Zeitschrift fiir Physikalische Chemie Neue Folge, Bd. 136, S. 1—63 (1983)
© by R. Oldenbourg Verlag, Miinchen 1983

A Network Thermodynamic Investigation
of Stationary and Non-Stationary Proton Transport
Through Proteins

By

Axel Briinger, Zan Schulten and Klaus Schulten

Max-Planck-Institut fdr biophysikalische Chemie, D-3400 Gattingen;
and Department of Physics, Technical University of Munich, D-8046 Garching,
Federal Republic of Germany

(Received March 16, 1983; in final form July 12, 1983)

- Biological proton conduction | Voltage-current characteristic | Time-dependent currents |
Irreversible thermodynamics

A model for the biological transport of protons in linear hydrogen-bonded chains formed
from the amino acid side groups of membrane proteins has been investigated in detail. The
description assumes first-order kinetics for transitions between all possible proton distributions
in the hydrogen-bridged chain. The corresponding master equation is solved numerically and in
some representative cases also analytically. The following time-dependent observables have been
evaluated: 1) proton current at the conductor ends, 2) charge displacement within the con-
ductor, 3) free energy decrement, and 4) state of protonation of the conductor groups. It is
shown which observable conduction properties reveal features of the internal dynamics and
structure of proton conductors. In particular, the following observations are considered:
titration of the stationary, applied voltage-induced proton currents; coupling of the proton
transport to alternating electric fields or to electric field jumps; measurement of the relaxation of
the above four observables following injection or ejection of a proton. We also demonstrate the
possibility of constructing heterogeneous conductors with a diodic voltage-current characteris-
tic. Allowing the interaction between the proton conductors and injecting or ejecting group to be
time-dependent, we investigated the refractory phase that exists after an initial proton current
pulse and demonstrated the buffering capacity of the conductors, a function that we associate
with the “blue light effect” of bacteriorhodopsin. Among the theoretical developments are an
algorithm to obtain the graph of the main kinetic pathways from the solution of a high-
dimensional master equation, an expression for the proton resistance of a conductor derived in
the framework of linear irreversible thermodynamics, a reduction of the kinetic pathways by
condensing fast processes to yield analytical expressions for the observables, and finally the
analytical evaluation of relaxation times by the theory of first-passage times.

Es wird ein Modell der biologischen Protonenleitung durch Membranproteine vermittels
linearer Wasserstoffbriickenketten zwischen Aminosiureseitengruppen untersucht. Die theore-
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tische Beschreibung beruht auf einer Kinetik erster Ordnung fiir die Uberginge zwischen alien
moglichen Protonenverteilungen in der Wasserstoffbriickenkette. Die entsprechende Master-
gleichung wird numerisch und in einigen représentativen Fillen analytisch gelést. Die folgenden
vier zeitabhingigen Observablen werden berechnet: 1) Protonenstrom an den Leiterenden,
2) Ladungsverschicbung im Leiter, 3) Abnahme der freien Energie und 4) Protonierungsgrad der
beteiligten Leitergruppen. Es wird gezeigt, welche beobachtbaren Leitungseigenschaften
AufschluB iiber die Merkmale der internen Dynamik und Struktur eines Leiters liefern. Dazu
werden insbesondere betrachtet: Die Titration des stationdren, spannungsinduzierten Protonen-
stroms, die Kopplung des Protonentransportes an elektrische Wechselfelder und Feldsprilnge
und die Relaxation der oben erwihnten vier Observablen nach Protoneninjektion und
Protonenejektion. Ferner wird die theoretische Mdglichkeit eines Protonenleiters mit diodischer
Strom- Spannungs-Charakteristik nachgewiesen. Fiir eine Situation mit zeitabhingiger Wech-
sclwirkung einer Leiterendgruppe mit basischen und sauren Ejektor- bzw. Injektorgruppen wird
die Existenz einer refraktiondren Phase eines Leiters nach einem Protonenstrompuls nachgewie-
sen und wird gezeigt, daB Protonenleiter eine gewisse Pufferkapazitit besitzen. Die letztere
Eigenschaft kann eventucll bei dem sog. ,Blaulichteffekt* des Bakteriorhodopsin eine wesent.
.. liche Rolle spielen. Die Durchfiihrung der Arbeit beruht auf verschiedenen methodischen
Entwicklungen. Es wurde ein numerischer Algorithmus bereitgestellt, welcher von der Lasung
hdher-dimensionaler Mastergleichungen die zyklischen Graphen der wichtigsten kinetischen
Strédme konstruiert und damit die Mechanismen der Protonenleitung nachzuweisen gestattet. Im
" Rahmen der linearen Niherung der Nichtgleichgewichtsthermodynamik wird ein einfacher
analytischer Ausdruck fiir Protonenwiderstinde abgeleitet. Ferner wird eine Methode zur
Reduktion ciner Master-Gleichung, welche schnelle Reaktionsschritte kondensiert, angegeben
- und damit analytische Ausdriicke filr dic quasistationiren Werte der Observablen gewonnen.
SchiieBlich wird mit Hilfe der ,First Passage Time'-Verteilung eine analytische Berechnung der
Relaxationszeiten von Protonenleitern erméglicht.

1. Introduction

During the past two decades Mitchell’s hypothesis postulating proton-
mediated membrane potentials as the basis of the primary energy storage and
transduction in respiratory and photosynthetic systems has found wide
confirmation [1). The challenge remains, however, to elucidate the molecular

_mechanism of the proton transport involved. A first success in this direction
has been the isolation and characterization as a passive proton conductor of
the F, fraction of the ATP-ase of thermophilic bacteria [2]. One of the most
intensively studied proton transport systems is the membrane protein
bacteriorhodopsin which functions as a light-driven proton pump in

Halobacterium halobium (H.h.). Although proton uptake and release,
internal protonation-deprotonation processes and charge displacements all
have been observed for bacteriorhodopsin [3], the molecular mechanism of
the proton transport through the protein is still unknown. Direct observation
of these conduction pathways is difficult since the transport involves only
minor motions of the protein backbone or side groups. Furthermore, since
only ‘a small number of protons suffice for proton translocation, the
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elementary processes involved may go unnoticed in many observations.
These difficulties necessitate that the experimental investigations be sup-

. ported by theoretical investigations which test the realization of molecular

models and derive suitable observables to identify transport mechanisms.

Passive proton transport across membrane proteins (i.e. transport down
the electrochemical potential existing across the membrane) is likely to be
simpler than active transport, and an understanding of the former should
contribute to progress in elucidating the latter. Current ideas concerning
passive proton transport center around an involvement of the acidic and
basic amino acid side groups. Such a role is supported by the known
structural details of bacteriorhodopsin {4). The mechanism is based on the
works of Eigen [S]and Onsager [6] which were initially concerned with proton
conduction in water and ice. Already in 1967 Onsager suggested how these
mechanisms could be used to transport protons along a hydrogen-bridge
network created from the amino acid side groups of membrane proteins.
Recently Nagle and Morowitz [7] and Dunker [8] have advanced this
suggestion as the fundamental pathway for proton conduction in ATPase
and H.h. For non-biological systems, e.g. ice and imidazol, there exist
detailed quantum mechanical investigations of proton transport [9, 10]. For
biological systems most studies have been mainly qualitative and have
refrained from quantitative statistical mechanical calculations. Two notable
exceptions are the theoretical works of Lauger [11] and Nagle, et al. 7).
Lauger treated ion transport through biological “pores” using a kinetic
model in which the ion jumps over barriers and in which the pore contains at
most one ion. Nagle, et al. [7), using the simplest conduction mechanism
consistent with the Onsager model, considered several important proton
transport situations arising in bioenergetics and obtained estimates for the
membrane crossing times for a proton in a homogeneous, i.e. identical
groups, hydrogen-bridge network. We have recently started adetailed
theoretical investigation on the basis of the Onsager model and evaluated
proton currents on the basis of the molecular properties of participating side
groups [12]. :

Previous theoretical investigations of proton conduction, particularly on
non-biological systems, concentrated mainly on the fast processes, motion of
a proton in a hydrogen-bridge potential and collective oscillations of protons
in a hydrogen-bridge network. An extension of these studies to also include
the slower elementary processes in an overall description of proton conduc-
tion appears to be feasible only at the price of an approximation which
assumes Poisson statistics, i.e. first-order kinetics, for all elementary
processes. This approximation results in a master equation for the allowed
transitions between all proton distributions occurring in the conductor. In
[12] this master equation has been solved to yield the stationary transport rate
for conductors composed of homogeneous, i.e. identical groups. In the
following these investigations will be extended to include heterogeneous
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conductors, non-stationary situations as well as time-varying external
potentials. In particular, the relaxation of conductors after ejection or
injection of a proton, a process of interest in connection with bacteriorhodop-
sin, is considered. The main aim is to evaluate relevant quantities, i.e. proton
currents, free energy decrements, charge displacements, and protonation
states, which are amenable to experimental observation.

We describe the proton conduction in a hydrogen-bridge network in terms
of intermediate, thermally activated faults which are schematically presented
in Fig. 1. The protein spans the membrane and the side groups labeled X form
a one-dimensional conductor that transports protons from side a to side b. In
thermal equilibrium with the solutions at both sides at neutral pH, a
homogeneous conductor contains one proton for each group oriented such
that adjacent groups are hydrogen bonded through one proton. The faults in
Fig. 1 represent deviating situations in that either no proton is situated on a
group (L, fault) or two protons are situated on a group (D, fault) or no proton
is located between two adjacent groups (L, fault) or two protons are located
between adjacent groups (D, fault). The fault-mediated conduction mech-
anism is reminiscent of electronic semi-conductors. By analogy to electronic
components one may envisage constructing a proton diode from suitable side
groups, a device particularly well adapted to the mainly unidirectional flow of
protons over energy tranducing membranes. We will demonstrate that
proton diodes can be realized either by a combination of acidic and basic side
groups or, following a suggestion of Edmonds [13] on aqueous pores for ion
conduction, by the presence of internal electric fields generated from properly
oriented dipoles of the backbone and side groups of the protein.

It is not difficult today to measure a net transmembrane proton current
between two reservoirs. However, to detect the few protons actually moving
at an instance through a conductor is a difficuit problem. These protons are
only a minor fraction of the charges connected with a membrane and its
constituent proteins. As a contribution to the development of methods to
observe protons in a conductor, we consider here two equivalent possibilities
based on coupling the proton conduction to external electrical fields, either
oscillating or a jump with a rectangular pulse. Obviously all charges in a
membrane probe will respond to such fields. However, we will show that the
conducted protons exhibit characteristic dielectric responses in the range
10° Hz to 10'° Hz which may be detectable in certain frequency windows left
open by a corresponding inertia of the remaining charges.

The sectioning of this publication will precede in the following manner. In
Section 2 we set up the master equation for the description of the proton
transport and introduce the necessary (pseudo) first-order rate constants for
the transitions between proton configurations. In Section 3 we study the
stationary transport through homogeneous and heterogeneous conduc-
tors. Considerable effort has been given to develop an algorithm to

find and display the proton configurations constituting the conduction
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Fig. 1. Amino acid side groups X of a protein spanning a biomembrane are suggested to conduct
protons by forming linear hydrogen-bridge chains. The peptide bond backbones of two adja-
cent a-helices are represented by pairs of straight lines. The groups X can differ from each other
(heterogeneous conductor) and may include molecules of bonded water. At equilibrium the
hydrogen-bridge chain entails a proton distribution with one proton between two neighbouring
groups, the proton being in closer proximity to one of the two groups as in a typical hydrogen
bridge; also each group X has only one proton in close proximity. The proton transport involves
the generation and migration of four types of defects, the defects representing deviations from
t!!e equilibrium structure. The four defects are illustrated above: (a) the D, fault representing a
situation with rwo protons proximate to one group, (b) the L, fault representing a situation with
no proton proximate to a group, (c) the D, fault representing a situation with two protons
between two neighbouring groups, (d) the L, fault representing a situation with no proton
between two neighbouring groups. The D, and L, faults are generated by protonation and
deprotonation of the conductor ends, the fault migration involves proton translation between
nexgl}bouring groups, i.e. the jump from a site more proximate to one group to the site more
proximate to the other group; the sites are the two minima of the double well potential describing
the corresponding hydrogen bridge. The D, and L, faults are generated and migrate by rotation
of the side groups which thereby transport protons from one side to the other side of the groups.
Structural details of hydrogen-bridge chains are discussed in [7, 8]
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pathways. These cycles are determined from the master equation using
network theory and some helpful results of Schnakenberg [14]. For systems
near equilibrium, we derive a linear relationship between the currents
through linear or non-linear (branched) pathways and the general thermo-
dynamic force or proton affinity. In Sections 4 and 5 we investigate
nonstationary transport after proton injection and ejection, the refractory
phase of a conductor after a proton pulse, and the “blue light effect” of
bacteriorhodopsin, i.e. an alternation of proton injection and ejection at one
conductor end. We characterize the relaxation of the proton conductors and
diodes by the evaluation of several time-dependent observables: 1) the
changes in the conductor’s dipole moment, 2) the free energy change, and
3) the integrated proton currents. The time constants for every step in the
relaxation process are evaluated from the mean first-passage time approxi-
mation. In Section 6 we describe the response of the proton conductors to
oscillating and pulsed electrical fields.

2. Theoretical description of the model

The model we adopt for the proton conductor is a linear chain of N—1
hydrogen bridges formed by N side groups of a protein (see Fig. 1). In thermal
equilibrium at neutral pH, a chain of homogeneous side groups contains
approximately one proton in each bridge. Also during conduction, a
"condition necessitating a deviation from thermal equilibrium, one expects
about N protons in such a conductor. Because of the strong interaction
between protons in the chain, the basic entity for theoretical description of
proton transport is not a single proton, but rather all possible distributions of
N, N+ 1, N + 2,... protons. We call these particular distributions *““proton
configurations”. Elementary processes in the conductor are transitions
between two proton configurations. We assume that the elementary pro-
cesses ‘are independent and obey first-order kinetics.

If one numbers the proton configurations in a suitable way and represents
the state of the conductor by a vector P (1), the i-th component giving the
probability of the i-th configuration to be realized, then the dynamics of the
proton motion is described by the master equation

d .
—&;P—P—KP. 2.1)

The off-diagonal elements of the rate matrix Kj; are the first-order rate
constants for the elementary process producing the transition from the j — i
configuration. Except for the (de-) protonation processes (cf. 2.6), the rate
constants for motions of the protons within the conductor are given by

Ki;= Ay exp (—BED (2.2)
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where f = 1/kT(K®). In this Arrhenius form, A;; is the frequency factor and
EY the total activation barrier for the transition j—» i

EYincludes contributions of external and internal electric fields. The internal
figld can arise, for example, from dipoles aligned along the protein backbone.
His the change in the dipole moment accompanying the respective motion of
the protons. fis the fraction of the applied external field acting on the internal
groups. d is the width of the membrane. The sign in (2.3) is chosen negative if
the motion is in the direction of the defined orientation from the left to the
right end of the conductor (from side a to side bin Fig. 1). The fields 4 V., and
4V, are similarly oriented. All calculations are performed with T = 298°K.
The conservation of total probability require the diagonal elements of K to be

K, jfl K. (2.2b)
We assume, as shown in Fig. 1, that each amino acid side group can accept at
most two protons. The states XH, with two protons and X without protons
are called ionic defects, and since these defects move by translation of a
proton between two groups, they are labeled D, and L, faults, respectively. In
the hydrogen bridges between the conductor groups, so-called Bjerrum type
fal.llts can be generated either due to the absence of protons in the bridge
[B.!errum (L) fault] or due to the presence of two protons in the bridge
[Bjerrum (D) fault]. These faults move by rotation of the groups about the
protei_n-group bond, and hence are labeled D, and L,.

In our calculations we have restricted the elementary processes within the
conductor to rotations of single groups or to translations of single protons
between two adjacent groups, and we have neglected interactions between
faults. For example, we have not included processes which involve the
concerted translation of protons in adjacent hydrogen bridges [15], a process
of considerable interest since it circumvents the formation of ionic faults in
the conductor. Neither did we include the interesting cooperative effect
predicted for hydrogen-bridge chains [16] whereby the energy of formation of
a hydrogen bridge is a function of the length N of the chain, an effect which
leaves the formation energies of faults nonadditive. These restrictions are not
a prerequisite of the theory presented here, but rather have been adopted to
simplify a first approach to the problem of proton transport.

The values assumed in our calculations for the activation energies E,, of
rotational and translational fault migration as well as the corresponding
changes of the dipole moment g, and g, of the conductor are provided in
Table 1. The transport of a proton charge e across the whole membrane of
width d requires N— 1 translations and N rotations and leads to an overall
change in the dipole moment ed = (N—1) u, + Ny, of the system. The rate
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constants K;; resulting from the activation energies in Table1 with the
frequency factor

Au = lolls_l (2‘4)

are based on values determined from proton transport in ice and are identical
to rates employed in [12]. The necessary modifications to consider transitions
between heterogeneous groups are also given in Table 1 and will be discussed
in greater detail in section 3.4 where they are first employed in calculations.

We will later represent the rate constants constructed from (2.2) by
K(process), e.g. K(D, — D,) is the rate constant for the migration of an ionic
D, fault in the a — b direction and K(D, « D,) accounts for migration in the
opposite direction. The rate constants for the migration of ionic D, or L,
faults are determined to be 10* times faster than the migration of an L, fault.
One obtains from Table1l with (2.4), K(D,— D)= 5-10'"1 and
K(L, - L,) = 7-10%s~. Rotation of an end group to create an L, fault in the
conductor is considerable slower, K(O— L,) = 4-10%s~*. Unfortunately,
there are few measurements of the rotations of amino acid side groups in
proteins available for comparison. Using high resolution NMR spectros-
copy Wiithrich, et al. [17] have measured the rotation of tyrosine and
phenylalanine groups in globular proteins. They determined that the
aromatic rings undergo 180°flips about the Cyz— C, bonds with a rate
constant of 10*~10%s~! depending upon the position within the protein.
Pecht, et al. [18] have, however, measured a rotation rate for tryptophan in
the subnanosecond range. Since only the ratio between the rotation and jump
rate constants is relevant for proton transport, we have extended our
calculations to include the case of group rotations becoming as fast as the
proton translation processes. .

For processes moving protons in the direction of strong fields, ET as
given in (2.3) can assume negative values. There is, however, no physical basis
for an application of the Boltzmann factor with negative activation energy to
yield a rate constant larger than the frequency factor 4; ;- We will, therefore,
assume that 4,; is the upper limit for the rate constants K;;. To obey detailed
balance, we replace in the case E% < 0, K;; by the corrected values K,

K= Ay, Ky = A4,K;/K,. (2.5)

“The rate constants for protonation and deprotonation of the conductor
end groups are taken to be [29]

l<l] = KP(B) =2 1010[10—pH + 10PK(BH) + ApF—M]
Kj; = Kp(BH) = 2- 10'°[10-PKBH)-4pK 10t~ 14] (2.6)

where Bis either the unprotonated (X) or singly protonated (XH) end group.
4pK provides a correction to the pK values of the conductor end groups due
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Fig.2. Rate constants for protonation K, and deprotonation Kp evaluated according to

Eq. (2.6); the shaded areas indicate values less than 4-103s™!, i.. the corresponding rate

constant for a neutral group (pK = 7) at neutral pH (pH = 7)

to the {nembrane potential and internal electric fields. For the proton diodes
in Sections 3, 4, and 6 such a field dependence is assumed, and the correction
4pK is set to

PR = 1 eflaV.(1—f) + 4K 10),  f= (N-DN+D). @7)

The positive sign in (2.7) is selected if the proton motion is in the direction of
the defined orientation @ - b. For homogeneous conductors, we set 4 pK=0

cand f=1. :

.- The deprotonation and protonation steps will influence the transport
only in those pH-pK ranges where K, or K, are of the same or smaller order
of magnitude as the internal motions. For a neutral group at neutral pH
(PK = pH = 7), K, = K, = 4- 10%s~! which is about asfast as the formation
of an L, rotational fault. In Fig.2 we have indicated the pH-pK ranges in
which the (de-) protonation rate constants would be smaller than those of a
neutral group.

With the rate constants defined above, one can show that the potential
difference which induces the proton current is the electrochemical potential

¥ =4V, + ";;eo 4pH (2.8)

and is independent of the internal fields and activation energies in Table 1.
The proof starts from the following observation: The affinity of a cycle
connecting a set of proton configurations, e.g. i —j— k — [ - i, is defined
as [14]

o =In 1l K;/K,

where the product is taken over all i — j steps of the cycle in one direction

X
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corresponding to a— b transport. This quantity is the same for all cycles
which imply the transport of one proton. This result follows from the fact
that detailed balance holds for all steps (elementary processes) except the
(de-)protonation processes, for which holds

Kp/Kp = 10~PH + K + 4pK_ 2.9)

., 1 . .
Furthermore, one can show that the potential 3 « which drives a

stationary flow through a cycle is identical to ¥ in (2.8).

It is often necessary for a numerical solution of the master equation to
reduce the large number of possible proton configurations. For closed
systems like a proton conductor in contact with a single reservoir, i.e. systems
for which detailed balance holds for all steps, one can assign a formation
energy Erto each configuration and include in a calculation only configura-
tions below a certain energy limit Ef**. In the case of open systems, like a.
proton conductor in contact with two different proton reservoirs, formation
energies cannot uniquely be assigned. In fact, the formation energies of ionic
D; and Ly faults depend on the reservoir at which they have been generated.
One may, however, assign uniquely an approximate formation energy for the
ionic faults at a group X; between the end groups X, and X, (1 < i < N) by
means of the interpolation formula .

EHD¥) = Er(D¥) + {15 - [Er (OF) — Er (DY)

Er (LX) = Ep (LX) +(i',;,l_%- [Er (L8 — Ep(L¥)]  (2.10a)

where.

Er (D¥) = ™1 In (Kp/Kp) (2.10b)
with pK = pK(X; yH) and 4pK = 0 in (2.6) and

E (L) = — B~ 'In(Kp/Ko), 2.100)

with pK(X, yH) and 4pK = 0 in (2.6).
The energy of formation of the neutral Bjerrum L, and D, faults are
uniquely set to

Ep(L)=02eV

Ep(D,) = 0.5¢V. (2.11)

The formation energy for a proton configuration is then taken to be the sum
of the energies of all faults involved, evaluated according to Egs. (2.10) and
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(2.11). A selection criterium based on an energy limit can then be also applied
to proton conductors between two reservoirs. The appropriate energy limit
EF** has been established by convergence tests.

3. Stationary transport
3.1. Numerical Solution of the Master equation

For any pair of the 22 proton configurations of an N-group conductor,
there exists a set of transitions among the elementary processes discussed in
Section 2 connecting the two configurations. Or in other words, the graph
corresponding to the non-zero elements of the rate matrix K in the master
Eq. (2.1) is strongly connected. According to a generalization of Kirchhoff’s
theorem in [14] there exists exactly one normalized steady-state solution P°
of (2.1)

A KP =0, 3.1)
It has the properties

0<P<1, 1<ig2™

2N
z Pp=1. 3.2
i=1

P° can be determined numerically by rewriting the steady-state condition

(3.1)

2N :

Z(PIP) Ky= —Ky,i=12,..22¥ i+ k. 3.3)
Jj=1 )
J#k

For the sake of numerical stability, Pg should be large; and therefore, the
row of K corresponding to the configuration k with the lowest formation
energy (Section 2) has been written on the r.h.s. of (3.3). It can be solved
numerically as an inhomogeneous linear system with maximal rank to obtain
P° up to the scale factor 1/P;. If one neglects certain configurations by the
application of the energy criterium in Section 2, several nonconnected
(disjunct) subspaces can occur. Each subspace may be treated separately; and
therefore, we consider without restriction an irreducible master equation
with a strongly connected graph.

Because of the conservation of total probability (2.2b), the master
equation can be re-written

Pi=X KyPy=Z (KyP) — KyP)=Z F.;. (.4
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Fi_j= K;;P; — K;;P, is the flux connecting directly proton configuration j
and i. For the steady-state solution P° Kirchhoff’s current law

R =0 3.5

holds for every configuration i. The steady-state flux of protons across the
conductor end groups can be expressed in terms of the transitions involving
protonation of either the left or right end group: .

Jy=ZF;_; (i+)) protonation left side

Jp= —Z F}._; (i« j) protonation right side (3.6)

where the summation extends over all disjunct subspaces of (3.1). Under
steady-state conditions, the flux J, must equal J;. This equality was checked
as a non-trivial test for the numerical stability of the solutions.

In our numerical procedure we first select all proton configuration with
an (approximate) energy of formation smaller than ER** and store this basis
with labels indicating the position as well as the type of defects and formation
energy. With an option all configurations with D, faults, i.e, with two protons
on some groups, can be excluded. The transitions allowed according to
Table 1 are determined, coded, and stored. Next the disjunct subspaces of the
master equation are searched for and treated separately. For each subspace the
corresponding matrix of the master equation (3.1) is generated. The steady-
state solution P° is determined according to (3.3) by use of a standard routine
for inhomogeneous, linear systems [19]. The local fluxes F?. ;and the total
steady-state flux J4(J,) are calculated by means of Egs. (3.4) and (3.6).

To identify the most important configurations involved in the proton
transport, we construct a subset @, of all transition fluxes F7,_ . The elements
of @, are those fluxes satisfying

|Fy 1> sriljax.l Fil 3.7

where ¢ is the largest value smaller than 0.1 such that the current law (3.5) is
fulfilled within 10%,. From the reduced graph connecting all transitions
occuring in @,, the proton configurations and pathways involved in the
transport can readily be seen. The graph itself which may be branched and
looped in an arbitrary way is transformed into a linear structure for output on
a line printer. Because of the complexity of the problem, in particular the
handling of the graphs, we had to resort to use of a high order computer
language like PASCAL with sophisticated data structures and recursive
procedure calls.
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Fig. 3. Stationary proton current (J = Jg = J;) across a homogeneous chain of N = 4 side
groups capable of accepting only a single proton as a function of the group pK(XH) and
. pH = pH, = pH,, i.e. identical solution pH on both sides of the conductor. The current is
induced by an external electrical potential, AV, = 100mV

3.2. Transport in homogeneous conductors

In this section we examine the dependence of the stationary proton
current through a homogeneous conductor upon the conducting group’s pK,
the pH, and applied external voltage. Already in [12] and by repeated tests we
determined that a change in the conductor’s length (number of groups N)
introduced no new important phenomena, so that a short conductor can
serve as a prototype for longer chains. For the sake of convenience in the
analysis and computer time, we have used in the following. calculations
conductors with four identical side groups. A

We consider first a conductor composed of side groups accepting only a
single proton, e.g. tyrosine. Figure 3 shows the stationary current induced by
a 100 mV potential difference as a function of the pH of the surrounding
solution as well as the pK of the conducting groups. Appreciable currents are
seen to arise only when the solution pH is in the neighborhood of the group’s
pK value. This finding suggests that one may experimentally identify the
pK-range of the. conducting groups by titration under fixed electrical
potential conditions.
i.t-To analyze the mechanism underlying the proton current in Fig.3 we

" must determine which route through the space of proton configurations
~produces the current. For this purpose we consult the @,-graph of the
“ dominant transition fluxes between proton configurations. In most cases we
find that only one or two cycles of proton configurations contribute. It is well
known that the stationary flux through a kinetic pathway is rate limited by
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Fig. 4. The (L,~L,) and (D,~L,) single file cycles (see text)

the slowest transitions. Hence, one can simplify the description of the cycle
fluxes by condensing the many transitions involved in the cycle to a small
number of effective transitions. This reduction provides simple expressions
for the proton current which in many cases are found to agree well with the
predictions of the extended numerical calculations. The value of this analysis
is that the key elementary processes of the proton conduction pathways are
identified. Which pathways are involved depends, however, strongly on the
pH and pK range and, hence, a unified analysis is not possible.

We consider first conduction at low pH values, pH < pK. The &,-graph
shows that in this case the primary pathway involves a single file migration*
of L, and L, faults. The corresponding cycle is shown in the top half of Fig. 4.
The transport is initiated by removing a proton from the conductor. The
resulting hole (L, fault) then migrates across the chain to the other end where
protonation takes place. The conductor returns to its original configuration

by successive rotations of the side groups (L, fault migration).

Using the values for the internal motions given in Table 1 together with
(2.4), one can deduce that a jump of a proton between groups (=~ 10'°5-1)
occurs considerably faster than the rotation of a side group (=~ 10”s~*). The
slowest motion within the conductor is then the rotation of the end group that
creates the L, fault [K(L, « 0) = 4-10%~!]. As indicated in Fig.2, for
PH < pK protonation [K(X)] is always faster than the process L, « 0
whereas the classification of the deprotonation process [K(XH)] varies,
depending on pH and pK. Consequently the flux will be approximately
determined by either K, or K(L, « 0). Following Lauger {11] and Nagle et al.
[7] we have constructed in Fig. 5a a qualitative free energy profile of the
(L,—L,) single file cycle for pX(XH) = 12 and pH = 6. To assign the barrier

* Linear sequencial transport in configuration space
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Fig. 5. Free encrgy profiles of the proton transport by a homogeneous con <
s pH = 6: a) for the (L,—L,) cycle of Fig.3, and b) for the (D,~L,) cycle of Fig.7

heights from the rate constants including those for the (de-)px:otonat‘ion step,
we have assumed that they all can be expressed by an Arrhenius form so that

barrier height (j — i) = (In 4,,,, — In K;))/B.
Since the (de-)protonation rate constants can become larger than the

frequency factor 4;; (2.4) used to evaluate the rate constants fqr the ipterpal
motions, we have taken A4,,, = 10'* ~ kT/h to avoid negative activation
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barriers. High barriers indicate slow transitions and low barriers indicate fast
transitions. Figure5a also shows that upon completion of the cycle a
conducted proton has experienced an energy loss equal to 4V,,,.

As discussed in [12] the rotations in the single file mechanism can be
treated as a gambler’s ruin problem, i.e. a one-dimensional discrete random
walk between two absorbing barriers. The probability that an L, fault created
at the end b migrates to the end a is

Pyio=(1-5)[(1-5s"), (3.8a)

whereas the probability for the reverse process is
Py =(s"'=DNs"N=1) = V1P, _,. (3.8b)
Here s is a bias measure given by the ratio of the probability that the fault

rotates toward b to the probability that it rotates toward a. With the defined
orientation in Section 2, s is the ratio of the rate constant for L, migration

- with the field K(L, — L) to the value against the field K(L, — L,). N is the

number of groups in the conductor, in our case N = 4. The 100 mV applied
voltage that induces the current biases the migration such that

s = K(L, = L)/K(L, «~ L,) = exp(— fu,4V,,). 39

One can then condense the L, rotations in Fig. 5’a into one effective transition
described by the effective rate constants k, and k_, which can be evaluated
with the aid of Table 1 and (2.2)—(2.4)

ky= K(L, ~0) P,_,= 1885 protons s~ ! (3.10)
k_y=KO0-L,)P,.,=3569 protons s~ 1,

Since the rotational motions are taken to be independent of pH and pK (see
Table 1) this reduction can always be done. The effective rate constants
satisfy a consistency condition

K(L, + 0)

ik = ROy

[K(L, «~ L)/K(L, > L)¥-!. (3.11)

A similar reduction of the successive proton translations is possible, so that
the single file cycle can be schematically represented by the two step system

Ao Bany. (3.12)

L kg

k., are the effective forward and backward rate constants describing the
deprotonation of the conductor and subsequent translation of the hole
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(L, fault) across the conductor. Since protonation is slower than migration of
the L, fault

Py, Kp(X)

kea= KoXH) 55T P, K50 3.13)
_ Py KEOO
k-2 = KoXH) 5 85T, K0
where P, _, , is evaluated from (3.8) with
s§= exp(— ﬂi‘:d Vext/d) = K(L, - L)/K(L, « Ll)' 3.19)

For the case that K,(X) = K(L,~ L), k., are just the gambler’s ruin
expressions for N + 1.

The proton current J can now be estimated by solving for the steady-state
flux of the reduced cycle (3.12) exactly. One obtains at pK = 12and pH = 6
the rate constants k, = 180.6s™! and k_, = 19.435~! and

klkz - k-tk_z

il ey ey ey

= 136.5 protons s~! (3.15

which is within one percent of the numerical value of 136.2 protons s~! in
Fig. 3. From the values of k., and k,,, it is clear that the translational
sequence determines the current for basic side groups when the pH is
considerably less than the group’s pK. As the pH approaches the pK value,
. deprotonation can become so fast that the rotational sequence will limit the
current. For acidic side groups with pH < pK, the rotational sequence will
. primarily determine the current.
f The translational-rotational single file cycle just discussed is the principal
conduction pathway for neutral side groups at neutral pH as well. The
reduced cycle, however, must be generalized to include three steps as shown in
Section 3.4. In this case both the protonation and deprotonation of the end
groups are as slow as the formation of the rotational L, fault, and the current
through the single file cycle goes through a minimum.

Asthe pH is increased (pH > pK) branching of the single file cycle occurs
and new cycles appear in the flux diagrams. The branches include con-
figurations with fewer protons (more faults) and lead to an increase in the
flux. At extreme high pH’s a single cycle appears again in which only a single
proton is in the conductor at a time. After the proton enters the chain, it is
conducted by an alternating series of jumps and group rotations. The flux is
then approximately J =~ K} ¢ where ¢ = K(0 « L,)/(K(0 « L,) + K3). K}
- are the protonation and deprotonation rate constants at side a. Although X,
is essentially independent of pH at basic pH’s, K,(XH) increases with
- increasing pH so that ¢ — 0 and the flux vanishes.
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Fig. 6. Dependence of the stationary proton current on the rate constants for group rotation fora
system in Fig. 3 with pK(XH) = 10; the frequency factor 4, for group rotations in Eq. (2.2) is
multiplied by the factor A-Ratio. The current has been rescaled by 1/4-Ratio

In Fig. 6 we have examined the effect of speeding up the rotational rate
constants by multiplying the frequency factor 4;; for all rotations of the
groups by a factor A-Ratio. At A-Ratio = 500 the migration of a rotational
fault is approximately as fast as the jump process. The curve for A-Ratio = 1
isjust a cross-section of Fig. 3 with pK = 10. The current for A-Ratio > 1 has
been rescaled by the factor 1/4-Ratio to simplify the comparison. For
pH < pK = 10, the protons are conducted by the L,-L, single file cycle
discussed earlier. At low pH’s (4-Ratio = 1) the flux is primarily determined
by the deprotonation at side b which is extremely slow, so that accelerating
the rotations of the conductor groups should have no influence on the proton
flux. Whereas the flux at the first plateau for 4-Ratio = 1 is primarily
determined by the formation of a Bjerrum rotational fault, for 4-Ratio
= 500 the plateau develops into a maximum, the height depending on the
deprotonation rate K,(XH). The flux is now considerably larger; for
example, at pH = 9 one finds for 4-Ratio = 500 a current of 1.085-10°
protons s~ ! whereas for A-Ratio = 1 the current measures only 1.689- 103
protons s~ !. The deprotonation rate and hence, the current increase with
increasing pH until at pH = 10, K, is equal to the constant to create a
Bjerrum L, fault which then limits the current.

We consider now proton conductors composed of side groups able to
accept two protons (D, faults), e.g. a chain of serines. To reflect the difficulty
in maintaining the second proton on the side group, we have chosen
pK(XH,) negative, pK(XH,) = —2. With this pK-value, the excess proton
(D, fault) has a lifetime in the conductor on the scale of the jump process
(= 10~ %) since deprotonation at the end groups is extremely fast (K,(XH,)
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JIProtons s”

_Fig. 7. Stationary proton current across a homogeneous chain of N = 4 side groups capable of
accepting two protons as a function of pK(XH) with pK(XH;) = —2 fixed and as a function of
pH = pH, = pH,. The current is induced by an external electrical potential, 4V,,, = 100mV

~ 10'%s~'), Holding the pK(XH,) value constant, we have determined
numerically the stationary current induced by a fixed voltage of 100mV.
Figure 7 presents this proton current as a function of pK(XH) and the
solution pH. At basic pH’s, Figs. 3 and 7 are practically identical, for example
the same configurations and cycles are involved in the transport. At acidic
pH’s the ability of the groups to accept an additional proton opens up a new
pathway, and the transport now consists of two single file cycles shown in
Fig. 4. The lower (and the principal) pathway conducts by introducing an
excess proton (D, fault) into the conductor. After the proton migrates across
the chain and is released into the solution, the conductor returns to its
original configuration by rotations of the side groups. The free energy
diagram for the D,—L, cycle for pK = 12 and pH = 6 is shown in Fig. 5b.
Effective rate constants of the condensed translations of the D, fault k . ; can
be calculated as in the previous example for the (L,—L,) translational-
rotational cycle,

| -
kas = Ky(XH) ¢ 1=

k3= KS(XH) ¢ 1= 5 (3.16)

where ¢ (¢") is a measure of the efficiency of the protonation step

n_ KD, 2 D)
$(#) = groxH,) + KD, 2 Dy
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The.third factor in (3.16) is an analogous gambler’s ruin expression for the
motion of the D, fault. The applied voltage gives rise to a bias

s = exp (— BudV,,,/d). (3.17)
The total flux J is estimated from the reduced cycle

K, ky +ky
AﬁB‘ﬁ:A (3.18)

according to (3.12) and (3.15). For pK = 12 and pH = 6, the effective rates
are k3. =3783s"'and k_, = 41.50 5™, and the proton current through the
combined cycles is 361 protons s™* of which the D,— L, cycle contributes
244protonss ™' and the L, — L, cycle 117 protonss ™!, The approximate value
agrees with the numerical calculations in Fig. 7 within 1 %,

For either of the simple unbranched single file mechanisms treated above
a ra.ther complex expression for the stationary proton current can be
obtained directly from the kinetic equations as shown by Nagle et al. [7). In
the special case that the rate constant for deprotonation of the end group is
the same as that for the internal proton translation these authors provide an
analytical expression for the flux which is similar to (3.15).

3.3. Linear voltage-current relationship

At small chemiosmotic potential differences between the conductor end
groupsaq and b, i.e. small electricai potentials 4 V,,,, small pH-differences, or a
combination of the two, the conductor operates near thermal equilibrium
and a linear relationship between the proton current J and the generalized
thermodynamic force (affinity) should exist. In the absence of a pH-dif-
ference o = epaV,,,. The affinity fora single step i — i + 1 in the transport
cycle is

oty = In Kb (3.19)
W+ 14 i+ 1
For an unbranched cycle with vertices (configurations) ordered, i = 1,2,
..« M, the total affinity is '

i
o= L sty = efaV,, (3.20)

A.t sTnall. app.lied voltages one may linearly expand the rate constants and -
distributions in (3.19); Ky, = K34y (14 8), Kiiyi =Ky (1 +6), P=P
(} + e,),. Piyy=Pyy (1+¢&4,). The affinity for the transition
t—=j=1i+ 1 can be approximated by

KPP 149

1+¢
Spe +1 L
‘ij+n 1_“‘)-'+ln

1+¢°

i =~ In (3.21)
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Since the equilibrium distribution satisfies detailed balance, i.e. KjP;
= Kj;P}, one obtains
A e S ek T 322
The flux at the transition i— j, F;, = K;P, — K;;P; can be similarly simplified
Fy =~ K3P{(6, — 6, +& — ¢). (3.23)

However, in the stationary state and for a linear cycle, the fluxes F;; are all
equal to the proton current J, and a comparison of (3.23) and (3.22) yields

o, = J(K;P). (3.249)

The desired linear voltage-current relationship follows from (3.20)

AVou=RJ
with u
- R= £ KT/e(Ki,uiP?).- (32

R represents the resistance of the conductor. This derivation is a generali-
zation of the one given by Schnakenberg {14] in that the essential deviations
" of Kj, fromK;; are included.

Branched cycles can be treated asin the theory of electrical networks. For
example, a 2-cycle diagram such as in Fig. 4 corresponds to the diagram

K.

\ b, / (3.26)

\ Ry ./

e e . T

For each unbranched segment, (3.25) holds, ie. V;=RJ, i=1273.
Kirchoff’s rules apply

J=hh=L+Jy Vo=V 4V =V, + V,
and yield
W= R+ (L4 L) 0 G279
R2 R3 '

In Fig.8 we compare at three different pH-values the proton current
evaluated numerically from the general master equation to that obtained
from the linear approximation around thermal equilibrium (3.27). The
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Fig. 8. A_pplied voltage-current relationship for the proton current through a conductor from
Fig. 7 with pK(XH) = 10: ( ) are the currents evaluated numerically, ( ) are the
currents evaluated from approximations (3.25) and (3.27)

transport involves i) at pH = 5, the D,~L, single file cycle, ii) at pH = 6, the
branched D,,L,— L, single file cycles, and iii) at pH = 7, the L,— L, single file
cycle. .In all cases the linear relationship is satisfed with good accuracy. For
each !mear (unbranched) cycle, the total resistance R can be divided into a
Contribution proportional to the length N of the conductor and a contri-
bution independent of N

R=R, + N(R, + R). (3.28)

R, can be interpreted as a contact resistance arising from the protonation and
rotation of the end groups which depends on pH. R, and R, are specific
resistances that characterize the motion of the L, rotational and of the L or
D, translational faults, respectively.

3.4, Transport in heterogeneous conductors

) ?roton conduction across energy tranducing membranes often has a
distinct vectorial character. Hence, the corresponding components in the
ny:m.brane would function best if the underlying proton conductors obey a
(!lodnc voltage-current characteristic. An example of such a component is the
llgl_lt-driven proton pump bacteriorhodopsin which should have a low proton
resistance in the extracellular direction and a high resistance in the cyto-
pla}mﬁc direction. That such diodic property can be realized by hydrogen-
bridged chains of amino acid side groups will be demonstrated here. To
achieve this property the proton conductor has to be necessarily hetero-

‘geneous. The heterogeneity can be achieved by the alignment of hetero-
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geneous (acidic and basic) side groups, by the presence of internal electric
fields, or by a combination of the two. We consider first proton diodes
composed of acidic and basic side groups and then proton diodes realized
solely by internal electric fields.

Figure 9a shows the stationary proton current across a conductor
composed of two acidic (A) and two basic (B) side groups as a function of the
applied voltage 4V,,, and solution pH. In the following text this hetero-
geneous conductor will .be referred to as the AB diode. The groups are
characterized by the pK values

A A B B
pK(XH) 4 4 17 17
pK(XH,;) -2 -2 9 9.

The pK value of the basic side group, pK(BH,) = 9, is typical for lysine, and
the pK value of the acidic side group, pK(AH) = 4, is typical of aspartic or
glutamic acid. Since titration curves reveal that the amino acid side groups
are normally only able to accept or give up a single proton, the second pK
value of the basic (acidic) groups, pK(BH) = 17 (PK(AH,) = —2), were
chosen to be large (small). We note that the rate constants for the transport of
a proton across the A — B junction given in Table1 are distinct from those
between homogeneous groups. In particular by increasing the value of E, , we
have assumed that the formation of a double ionic fault (DBL?) between
heterogeneous groups is as fast, but much more stable than the formation of
one between identical groups.

As seen in Fig. 9a, the maximum current across the AB diode occurs for
positive voltages when the solution pH is neutral. The &, graph of the cycles
involved in the forward proton current for pH = 7.5 and 100mV < 4V,
< 400 mV is shown in Fig. 9b. The numbers indicate the current through the
various cycles at AV, , = 250mV. All the cycles in Fig.9b involve the
transition T, _, 5 whereby a proton jumps from the acid to the basic group
(AH BH-» A HBH). The greater stability of the latter configuration gives
rise to the vectorial transport of the proton. The reverse current is determined
by the rate constant for this transition in the reverse direction. The greater the
pK difference, pK (BH,) — pK (AH), the more severely the reverse transport
is blocked. Large pK differences lead, however, to compensating effects arising
from the (de-)protonation of the end groups, i.e. reduction of the forward
current. To mitigate this effect and promote the efficiency of the hetero-
geneous diode, we have taken the (de-)protonation rate constants to be field
dependent as given in (2.6). Similarlythe choice of E, 5 in Table 1 allows the
reverse current to be blocked without resorting to components with extreme
pK differences.

The free energy diagrams (not presented here) of the cycles in Fig.9b

~show that the forward proton current is controlled by three processes:
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Fig.9. a) Electrical voltage induced stationary proton current across an AB-diode as a function
of applied voltage and solution pH (pH = pH, = pH,). The pK values of the diode components
are provided in the text

oowoocoL-E-—ooooooooﬂooooluoo—L»cooooonLoooooooo 0800 08 08
1 . 3
Py 47 2 P‘ 37— ~N
0
€000 08 08 P P
Y
R| 36 €000 8080 R

- 3 v T‘ 23 \ e
00006008 @8 _| 00000000 «4-D. 00ece0ee J-oooajoon—op o-ooooq—f‘—» 0900 0008
T <_)

Fig.9. b) The &,-graph of the conduction pathways in the AB-diode at pH =7.5and 100mV
< 4¥,,, < 400mV. The transition fluxes for 4V, = 250 mV are indicated along the transitions

protonation of the end groups and formation of an L, fault. The slowest step
is the protonation of the acidic group. The corresponding rate constant at
100mV is Kp(A) = 6365~ ! and increases slowly with the applied voltage.
Deprotonation and formation of an L, rotational fault at the basic end group
are both about 10 times faster. After releasing a proton to the solution,
the yield & of the subsequent conduction sequence dapends on whathar
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Fig. 10. Stationary proton current across the AB-diode of Fig.9 induced by a pH gradient

the end group can rotate faster than it is reprotonated, the yield being then

= K(L,.«- 9)/[K(L, +0) + Kp(BH)]. X,(BH) decreases any]d K(L, «-gO) in-
creases with increasing voltage and one determines at 100 mV, ¢ =4-10"2
and at 400mV, ¢ = 4-10"!, '

In F ig. 10 the proton current across the AB diode is induced by a chemical
potenqal Qifference, i.e. different solution pH’s on the acidic side (pH,) and
the b§31c side (pH,). A strong forward current occurs when pH, is larée and
PH, is small. In the plateau region at 0< pH.<3 and 11 <pH, <13
protons are conducted by the single file cycle involving D, and L fault;
(bottom of Fig. 4). In this region the protonation of the acidic end gro{:p isso
fast .that the forward proton current is completely determined by the
rot_anonsvof the groups. Reducing the D,~ L, cycle as in Section 3.2, one can
estimate the current by use of Eq.(3.8a) with s= 1 and N = 4 to obtain

o o s—1
J= lim K(L, «0) ?;‘?T = K(L, « 0)/4 = 920 protons s~

in good agreement with the numerical value in Fig. 10.

A reversal of the pH, and pH, values,i.c. pH, > pH,, leads to a very small
proton current. Hence, the AB diode assumes diodic properties for electrical
(Flg. 9) as well as for chemical potentials (Fig. 10). The diodic character is
achxevefi by the translation of the excess proton from the acidic to the basic
group in the transition HAH BH —» HA HBH. The back transition is
extn;mely slowbiino; the configuration with a D, fault on a basic group is
much more stable than the configuration with the | idi
DK (B SRCA T gu e fault on an acidic group,
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Fig. 11. Electrical voltage-induced stationary proton current across a field diode as a function of
the applied voltage and solution pH [pH = pH, = pH,, N = 4, pK (XH) = 10, pK (XH,) = -2,
A4V = —300mV)

A proton diode can also be constructed from a homogeneous chain by the
presence of an appropriate internal field. The internal field can arise through
dipoles aligned along the conductor. Edmonds [13] has suggested that a water
channel spanning a biomembrane could conduct ions vectorially if the
dipoles of the water molecules were properly oriented. Proton transporting
proteins could achieve an internal electric field by the dipole moments of
oriented polar side groups and/or the dipole moments of the backbone. To
this point it is of interest to observe that bacteriorhodopsin is composed of
seven o-helices spanning the outer membrane of H.h. Since consecutive
a-helices are oppositely directed one excepts that the dipole moments of six
a-helices cancel and the dipole moment of a seventh helix remains. Since the
NH-terminal end is located at the extracellular side the diodic current would
be directed outside — inside, i.e. opposite to the pump direction. This may be
in harmony with the observation that the initial charge displacement in
bacteriorhodopsin is against the pump direction.

The stationary proton current along a homogeneous chain with an
internal field as a function of the applied voltage and of the solution pH is
shown in Fig. 11. The chain consists of side groups able to accept two
protons, the corresponding pK-values for the different protonated species
being pK(XH,) = —2and pK(XH) = 10. Theinternal field assumed is linear
with a zig-zag profile, the free energy being 150mV above the solution at the
a side, falling off linearly by 300 mV with a free energy 150mV below the
solution at side b. The strength of the internal field, 300 mV, is a typical value
obtained in calculations of the electrostatic potential of a-helical proteins

120).
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- Figure 11 demonstrates that the conductor described has a diodic voltage-
current characteristic in that it gives rise to a larger proton current in one
direction than in the reverse direction. This conductor will be referred to as
the “field diode” in the following text. The diodic characteristic of the field
diode is realized over a larger pH range with a stronger current than in the
case of the AB diode. This broadening is due to the more favourable
conditions for (de-)protonation at the end groups. The internal field of 4V,
= 300 mV modifies the pK values so that the end group at side a (left) has the
effective pK values, pK*(XH) = 7.46, pK*(XH,) = 4.53 and the end group at
side b (right) the effective values, pK®(XH) = 12.53, pK*(XH,) = 0.53.
However, around neutral pH values the current decreases from a maximum
value of about 10* protons s™* to 2.5-10? protons s~ ! at A¥,,, = 400 mV.
This reduction occurs when due to a retardation of the O — D, process the
diode switches from a D L, single file mechanism to an L, ~L, single file
mechanism.

At relatively low voltages, —200mV < 4V,,, < 200mV and neutral to
slightly basic pH’s, the proton conduction in the @,flux diagrams consists
principally of the single file cycle involving the motion of an L, negative ionic

fault (hole) and a rotational L, fault (see top of Fig.4). The free energy
profiles for the forward and reverse currents at 4 Ve = £200mV are
sketched in Fig. 12. In the forward direction, the internal and external fields
are both accelerating the rotation and translation steps whereas in the reverse
direction the external field opposes the internal field. At a reverse voltage of
4V, = —200mV, the protons still have to overcome a considerable bias in
the conduction pathway. At 4V, = 4V;,, = —500mV, the activation
barriers for the rotations and translations in Fig. 12b become symmetrical
which leads to a larger reverse current as shown in Fig. 11.

The free energy profiles for the forward direction (Fig. 12a) shows that
three processes play an almost equal role in determining the proton current:
(1) the rotation of the end group to introduce an L, fault into the conductor
and its subsequent migration across the conductor; (2) deprotonation on one
end and the subsequent migration of the L, fault; (3) reprotonation at the
other end. The single file cycle can be replaced by a three component reduced
cycle as indicated in the diagram. The effective rotational rate constants
k ., are approximated by the gambler’s ruin expressions (3.8) and (3.10). The
bias ratio s, in this case is

5 =exp [—Bu(dVi f — AVip)/d].

The translation steps are so strongly biased in the forward direction that the
effective forward rate constant k. , is taken to be just the field-dependent
deprotonation rate constant given by (2.6)

ks = Kh(XH) = =2-1010[10-PK~4pK _ 1(pH-14)
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Fig. 12, Free energy profiles of the (L,—L,) single file transport cycle for the field diode in

Fig. 11: a) at an applied forward voltage 4 ¥,,, = 200 mV; b) at an applied reverse voltage 4V,,,

= —200mV. The dotted lines indicate the reduced representation of the single file cycles
discussed in the text. The solution is at pH = 7.5

The effective rate constant for the reverse process & _, can be calculated from
the consistency condition
ki _ Kb

= =L g-N+1

k-2 Kp

with the bias ratio s,
s = exp [~ B4V — AV3n)/d).
It follows that
k_y=K%sN-1.
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The effective rate constants k , yare just the field dependent protonation and
deprotonation rate constants at side a obtained from (2.6)

ki3 = Kp(X)
k-3 = Kp(XH).

Since s, is so small in the forward direction that k_, ~ 0, it is sufficient to
consider the reduced cycle

A=LB ::=z c:k‘sz 4. (3.29)

The flux is estimated by solving exactly the rate equations for the above
reduced cycle

1 k_ k_ 1 k. 1
Jt=— ]+——§-(1+“—2—)]+-—(1+ 2)"‘
3 [ ks \ T k)T TR, TR,
= k_“ + 1QpH-pK - 4pK (1 _‘_s'N—l 10—pH+pK—ApK)]
1

1;; (1 4 s¥=1 10-pH+pK—apK) %b. (3.30)

+

For the conditions in Fig.12a, pH = 7.5 and 4 Ve = 200mV, we obtain
from (3.30), J = 2.1 protons ms ™! in comparision with the exact numerical
value J =2.3 protons ms~"' of Fig. 11. An approximation to the reverse
current can be calculated by performing the reduction indicated in Fig. 12b.

Atacidic pH’s the primary pathway in the forward direction is a single file
cycle with D, and L, faults (Fig.4 bottom). The proton current can be
approximated by an expression similar to (3.30). At large positive voltages,
the maximum current is limited by the formation of the L, rotational fault,
eg at pH=2 and 4V, =400mV, K(L, «0)=1.12-10* s-! and

=J =9.84-10° protons s~ 1.

At basic pH’s and large reverse voltages, the single file mechanism in
Fig. 12b no longer applies. The rate of deprotonation K3(XH)is much larger
than the rate of migration of a rotational L, fault, so that after the end group
rotates to introduce the L, fault into the conductor, the end group is
immediately deprotonated. The reverse current increases appreciably be-
cause several new and branched conduction pathways containing simul-
taneously L, and L, faults now exist.

Figure 13 shows that a proton current across the field diode can also be
induced by a pH gradient. Like the AB diode, the maximum current in this
case is limited by a rotation of the end group to create an L, fault. The cycles
participating in the transport are more complex than those contributing to
the current in Fig. 11. The vectorial character of a field diode conducting in
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Fig. 13. Stationary proton current across the field diode in Fig. 11 induced by a pH gradient

the pH gradient (chemical potential) mode of Fig. 13 is less developed than in
the electrical potential mode of Fig.11 since in the former only the
deprotonation and protonation rates are accelerated.

4. Relaxation of a proton conductor after proton injection
or ejection — strong transfer model

In Sections 4 and 5 we examine the relaxation of a proton conductor after
the injection of a proton at the end group or after ejection (abstraction) of a
proton from the end group. The end group could be, for example, one of the
amino acid side groups of bacteriorhodopsin that receives a proton from the
chromophore after it has been photochemically activated. To simplify the
analysis, we consider first a model in which a very acidic (basic) group
protonates (deprotonates) instantaneously at time ¢ = 0 the left end group of
a conductor assumed to be in thermal equilibrium with the right end in
contact with a proton reservoir. Obviously only those configurations i of the
conductor can become protonated (deprotonated) which contribute to the
equilibrium and offer an empty (a filled) protonation site at the left most
position. Direct reversal of the injection (ejection) process at times ¢ < 0is not
allowed, i.e. the proton injected (the hole) is forced to leave the conductor at
the opposite end. This prototype injection (ejection) model correspond§ toa
very acid (basic) group which donates the proton (hole) very fast. In Section 5
we replace this model by a more realistic and complex situation.

To characterize the relaxation of the conductor we choose four observ-
ables which are suggested by recent experimental investigations. These
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* observables are 1) changes in the conductor’s dipole moment; 2) changes in
the free energy; 3) the integrated proton current; and 4) the state of
protonation of any group along the conductor. For bacteriorhodopsin
measurements of these observables during the pump cycle have already been
performed in part. In particular, the time dependence of the charge
displacements (dipole moments) has been shown to exhibit two relaxation
times [21]. Ort and Parson [22] and Caplan [23] have made photo-acoustical
measurements of the enthalpy changes. The appearance of a proton and a
hole conducted through bacteriorhodopsin after light excitation has been
observed by several groups [3). Hess and Kuschmitz [24] have observed a
deprotonation-protonation process at a group distant from the photochemi-
cally active chromophore. ‘

4.1. Time-dependent solution
The relaxation of the conductor after injection (ejection) of a proton at
the left-hand end group is described by
P(1) = K™ P(2) @.1)
where

~ 0 for j— i corresponding to (de-)protonation at the left end,
ny .
U e

v K,, otherwise as in Section 2.
Before the proton is injected (ejected) we assume the system is in equilibrium
so0 that the initial distribution P(0) is
P0)=P°+XZP; (¢; — ¢). 4.2)

(i — j) (de-)protonation at the left end

P° is the equilibrium distribution satisfying
K"pe =0, » . 4.3)
e, is the unit vector for the i-th proton configuration. The second term
describes the redistribution of the contributions from configurations involv-
ing (de-)protonation at the left-hand side.
The probability for the injection (ejection) of a proton is
I(P)Y=Z P, 4.4)
(i) (de-)protonation at the left end ' -

The ihjection probability I(P°) is greater -the more likely the leftmost
protonation site is unfilled in P°. For example, it would be easier to inject a
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proton when the right end is in contact with a basic solution than with an
acidic solution.

The master Eq.(4.1) with the initial condition (4.2) has the formal
solution

P(1) = exp(t K") P(0). @.5)

The matrix K™ can be symmetrized by the following similarity transfor-
mation S

S‘ = 1.0
S5 =S; VKPIK for Kiy 4 0. (4.6)
S is well-defined because the elements of the rate matrix K obey a detailed
balance condition. -
After the injection (ejection) of a proton, it is convenient to characterize

the deprotonation (protonation) at the solution side by the integral of the
proton current

L
dr Jx(t) injection

TR(1) = CY)

1
§ dr () + I1(P°) ejection
[}

Jr(#)is calculated as in the stationary case in Section 3. Asymptotically T,(z)
equals the injection probability (4.4),
0 injection
To(0) = { njectior
=(0) I(P°) ejection
— | 1P injection 4.8
T() { 0 ejection @8

Condition (4.8) was used as a non-trivial test for the stability of the
calculations.

As a measure of the system’s deviation from equilibrium, we also
evaluated the change in its free energy

AR0) = kT Z P(0) In (P(O/FD) - (49

where P} are components of the equilibrium distribution defined in (4.3).
Expressing P7in terms of the internal energy U, of the i-th configuration and
the partition function Z, we can re-write (4.9)

AF(t) = kT Z(OInP() — kT EP(Hn (Z™! e~ UiT)
= —TS() + LUP() + kT nZ

—~TS() + E()) — F,

F1) — F,.

I
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E(1) is the internal energy, S(¢) the entropy, and (1) the free energy of the
system at time 1. Fy = — kT InZ is the free energy of the equilibrium
distribution. In [14] it was shown that 4F(p) is a Liapunov function that
monotically decreases with time.

The dipole moment of the conductor is given by

#(0.= ZuP(1) + ed Te(). (4.10)

* i is the dipole moment of the i-th configuration and is defined as the sum of
the dipole moments of all protons in the i-th configuration with the reference
point taken at the left-hand side,

= (@ + pn@l @.11)

n(a) [n,(a)] is the number of rotations (translations) necessary to bring the
proton from the left side to position a. The summation in (4.11) s restricted to
“the set of positions C; occurring in the configuration i. The deprotonation
(reprotonation) at the solution side contributes the second term in (4.10).
Asymptotically the fraction /(P°) of charge will be transported across the
membrane, i.e. p(c0) — u(0) = ed (P°).
- . Thestate of protonation of any group jalong the conductor is determined
by
X0 = PO
XHI@) = Em P(0) : - (442
H) ()= = Pt |
XH ()= P().

v‘vheréfDo(}) [Dy(i), D,(j)] is the set of indices of all the configurations for
- which the j-th group is unprotonated [singly, doubly protonated].
In order to identify the mechanisms and cycles contributing to the non-

~ .« ‘stationary proton transport, we employ again the & -graphs introduced in

Section 2, however, determined for the integrated transition fluxes

Ti.; (00) = ? F,;(nde. 4.13)
. 0

4.2. Quasi-stationary distribution

- After injection (ejection), the proton distribution is considerably dis-

- placed from its equilibrium value. In returning to equilibrium the processes
- such as translations and, depending on the pH and pK, protonations occur, if
possible, before the slower rotational motions. In such cases there exists often
a time period 1, < t < 1,, in which all elementary processes fall into two
distinct classes: “fast” processes in quasi-equilibrium with rate constants
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greater than ;! and “slow” processes with rate constants smaller than t3 .
We let 2 be the set of M configurations that are connected through th_e.‘ fz}st
processes. The quasi-stationary distribution P obeys the equilibrium

' condition

PKy = PK,5 o, peQ 4.14)

where K,; and Kj, are rate constants for the transition as de'ﬁne'd in selec-
tion 2. Their normalization is obtained from the initial distribution (4.2)

= 4.15
Z P.= Z PJ0). (4.15)

In the time period [z,, T,] the change in the dipole moment assumes a steady
value that can be approximated from (4.10)

Ay <1<t)=Z p(@) (B, — P(0)) + ed Ty(1). (4.16)

For the case that the transitions between the configurations in the quasi-
stationary distribution form a single unbranched graph (M =m + 1)

A i i A An
all—_:*azléagé """" iz‘ Uy =2 0, +1 (4.17)
vy vy Ve Ve V1

one can solve for the distribution explicitly,

I 5

P‘=P1j£7| (A’j/vj-fl)' (4.18)
The distribution has been determined with respect to the first component

whose value can be obtained from the relation (4.15)
m+1 k-1

Py=ZPO)/(E 1 Ay, ). 4.19)
E3Y k=1 j=1

4.3. Mean first-passage time

The time required to establish the quasi-stationary distribution among
the transitions included in (4.17) can be determined from the first-passage
time approximation. To calculate the time for the configuration a,, , | to be
reached for the first time starting from an configuration o;, one assumes that
the process a,— a,, is absorbing, i.e. v, ., =0. Tt!e km.etxcs of the
resulting stochastic processes can be described by the m-dimensional master
equation

P()=R P()) (4.20)

where P,(1) is the distribution of the configuration, i = 1,2,.: ..o inQ, and_ R
is a tridiagonal matrix containing the rate constant appearing in (4.17) with
V41 = 0.
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A measure for the relaxation of the configuration probabilities is given by
the particle correlation function N(¢)

N =E-PW)= ;1 P0) (4.21)

where E = (1,1,...1). If the system is initially at ¢ = 0 in the configuration
k, N(t) can be expressed formally as

N(@) = E-exp(R ! e, (4.22)

“where e, is the unit vector (e,); = ;. The first moment of N(¢) is the mean first.
passage time 7, _, 44

tomer =1 dt N() = —ER" e, . (4.23)
0

Due to the sbccial form of R, the inverse Y* = R~ !¢, can be evaluated
. explicitly from the algebraic equation R Y* = ¢,
LY+ v, =10,
lj__ " Y;—l - (l} + Vj) Y? + Vis1 Y}+1 = 6‘"‘ (4.24)

Im-1 Yoot = (A + V) Yh =0,
These equations can be simplified to

1j>k
~LYj+ v Y= 0 otherwise’

—A,Yi=1

_which have the solution

j=12,...m1

m 1 i v
Yi=—- 2 — 0 .

Y i=max(j,k) A-l k=j+1 'lk— 1
Y} can be expressed in terms of the quasi-stationary distribution evaluated in
(4.18)

(4.25)

m 1P
Y= — —=L. 4.26
1 1-m£(/,k) A, P, (4.26)
The mean first-passage time 7, _, ,, , ¢ is finally obtained
m m 1 P
Gompy=—E' V=X ¥ —d 4.27

J=ti=maGp) 4 P

F L3 p
Tk AP e

-
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The stationary distribution and the mean first-passage time are completely
determined by the rate constants describing the stochastic process. This result
has been derived by a different method in [25). From the form of (4.27)

‘follows straight-forwardly the addition rule for the mean first-passage times

Uomt1 =Tkt Thamsre (4.28)

The mean first-passage times will provide in the following analyses an
excellent estimate for the time periods characterizing the conductor’s
relaxation along certain pathways through the configuration space.
However, in some instances the response is characterized by two and more
relaxation times. We will, therefore, outline at the end of section 4.4 how the
mean passage time method can be extended to cover two relaxation times.
For this purpose one needs to employ the second moment of N(#) which can
be related to the mean first-passage times

g2, ., = "j dtiN(1) = ER" 2e,

=ER'P=ER'IYe =EZ V'V

i=1 i=t

— I Y., (4.29)

4.4. Homogeneous conductor

Figure 14a shows the time dependence of the dipole moment 4u(s), the
integrated current TR(f), and the free energy AF(f) for a homogencous
conductor after injection and ejection of a proton at its left-hand side. The
right-hand side is in contact with a proton reservoir at pH = 7. Since
the equilibrium distribution P° is evenly divided between the iwo neu-

1
tral configurations a; and «, containing no faults, i.e. P°= 3 (061010101

+ 10101010) = lz (ag + @), the total injection and ejection probabilities are

0.5. The observables in Fig. 14a vary monotonically and stepwise. The con-
stant plateaus between the steps correspond to different quasi-equilibrium
situations, and the position of the steps indicate the relaxation times of the
system. '

The @,-graphs of the integrated fluxes reveal that the relaxation involves
the unbranched single file pathways which are represented by their free
energy profiles in Figs. 14b,c (cf. Fig. 5). The curves in Fig. 14a can be readily
understood after examination of these profiles. As shown in Fig. 14b,
injection replaces the configuration ap (01010101) by configuration
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" Fig. 14, a) Response of a homogeneous ¢onductor [N = 4, pK(XH) = 10, pK(?(H,_) = —2]after

- injection () or ejection (€) of a proton at the first group. The solution at the right is at' pH, =17.

- Presented are the dipole moment 4u(r) = u(r)-p(0) {1 + 1 u(1)/edI(P°) for (e)), the integrated
proton current Tg(7), and the change in free energy 4F(r)

o

Fxg 14. b) Free energy profile for the (D, — L,) single file pathway after proton injection. ¢) Free
B energy proﬁle for the (L,—L,) single file pathway after proton ejection

-”'\(l 101'010'1) entailing a D, fault at the left end. This D, fault migrates to the
right end (—10101011) whereafter deprotonation leads to «, (10101010). At
thls moment the conductor is in the state a, and has still to decay to the

equlllbnum dtstnbutlon (aR + a,). For this to happen a rotational fault

“must be ﬂiduced at the rlght side by a thermal fluctuation and migrate to the
left side. Figure 14c shows that ejection transforms the «;, (10101010)
. contribution to the equilibrium into configuration 1’, which is an L, fault at
the left' group (00101010). This fault migrates to the right reaching
- configuration 4’ (01010100). Protonation at the right end leads to az
: (01010101) At this moment the conductor is in the state ag and has to decay

. to-—(a, + ar) by rotation at the left side (¢ — 10010101) and migration and

decay of the L, fault to the right side. For the following discussion we recall
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that the energy barriers E, (i — i + 1) between configurations i and i + 1 in
Figs. 14b, c are related to the rate constants by K;; , , = 10'3s~texp [~ BE, (i
=i+ 1)), i.e. provide a logarithmic measure for the rate constants.

We discuss first the behavior of the free energy change 4F(¢) in Fig. 14a
since it is the observable most closely related to the free energy profiles in
Fig. 14b, c. A comparison of the energy content of the configurations 1 and 1’
shows that the initial free energy 4F(0) of the injected conductor is about
three times that of the ejected conductor. After injection the relaxa-
tion pathway encounters only small energy barriers (fast rates) up to the
low energy equilibrium configuration 5 («,), and hence, one expects a fast
and large decrease of 4F(1). The small remaining free energy difference is

1
due to the mixing entropy between a; and — (aR + ;) and measures only

kT1n2 ~ 0.02eV. For this energy to decay the conductor has to overcome the
rotational barriers. While the system awaits the rotation of the right end
group, the conductor is in a refraction phase during which no further proton
can be transported. In the case of ejection, the behavior of the conductor
differs in that the free energy profile in Fig. 14c exhibits a high barrier at the
protonation step 4’ — 5. One expects then that the ejected conductor first
equilibrates between configurations 1°,2,3’, and 4’ with an entroplc free
energy decrease of /(P°)kT In4 = 0.02¢V. The free energy remains constant
until protonation 4’ — 5’ occurs at which moment the conductor assumes the
configuration «,, ie. its free energy approaches that of the injected
conductor.

The interpretation of the free energy changes is corroborated by the time
dependence of the integrated proton current Ty(7) in that the current after
injection and ejection coincides with the main free energy decrement, i.e. with
the transitions 4 » 5 and 4’ — §'.

Figure 14a illustrates that the changes in the dipole moment are strongly
correlated to the relaxation pattern of 4F(f) and the proton current. A direct
correspondence can be made between the plateau values in du(f) and the
intermediate proton configurations or quasi-equilibrium distributions.
For example, after injection the conductor relaxes quickly to the configura-
tion «,;, and hente, one expects that the plateau value of Au(r) differs

from the equilibrium value —2~ [u(e)) + p(ap)] by 4 + edI(P°) where
1
4= 5 [u(2) — p(xp)). From (4.12) one obtains

N(N—1) N(N; 1)

pa) =—5—p+——
| N(N-1
pag = HEED | MY 430
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For N = 4,4 = —0.43 edI(P°) or Au(f); = 0.57 edI(P°) which agrees with tl.le
value in Fig. 14a. Similarly, after ejection, one expects the second plateau in

1
Au(?),, associated with the state ag, to lie by an amount 4’ = 3 [u(ap) —

u(x)] above the asymptotic equilibrium value. Since 4" = — 4, 4y, = 0.43
edI(P°) and is in agreement with Fig. 14a. To determine the early plgteau
value of the ejected conductor, which corresponds to the translational
equilibrium between the configuration 1°,2",... N, one may employ strailight-
forwardly the description in Section 4.2. However, in keeping with our S}tpl?le
arguments one expects that Au(r) differs in this early phase from the initial
displacement p(1’) by the amount

N
a” =i1v‘ Z [ulr) = pQOI(P). (4.31)
With ‘
p) — p(1) = —(' =, (4.32)
one determines that
-1
47 = — _A%— u I1(P°).

For N=4, 4” = —0.29 edI(P°) or Ap, = I(P°)ed + 4" = 0.71 edI(P°) in
agreement with Fig. 14a. ‘ '
From our discussion it should have become clear that the steps in the
‘curves in Fig. 14a occur whenever the conductor arrives at a new quasi-
stationary state or distribution. The two steps in the relaxation bcha}\{lor of
" Ap(¢) after injection correspond to the times for arrival at configurations 5
and 9. The three relaxation steps after ejection correspond to arrival at the
quasi-stationary equilibrium between 1°,2°,3',4’, arrival at ', and arrival at
9’. To illustrate this interpretation we provide in Table2 the mean first

Table2. Mean first-passage times t,_,; for a homogeneous proton conductor afier injection or

ejection®

Jj Injection/s Ejection/s

2 2.2 - 107! (transl) 4.7 - 10~ (transl)

3 6.5 - 107! (transl) 1.4 - 10710 (transl)

4 1.3+ 107! (transl) 2.8 - 10719 (transl)

5 1.3 - 10~ (deprot) 2.0-10"¢ (prot)

6. 2.7-107* (rot) 2.8-107* (rot)
1 5.4-10"* (rot) 5.5-107* (rot)

8 8.2-107* (rot) 8.3-10"* (rot)

9 1.1 1073 (rot) . 111073 (rot)

* Corresponding to the conductor in Fig. 14
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passage times t,_,; for arrival at the j-th configuration in the free energy
profiles in Fig. 14b, c. For example, for the case of injection, Table 2 shows
that the system arrives rapidly within about 10~ s at configurations 2,3,4,
‘and 5, but then has to wait about 10~ *s before it passes to configurations
6,7,8, and 9. A comparison of Table2 and Fig. 14a shows that the passage
times coincide with the relaxation steps. This observation is most interesting
as simple expressions for the mean first passage times can be derived from the
general algorithm in Section 4.3. Using the sum rule (4.28), the first passage
times in Table2 can be expressed generally as:

arrival at translational
quasi-equilibrium

TyaN N

deprotonation (injection)
or protonation (ejection)

T N+1=Tant TN

TaN+2=Tanst T TN 1oN2 induction of L, fault

arrival at rotational
quasi-equilibrium

TIw2N = TonN+2 T Tng2an

annihilation of L, fault
to reach thermal equilibrium

Tiw2N+1 = Tinoan+ Tovaan 4+

One obtains from (4.18) and (4.27)

N(N-1) K(L, - L) ejection

TiaN =—=——= where K, = 1.
2K, K(D, - D,) injection
Kp(X) ejection

TN_,~+1 = — Where KS = { P( J

Ks Kp(XH,) injection

K_¢ 1
TN+1—0N+2=TN—’N+I K(L ‘__0)+ K(L 4—0)
N—-1)(N-2
TN 422N =TN+|~N+2(N—2)+‘(2_K(]3—'(:#
N—-1

TIN= 2N +1 =TN+1-.N+2+m- (4.33)

The simplicity of the above expressions and the excellent comparison of
passage times and relaxation times in Fig. 14a demonstrate the usefulness of
the mean first passage time concept. We have not clearly spelled out,
however, which passage time in a cluster corresponds to the relaxation time of
the variable most closely. The choice is not always straightforward. For
example, we have assumed that the final relaxation process, i.e. the recovery
of the conductor, ends upon reaching the last configuration 2 N + 1,9and 9’
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in Figs.14b,c. Actually, the relaxation is already completed when the
probability is distributed evenly between configurations N + 1 and 2N + 1
(5and 9 or 5 and 9"). Therefore, t, _, 5y , 1 is an overestimate of the recovery
time, and a better approximation would be 7, _, 3yp + 1» the time the system
needs to transport the L, rotational fault to the middle of the conductor. This
choice is motivated from the fact that the relaxation of a species initially
distributed in one well of a symmetric double well potential is described by the
mean first-passage time to the top of the barrier between the wells [26].
Approximation of the relaxation time by the mean first-passage time t,
is based on the not previously explicitly stated assumption that a quasi-
«quilibrium exists among configurations 1 < k < j. If the system starts in a
state near the quasi-equilibrium or can establish the equilibrium much faster
than it reaches the state j, the first-passage time provides a good description.
However, if two or more quasi-equilibria precede j, it may be necessary to
generalize the approach. Better estimates of the relaxation times are then
* found by seeking a uniform approximation to the quantity that measures the
- relaxation of the probability distribution, the particle correlation function
N(7) defined in Section 4.3. We illustrate this point for the ejected conductor
which reaches the state 5 following two relaxation processes. To derive the
¢

desired description we approximate N(f)= Z P, by a bi-ex_ponenﬁal
i=1
‘function n(r). Requiring the approximate n(f) to agree with N(¢) at short times
fi.e. N(0) = 1 = n(0) and N(0) = 0 = i(0)] results in the functional form
n(f) = (e~ — te”")[(t-1y).

The two relaxation times ¢, and ¢, are determined by imposing two additional
conditions on the moments

I

AN =1,_5 fdtn(t)

dt IN() = 8.5

[
f {‘at m(o).
)] (4]

i,,_,s. and 2, 5 are evaluated according to (4.27) and (4.29). The relaxation
times are then

] 1 1'—»§
he=Tr.s|5 % 9?4l

ty ™ 2.0-10:“’s is the“tvi.me needed for the reprotonation, ‘and 1, ~1.2
10~ 1% is the time needed to establish the translational quasi equilibrium
among the configuration 1" — 4'.
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4.5. Heterogeneous conductors

We consider now the effects of a heterogeneity in the conductor upon the
time-dependent observables 4F(1), T(f) and 4u(f). In Figure 15a a proton is

‘either injected into the acidic (left-hand) end or it is removed (ejected) from

the basic (right-hand) end of an AB diode. In both cases the resulting proton
transport is in the forward direction and the injection (ejection) probability is
near unity, I(P°) = 0.9994 (0.9950). Due to the pK differences in the
conductor the equilibrium distribution P° locates more protons on the basic
side than on the acidic side so that injection or ejection in the reverse direction
would lead to values for I(P°) that are three to four orders of magnitude
smaller. )

As opposed to the homogeneous chain, the initial changes in the dipole
moment Au(f) are small and are characterized in both the injection and the
ejection case by a single plateau existing well beyond the millisecond range.
At short times 10~ '% < 7 < 10~ %s the plateau value is determined by a
translational quasi-equilibrium; however, the motions of the proton
(D,~fault) or hole (L,-fault) in establishing this equilibrium are local and do
not involve migration over the entire conductor. Around 10~ %5 isolated
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Fig. 15. Comparison of the responses of an AB-diode (a) and of a field diode (b) after the
injection (i) at group 1 or ejection () at group 4. The calculated quantitities are defined in Fig. 14
and the text. The integrated current T'(r) is measured at the left for ejection (€)
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internal rotations occur, but since the configurations are less probable, the
accompanying changes are bearly noticeable.

Relaxation of the AB diode after injection of a proton is primarily
determined by the deprotonation step at the basic end (Kp(BH,) ~2
-103s ™). The complete restoration, however, requires almost a second due to
the competition between reprotonation (Kp(BH) ~10° s™*) and rotation

(K(O - L,) ~ 10*s~?) of the basic end group.
' The behavior of a field diode after injection of a proton at the left side or
" the ejection of a proton at the right side is shown in Fig. 15b. Like the AB
diode substantial transport is possible only in the forward direction in which
_ case I(P°) is near unity. The ®,graphs of the integrated fluxes exhibit the
- same D,(L,)-L, relaxation mechanism as for the-homogeneous conductor in
Section 4.4. In the case of injection, the behavior is exactly analogous as is
evident from a comparison of the observable in Figs. 14a and 15b.

In the case of ejection, the response of the field diode differs considerably
from that of the homogenous conductor. The internal field alters the free
energy profile of Fig. 14c in that it establishes an energy decrease along
configurations 1’ to 4’, an increase of the protonation barrier, and a decrease

" of the rotational barriers and configurations 6’ to 9’. As a result the initial
-relaxation of the free energy AF(f) is considerable as it reflects the energy
“decrease of 1’ to 4’. The second relaxation step in AF(¢) for the ejected
‘homogeneous conductor in Fig. 14a has disappeared in Fig. 15b since the
protonation and the induction of the L, fault fall in the same frequency range
for the field diode. This is also shown by a comparison of the integrated

- proton current. Correspondingly, the dipole moment 4u(f) exhibits only a

. single plateau which is described by the quasi-equilibrium of a linear kinetic
sequence like in (4.17) involving the configurations 1’ to 4’ of Fig. 14c¢ albeit
with different free energy values. Taking into account the field-induced
anisotropy in the conductor, the corresponding dipole moment change is
approximated from (4.16)—(4.19) by

g (-1
Ap(107 1% < 1 < 107%) = — Loy I(P)
| | o
. . =1
where g = K(L,—» L)/K(L,«~ L,). One obtains the value du= —-0.55
edI (P°) which is in good agreement with the plateau value in Fig. 15b.
The mean first-passage time t,_, y provides an estimate for the time
“required for the initial relaxation processand ;v .1 = Ty § + T v 41 fOT
the reprotonation of the ejected field diode:
-1 % g N+t z -1 3
tl-.N_K(L‘—Lt) j-lj N~N+‘—KP(X)J=1
ForN=4,7,_ 5=50-10"sand,_ v, = 1.4-10"*sin good agreement
with Fig. 15b. : : a -

-N.
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5. Relaxation of a proton conductor — Group contact model

In a realistic system the interaction between a proton donating or

“accepting group and the conductor has a finite duration and is characterized

by a finite pK difference. The finite duration of the proton transfer, the
prolonged contact, and the pK changes in the injector alter the relaxation of
the conductor. On the basis of the analysis developed in Section 4, we will
study this relaxation and also consider more complex dynamical responses as
may be realized in the “blue light effect” of bacteriorhodopsin which
combines both proton injection and ejection.

In bacteriorhodopsin the injecting group could be its chromophore, a
protonated Schiff base of all-trans retinal. Light absorption induces an
isomerization to a 13-cis conformation. According to the model of Schulten
and Tavan [27] this twisted conformer includes a 14s-cis rotation as well
which renders the chromophore acidic so that the Schiff-base proton can be
easily injected into a conductor in contact with the extracellular space. At
room temperature, the unprotonated retinal returns within 10~ 3s to its
original protonated conformation through a series of conformational
intermediates. The original protonated conformer, however, can also be
obtained within 10~ %s through irradiation of any intermediate appearing in
the cycle before 10~ 3s. This observation, known as the “blue light effect”,
suggests a second or prolonged interaction of the injector group with the
proton conductor, albeit with an accompanying increase in the pK value of
the chromophore. A conceptual difficulty connected with the blue light effect
was seen in the fact that the pumped proton appears already about 10~ %s
after the first irradiation in the extracellular space of bacteriorhodopsin. The
retrieval of this proton from the extracellular space on the time scale of a
photoreaction or somewhat longer seemed impossible. We will show here,
however, that the proton conductor acts as a proton buffer which releases a
proton 10~° —107%s after injection but that can rapidly return the injected
proton over a prolonged period and retrieve the released proton within 1085
or longer depending on the solution pH.

5.1 Technical Modifications

The total system of injector and conductor groups can be treated with few
modifications by the kinetic model set up in Section 1.1. As opposed to the
conductor groups, the injector is capable of accepting only a single proton. If
D = (¢4, P1,-.... ¢4 is the M-dimensional set of configurations describing
the conductor and I = (1,0) the two-dimensional set describing the
injector’s state of protonation, then the total system is described by the
2M-dimensional set of configurations

QTulal:‘_(l x¢l" .......... s ] X¢M, 0x¢l’ .......... ’OX¢M)'
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The time-dependent proton distribution obeys the master equation
P()=K P()

where the components P; correspond to configurations in Q... K is a
2M-dimensional matrix of rate constants describing the internal transitions,
transitions between the conductor and the solution, and transitions between
the conductor and the injector. We will need two different rate matrices
corresponding to the situation that the injector is interacting (coupled) or not
interacting (uncoupled) with the conductor. In either case, the injector is not
allowed to rotate. In the uncoupled case, the rate constants are identical to
those employed in the strong transfer model for both protonation states of
the injector. In the coupled case, rotations of the first conductor group (in
contact with the injector) are treated as if the system consisted of N + 1
groups, e.g. its rotation give rise to the migration of an L, or D, fault or to the
formation or destruction of an L D, fault. Depending on the state of
proto'nation of the end group (X), the protonation of the conductor by the
'_injector (I) is descrlbed by the following transitions:

¥ K,;(L¥ — L) X unprotonated
'f<" 1’X¢1|K|0x¢‘> = (5.1
, K;;(0 —» LiDY) X singly protonated.

The rate constants for all other transitions in the coupled case are the same as
.in the strong injector model.

‘. Calculation of the observables carried out in Section4 for the strong
transfer model is similarly performed here. The reference point for evaluation
.of the dipole moment is now the injector group so that a proton transported
across the membrane gives rise to a dipole moment

ed= N u, + N p, (cf. Table1). 5.2

7 The ethbnum distribution used as reference for the free energy change (4.9)
* has two different values dependmg on whether the injector is coupled or not
the conductor. In either case it is taken to be the asymptotic dlstnbunon of
the momentary system.

5.2. Results

Flgurc16 shows the response of a homogeneous conductor in contact
with an injecting group for a finite period 0 < 7 < ¢, = 10~ %s. The transport
"begins at ¢ = 0 when a protonated injector groups is brought into contact
"with the conductor in equilibrium resulting in the initial state

M
PO)=P+ I F5(ej —¢j). (53)
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Fig. 16. Relaxation of a homogeneous conductor [pK(XH) = 10, pK(XH,) = —2] in contact

with an injector group with pK(inj) = — 4. The solution at the rightis at pH,, = 7. (a) at 1 = O the

protonated injector is coupled to the conductor, (f) at 1 = 10~ 3s the injector is removed. The
calculated quantities are defined in Fig. 14 and in the text

P is the equilibrium distribution for the uncoupfed total system which does
not differentiate between a protonated or unprotonated injector. Pg; are the
components for the j-th configuration with an unprotonated injector. ej (e})
is the unit vector for the j-th configuration with an unprotonated (pro-
tonated) injector group. The second term shifts the weights to form the initial
protonated injector state.

Since the solution at the right side is set at neutral pH = 7, the initial state
I, obtained from (5.3) is a mixture mainly of the two neutral states a; and a,

Io = 1/2 (1]10101010J0) + 1/2 (1]01010101|0)

=1/2 (1{a,|0) + 1/2 (1]agl0). (5.4)

The state of protonation is indicated by the notation ({injector}|
{conductor}| {solution}). When a proton enters the conductor in the state
og, a D, fault is formed. Within 10~% the proton migrates across the
conductor and enters the solution which results in the translocation of 1/2 of
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a proton as shown in Fig. 16. The system remains in the new state /, until
t=10"%

Io= Iy = 1/2 (1]2.10) + 1/2 (Ofa|1).

The transport mechanism leading to I, is practically identical to that for the
strong transfer discussed in Section4.4. The plateau value in the dipole
moment can be approximated from (4.11) and (5.2) using the injector as the
reference point

B = I G+ (=) + 12 (Vi + N

¥(N+2)g’—m+—1§im- G.5)

" For N = 4, u(l,) = 2.64 ed which is in good agreement with the exact value of

(10~ 9% <1< 10" 7s) in Fig. 16.

' The time required for the system to reach the state I, is estimated by the
first-passage time

_N N(N-1) K1 (N 1)
en =y, 2K, e

where K, = K(D,— D)), Khp = K(0 LIDf) are the protonation and
- deprotonation rate constants at the injector side, and K, = K,(XH,) is the
:» deprotonation rate constant at the solution side. Upon comparing this
expression to the translocation time 7, _, . ; of the strong injector model in
(4.33), one sees that the last two terms are corrections for the presence of the
injector. Since the injector is assumed to be acidic with respect to the
conductor (pK,; = —4 vs. pK, = 10, pK, = —2), K} is large and consequent-
ly the injector has a negligible effect on this short time phase of the transport.
The presence of the injector group makes rotation of the first conductor
- group easier, and this effect becomes noticeable for 1 > 10~%s. Rotation of
the first group initializes the migration of a D, fault across the conductor that
ends in the formation of the state from which the translocation of the
remaining 1/2 proton follows as described above in the process I, — I,

(5.6)

1/2 (11010 = 1/2 (1]a510) => 172 (OleI1).

. The pfo{on transfer is now completed and the system is in the equilibrium
' state Iy = (0ja,|1). The rate determmmg step for the transport is the
_ migration of the D, fault - : .

NN +1)

= =1.14-1075s. 5.7
tl,-o[, 2K(Dr—’ D,) 1.1 1 S ( )
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An approximation for the dipole moment follows directly from 4.11),

N N(N+1
u(ly)) =(N+3) -5 M + ——(T———) u,=3.14 ed. . (5.8
At 1 = 1073, the injector is uncoupled (removed), and the conductor
relaxes to a new equilibrium state I that is a mixture of the two neutral states

I = 1/2 (Olag|1) + 1/2 Ola,|1) = 1.

The state ag and o, are connected by a series of N rotations. Since one of the
states is overpopulated at the time of the uncoupling, fifty percent of the
distribution must undergo formation and migration of an L, rotational fault
to obtain I;. The first-passage time for this final relaxation process will be in
the range of the time constant for the formation of the L, rotational fault at
the end group

_ 1 (N-1)(N-2) (N-2)K(0~1L)
b T KOSL) T2K(L, - L) T KL - L)KO— L)

1 KO«—L)
TR0 [ KO L,)

+ N—- 1] =11-10"3s. (5.9
The state I; of the uncoupled system has a dipole moment of

N
u(ly) = p(lp) + - k=332ed (5.10)

which agrees well with the calculated plateau value in Fig. 16.

At room temperature and neutral pH, the photocycle of the proton pump
in bacteriorhodopsin requires milliseconds to return to its original state. [t is
of interest to see whether another proton could be conducted before the
conductor has equilibrated. At ¢ = 10735 instead of removing the injector
group, a new protonated injector group is brought into contact with the
conductor. Figure 17 shows the results for such a situation. Until t = 10~ 35
the behavior of the system is the same as in Fig. 16 (different scaling has been
employed) , i.e. the system has transported one proton and is in the state
I, described above. Anewed protonation of the injector results in the state
I’ = (1]a,|1) of considerable higher energy. As in the transition from
I, — I, the system awaits the migration of a D, rotational fault (¢ ~ 10~ %s)
after which the translocation of a proton follows lmmedlately

2~ (Lagl1) = (0]o, [2) =

The time for the translocation is the refraction time, and it can be
approximated by the first-passage time

Tet, = Ty, = 1.14- 10765 |
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Fig. 17. Demonstration of the delay time of the homogeneous proton conductor in Fig. 16: () at

t = 0a protonated injector group is coupled to the conductor; () at ¢ = 10™* s a new protonated
injector group is brought into contact. a) The calculated quantities are defined in Fig. 14

* Fig.17. b) The protonation states of group X; (——), Xy (———-), and Xg (- )

A secondvproton could be transported after a few microseconds. During the
refraction phase, the dipole moment reaches the plateau value

p(l)=pu(l)+ Ny, + pu, =4.14 ed.

The states of protonation of the injecting group X;, a middle group X,,,
and the right end group X of the conductor during the transport are shown
in Fig. 17b. The protonation states have been evaluated according to (4.12)
by means of the probabilities [X/], [X;H]), and [X;H,]}, i = I, M, R. Theinjector
([X,H,} = 0) is initially in the state [X,H] = 1. [XH] decreases at longer times
to the equilibrium value 107! at pH = 7 dictated by the injector pK,

pK(XH) = log p[(xH]]

’ 'Iditi'ally the gfohps M and Rarein an equilibrium state consisting of the two
neutral configurations az and a;, so that [X,H]/[X,] and [X H]/[X ] satisfy
(5.11) at short times. After transport of the first and second proton, the

+pH. .11)
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Fig. 18. “Blue light effect”” on the homogeneous proton conductor in Fig.16: (®) at t=0 a

protonated injector group with pK(inj) = —4 is coupled to the conductor; () at r = 10"3s a

sudden change of the injector pK value occurs to pK(inj) = 10. Calculated quantities are defined
in Fig. 16

effective pK-value defined according to (5.11) increase as [X,] decreases. This
behavior originates from our assumption of a strong hydrogen bridge
between the injector group and the left end group, i.e. the energy of formation
for an L, fault there is as high as that between the conductor groups. As a
result as long as the injector is coupled, the conductor is asymptotically in the
a, configuration and, therefore, appears more basic. The probabilities
[XiH:]and [XzH ] are seen to develop two maxima which coincide with the
two phases of the proton current. This behavior is due to the fact that the
proton transport involves D, faults.

As explained above, irradiation of the intermediates appearing before
10~ %s in the proton pump cycle of bacteriorhodopsin results in a fast return
to the original protonated retinal Schiff base. One sees from our calculations
that once the injecting group has given off a proton to the conductor it is
translocated to the solution within 1 < 10~%s. The question remains how, in
connection with the blue light effect, the injector (the retinal Schiff base) can
be reprotonated. In Fig. 18 the blue light irradiation is assumed to cause a
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sudden increase in the injector’s pK from —4 to 10. At the time of the pK
change the system is in the state I,. Since the injector is now basic, the first
step is the abstraction of a proton from the conductor end group forming an
L, fault. The hole (L, fault) migrates across the conductor, and the system
relaxes to a new quasi-stationary distribution /5. The new state /5 contains
those configurations involved in the transport of the L, fault and gives rise to
a decrease in the dipole moment in the range 107 1% < ¢ < 10”55

NN +1
alls) = () — 1/5 -—(2+—) 4 = 2.82 ed.

Relaxation is complete after reprotonation of the conductor at the solution
* gide around ¢ =~ 10~ %s. To the final state J; = (1]ag|0) corresponds a further
decrease in the dipole moment

u(le) = p(ly) — N p, = 2.50 ed.

The dipole moment does not return to the original value because the state I
with a basic injector group selects one of the neutral states appearing in the
initial equilibrium state I, (5.4). The mean first-passage time for the overall
reprotonation of the injector is in the microsecond range [see (4.33)]

N+1 NWN-1)

= = LD —6.
U=ty = KP 2K(L‘-)L') 2.5-107%%

6. Response to oscillating fields and to electric field jumps

. To assist in the identification of the elementary transport processes, we
. have calculated the response of the proton conductors and diodes to time-
dependent electric fields. The calculated quantities are the observable
introduced in Section 4: changes in the dipole moment and free energy, and
the integrated proton current. In the case of bacteriorhodopsin, a field jump
experiment using a rectangular pulse of variable duration has already been
performed [28]. The effects measured there are one to two orders of mag-
nitude larger than those predicted in this section. This discrepancy is due to
the cardinal problem that besides the conduction protons many charges and
dipoles within the protein and membrane contribute to the field jump
response. In fact, it appears difficult to measure separately the contribution
 of the protons in the conductor pathway alone. We hope that the following
results point out a suitable “window” to observe the elementary processes
connected with proton transport in proteins.
. The desired separation of proton transport from other responses may be
- more easily achieved in frequency space and, therefore, we have also
“investigated the influence of an oscillating field of variable frequency on the
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observables. Being strongly damped systems, the proton conductors are not
expected to exhibit strong resonances. However, in certain frequency ranges,
the elementary processes of translation and protonation reveal themselves by
changes in the amplitude and phase shift of the observables.

The structure of the master equation and the rate constants for time-
dependent fields follows straightforwardly from Section 2. In the case of the
oscillating field, the time dependence of the external electric field is sinusoidal
with a frequency v

V..(f) = V2, sin 27wt (6.1)

and in the case of the electric field jump it is a step function with a pulse
duration t

Vj“0<t<t

Vo) = { . 62)

I>t.

The matrix K of rate constants in (1.1) is now time dependent, and the master
equation

P()=K() P(t) with P(0)=P° (6.3)

is solved using the fifth-order Gear algorithm for stiff systems [19]. The
system is assumed to be initially in its equilibrium state P°.

The dipole moment u(t), the free energy 4F(t), the proton current at both
sides of the conductor, J(r) and J, (#), and the integrated currents T (¢) and
T, (9) have been calculated as in Section 4. In the case of the oscillating field,
calculation of the observables begin after the initial oscillations have reached
a steady period. The transient behavior disappears usually after 10—20
periods. The amplitude is taken as the difference between the maximum and
minimum in a period. The phase is defined to be the shift of the dipole
moment maximum to the maximum of the oscillating field. For the field jump
calculations, the nontrivial test for stability

Ili_’"; [Te() — TL(N] =0

is made after the system has relaxed at ¢ = 1 sec. Convergence tests were used
to determine the tolerance parameter tol = 0.0001 and the step length
parameters h; =10"'* (field jump) and h, = 10~*/v (oscillating field)
required in the Gear algorithm.,

Figure 19 depicts the response of a homogeneous conductor to an
oscillating field of variable frequency v. Both ends of the conductor are in
contact with an aqueous solution at pH = 7. The phase shift of 4u at the
bottom of Fig.19 shows that the dipole moment is in phase with the
oscillating field at frequencies 10’ Hz < v < 10° Hz. Corresponding to this
minimum in the phase shift, the amplitude log(4u/ed) exhibits a plateau
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value. The time-dependent distribution P(¢) reveals that in this frequency
range configurations «; connected by translation of an L, fault across the
* conductor form a distribution that is quasi-adiabatic
Veu
o ug azg: O3 ernrenans zgz ay, aeQ(L,). (6.4)
k) 7 ko) k-we1(v,0)
Each configuration in 2 (L,) has exactly one L, fault, and &, (V,,,) is the time-
“dependent rate constant for the migration of the L, fault obtained from (2.3),
i°e' ki(ynt) = K[Lt i Ll] (t)'
' The dipole moment resulting from oscillations within this quasi-adiabatic
distribution 2, can be approximated from (4.10)

TOER ,l(az)iz,(z)”;s‘2 1(B) P+ ed Tx(s). (6.5)

P isthe edliilibrium distribution. The configurations in  are identical to
those in the short-time quasi-stationary distribution of the ejected conductor
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in Section4.4. Allowing for time-dependent rate constants in (4.18) and
(4.19), a similar derivation for P,(7) is possible,

. =1 k(V,)
P‘- 1) = N ” L e .
=N B e ©9
The normalization factor N, follows from the condition
é) P.(0) =“§) P;=S. 6.7

The amplitude |4p|, defined as.the maximum minus the minimum value of
u(2) over a period, is within this approximation

14p(10"Hz < v < 10° Hz)| = |4u[AL))| = S[d(e) — 5(57 1] (6.8)

where

Mz

1

. Z =
5(e) ==L

gt

i=1
g is the correction to the rate constants from the oscillating field with
amplitude V2, ’

b =exp(ufBVa/d)  (B=1/kT). '(6.9)

With the equilibrium distribution P° known from the stationary state

calculations, one obtains |4u(Q)| = 1.75- 10~ %ed which compares well with
the exact value of Ay = 1.748 - 10~ %ed at 108 Hz.

_ Atfrequencies higher than 10° Hz or smaller than 107 Hz, the phase of the ‘
dxpple moment goes to the value n/2. This result can be understood on the
basis of a simple model of a two component reaction

k
A< B
x
with the time-dependent rate constants
k = kg exp (a sin wt)

k' = ko exp (—a sin ot)

where o = BuV;, /2d and k, is time independent. For small fields the rate
equations

Py=—kP,+Kk Py
P3=—k’PB+kPA
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can be reduced to the simplé differential equation
Py+ 2koP, = ko (1 — a sin of).
P, is obtained from the condition P, + Pz = 1. P,(?) has the solution
P,(t) =ce %t 4+ 1]2 — A sin (0t — O)

where c is a constant. The phase shift and the amplitude of the sinusoidal
~ term are

© = arc cos [2ko/ V(2ko)? + w?]
A =koo| VO + .

The initial transient behavior decays away with a time constant (2 k,) ! after
.. which the system undergoes oscillations that are shifted by a phase® from the
" applied electric field of frequency w. Two limiting cases are of interest: i) if
o > ko, then® = nf2 and 4 = 0; ii) if ® < ko, then® = 0 and 4 = «/2 (the
system follows the oscillating field quasi-adiabatically). These two simple
cases allow us to qualitatively explain Fig. 19.

At high frequencies, w » ko = K(L,—~ L), no concerted transitions
between the configurations in (6.4) will take place. The phase of the
distribution and, therefore, that of the dipole moment will be shifted by =/2.
The rise in the phase of the dipole moment at frequencies below 107 Hz is due
to the onset of processes slower than the translations, e.g. protonation occurs
with a rate constant of 210%™,

Below 10? Hz, a quasi-adiabatic proton current flows in phase with the
oscillating field across the conductor. The amplitude of the current 4J4 at
- 10 Hz is exactly the stationary current J = 2.31-10? protons s ! obtained
. when a constant field of strength V,,, = 25 mV is applied. The dipole moment
is here principally determined by the integrated current T (¢) [see (6.5)] and

therefore follows the field by a phase of n/2.
' Figure20 presents the behavior of the system in Fig.19 submitted,
however, to an electric field jump of duration 7 =10"*s and strength
V... = 10mV. At short times 10~%s < t < 10~ 7s after the beginning of the
jump, the field induces a quasi-equilibrium analogous to the quasi-adiabatic
state £ existing in the 107 Hz—10° Hz region in Fig. 19. The corresponding
small plateau value of 4u(r) estimated by the expression

et

Ap[Q(L)) = p, S[6(e) — 6(0)}=3.53-107"ed

ls in good hgreement with the numerical value. At longer times the field

' induces a proton current. The major part of the current is irreversible since
* the solution is assumed to be buffered at pH = 7. A minor part of the current
. as well as of the dipole moment reverses after switch off.
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Fig. 20. Response of the homogenecous conductor in Fig. 19 to a field jump experiment at pH

= 7; duration of the jump is 10~ *s with amplitude V3, = 10 mV. The observable calculated are

the dipole moment Au(r) = u(t) — u(0), the integrated proton current ]'JR di, and the change in
free energy AF(t)

We have also examined the influence of pH on the above investigations,
and in Fig.21 we present analogous calculations at pH = 10. The quasi-
adiabatic (stationary) distribution (6.4) again determines the dipole moment
in the region 10’ Hz < v < 10° Hz (10~ !% < ¢ < 10" 7s). The plateau value
of Au corresponding to this translational process is now larger in the field
Jjump case. The pH dependence of the amplitude 4u(¢) follows directly from
the pH dependence of the equilibrium distribution P°, At pH = 10 a second
plateau develops in the range 10°Hz<v<10°Hz (10 °s< 1< 107 %s). It
involves a quasi-adiabatic (quasi-stationary) distribution of configurations
that are coupled through translations of an L, fault and protonation

K3, K(L~»L) K(L,~L) K

oo w=2 O oy = ... Oy = Gy, (6.10)
Ky KL ~L) K, ~L) Kp
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Fig. 21. Response of the homogeneous conductor to (a) an alternating electric‘ﬁcld andto(b)a
field jump with conditions and observables as in Figs. 19 and 20 but with pH = 10

The ';amplitude of the dipole moment associated with this quasiadiabatic
- translocation oscillation can be estimated with the aid of Eqgs. (6.5)—(6.8)

N+t
[4u(10° Hz < v < 10° Hz)| 2 u( ZOP?) [0() — o(e” ]  (6.11)
with ’
N v
I (i— 1)t 4 (N —1)eN-1 KK,

oe)= S
' Z g +&" KK+ K3/ K
i=1

With the equilibrium distribution known from the stationary-state calcula-
tions, one obtains from (6.11) [4u(10° Hz < v < 10° Hz)| ~1.1-10"! edfor
PH = 10‘and ‘N = 4. In the case of the translocation oscillation (6.10), the
proton current Jy is maximal when the change of the field is greatest, i.e. when
the oscillating field goes through zero. Hence, J will be in advance of the field
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Fig. 22. Maximum dipole moment change of a homogeneous conductor N = 4, pK(XH) = 10,
Pk(XH,;) = —2 in an electric field jump experiment as a function of the pulse duration at
pH = 4,7, and 10

by a phase shift of —=/2, and the integrated current Tr and the dipole
moment will be in phase with the field as shown in Fig. 21c.

In order to relate more closely our calculations to a field jump
measurement, we have plotted in Fig. 22 the maximal change in the dipole
moment at various pH’s as a function of the pulse duration 7. The curves
reflect the profiles given in Figs. 20 and 21. The amplitude Vea=10mVisa
typical value employed in the experiments on the protein bacteriorhodopsin
[28]. The calculated change in Ay of 2- 10~ 2 ed lies in the range of 1 Debye
and is only 19 of the observed value. This large discrepancy cannot be
explained by our choice of Vg, or N. As stated before, the experiments
measure the motions of all charges and dipoles in the protein, and at the
moment one cannot separate out the contributions from the proton
conductors.

As the field jump and oscillating field experiments provide rather similar
information, only the latter will be discussed for the proton diodes. Figure 23
is a comparison of results for the AB and field diodes described in Section 3.4.
In the case of the AB diode, the presence of a quasi-adiabatic distribution in
the region 10° Hz < v < 10'° Hzis evident by the constant value of the dipole
moment amplitude. The time-dependent distribution reveals that isolated
proton translations, separate for the acidic and basic sections of the diode, are
primarily taking place. Other motions are relatively improbable until one
comes into the frequency range for (de-)protonation and formation of an L,
rotational fault below 10* Hz. The system establishes a new quasiadiabatic
distribution involving (de-)protonation at the basic end, but no net transport
of a proton occurs. A proton is taken up or given off in phase with the field
which explains the —n/2 phase shift in J, in Fig. 23.

At frequencies below 102 Hz, the AB diode begins to function as a rectifier
in that more protons are periodically transported in the forward direction
than in the reverse direction. At high frequencies, the proton current Jpisid
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Fig. 23. Comparison of the frequency dependence of the dipole moment and proton current of
the acid-base diode (a) and the field diode (b) in an alternating electric field with amplitude
V3, = 25mV. The observables are defined as for Fig. 19

phase with the field due to the field dependence in the (de-)protonation rate
constants.

Similar low and high frequency behavior is exhibited by the field diode.
The translational and translocational quasi-adiabatic distributions described
in the discussion of the homogeneous conductor exist around 10° Hz and
10* Hz, respectively. The translocation oscillation (6.10) is now more clearly
manifested by the proton current.

7. Summary

. In this paper we have studied in quantitative detail a model for the proton
transport through hydrogen-bridge networks in order to further develop the

" necessary network thermodynamic description as well as to guide the
experimental study of biological proton conductors..We have formulated in
Section 2 the problem of proton transport in terms of a master equation
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connecting all the possible distributions of protons in the conductor. We
provide theoretical algorithms for the solution of stationary (Section 3) and
nonstationary (Sections4-6) situations including time-varying external
electrical fields. Extensive treatment was only possible due to the develop-
ment of an algorithm for presenting out of the large space of proton
distributions the kinetic pathways involved in the proton transport. The
algorithm provided us with maps of all essential kinetic fluxes contributing to
the transport, for example as in Fig. 9b. This knowledge underlied all our
discussions and interpretations above. We decided, however, to limit the
presentation to the simplest examples which allow analytical approximations
for the observables connected with the transport.

The results presented concern mainly the question which observables can
best reveal dynamical and structural details of proton conductors. To this end
we have first considered the (titration) measurement in Figs. 3 and 7 of the
stationary proton current induced by a constant electrical voltage as a
function of the external pH. Such titration curves reveal the pK-values of the

~conducting groups. We have also analyzed in detail the elementary proton

motions involved in the transport and have developed analytical expressions
for the proton current and proton resistance. These approximations were
obtained by reducing the kinetic pathways to a small number of effective rate
limiting steps and by invoking the approach of linear irreversible thermo-
dynamics (see Fig. 8).

Time-dependent observation are more revealing about the dynamical
processes, and we have considered, therefore, proton transport after -
injection/ejection and in time-varying fields. For this purpose we have
studied the behavior of key quantities which admit experimental investiga-
tion: free energy decrement, proton release, charge displacement, and
protonation state of conducting groups (Figs. 14— 16). After proton injection
or ejection these observables exhibit several relaxation steps connecting
quasi-stationary states of the conductor. These states are also found to play a
central role under time-varying field conditions (oscillating fields and field
jumps). By means of the first-passage time approximation the relaxation
times can be expressed analytically in terms of the kinetic rate constants for
the elementary processes [for example see Eq. (4.33)]. The quasi-stationary
values of the observables are found to reveal structural details about the
conductors. Under the application of oscillating fields the quasi-adiabatic
distributions and relaxation processes show up as transitions in the amplitude
and phase of the observables in certain frequency ranges (Figs. 19 and 23).
Field jump experiments provide equivalent information (Figs. 20 —22).

We have also studied possible functional characteristics of proton
conductors. An important result is that conductors composed of heteroge-

- neous (acidic and basic) groups or homogeneous groups subjected to an

internal electric field can achieve diodic character, i.e. a non-linear chemios-
motic potential current characteristic as seen in Figs. 9—13. As biological



proton transport is mostly unidirectional such diodic character constitutes a
very important feature.

By allowing the interaction between the conductor and injecting or
ejecting group to be time and pK dependent, we have investigated in Fig. 17
the refractory phase of the conductors: after an initial proton current pulse,
the conductor is left in a polarized state; repolarization involves hydrogen-
bond breaking and group rotation. We have found that after an initial
relaxation step a second proton can be transported before complete re-
polarization or recovery is achieved. We also established that a conductor
can act as a proton buffer (Fig.18): although an injected proton will be
conducted and released within 10~ %5, a sudden change in the injector’s pK
even after 10~ ¢s can force the almost immediate return of a proton to the
injector and the conductor to retrieve a proton from the solution at a later
time 1. The time ¢ depends of the solution pH. This chain of processes is
assumed to contribute to the “blue light effect” of bacteriorhodopsin.

Finally, we would like to comment on two possible critiques of the model
regarded here: 1) the rate constants employed for the elementary transport
processes may not be realistic; 2) certain elementary processes involving the
concerted motion of several protons are not included in the description. To
the first point, many of our results can be extended without further
calculations to account for different rate constants. For example, a relaxation
step governed by a rotational rate constant would be shifted in time or
.. frequency space according to the suggested change. In the case of concerted
" transitions one could easily identify in the pathways discussed above where

such transitions provide a short cut and determine if their existence would
alter significantly the behavior of the conductors. For example, a concerted
proton translation according to Zundel et al. [15] would directly connect
states 1 and 4 as well as 1’ and 4’ in Fig. 14b, c and, thereby, decrease the
initial relaxation times reflected by the observables in Fig.14a to below
1010,

Our aim has been to provide a general framework in which the behavior
of complex biological proton transport can be discussed, and we hope that
our results will be a stepping stone toward the illucidation of the structural
basis of the transport processes connected with the chemiosmotic principle of

bioenergetics.
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Kp =— 10_"" + k,’
2 144kt
ky
Kp =k —————— 4+ — 10pH- 14,
1+k_,t 2
k4, (K ) are the pK-dependent rate constants for the transfer of a proton between the
epd group BH(B) and water. T is a structural relaxation time for water and k, is the
bimolecular diffusion-controlicd reaction rate constant for the jons.



