchronous and asynchronous neural

activity, synchronicity being measured on a time scale
of a few milliscconds. This ability may cnable ncural
nctworks in a primitive state of development to
separatc figure and ground on the basis of synchronous
and asynchronous inputs and, in a2 more advanced
statc of devclopment, it may contribute to higher brain
functions.

Our work was motivated by our belicl that brain
models should not be too distant from physiological
detail. The results obtained in the present article arc
not beyond those of previous aticmpts to describe
brain function by simplc physical modclling. Onc may,
in fact, consider our work as a proof that previous
abstract models of ncural nctworks (Cooper 1973;
Hopfield 1982; Kohonen 1984) have a physiological
basis. However, the present approach may also show
its value above that of abstract nctwork models when
one starts to investigale how more complex local
interactions of ncurons affect the global nctwork
function. Examples for such investigation are the
inclusion of mcasures of synchronicity between more
than two neurons or the effect of local neurochemical
agents which act beyond the range of neutrotrans-
mitters.

Previous models as well as ours point out clearly
that what matters in neural assemblics are not the
spikes of single ncurons but rather the cooperative or
compelitive activity of many ncurons. In this respect
theoretical approaches arc likely to make an important
contribution to the Neurosciences in that they alonc
can relatc the knowledge of the local behaviour of
ncuronal tissue to the global behaviour which codes
for the “atoms” of information processed in the brain.
To play this rolc, theoretical brain scicnce has to
incorporate physiological detail into its calculations
and cannol remain abstract. Further modclling of
physiological dctails, c.g. noise induccd postsynaptic
potentials, arc currently investigated by us.
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