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THE FAST GROWTH OF MOLECULAR MODELING AS A
research tool in biology and medicine has been tightly coupled to the ad-
vent of the supercomputer and to advances in applied and computational
mathematics over the past decade. Three features characterize the
progress made to date: bigger molecular systems described in atomic de-
tail, longer simulation time scales, and more realistic representations of
interatomic forces. With these improvements, molecular modeling by
computer has given us many insights into the relationship between struc-
ture and function of biopolymers and drugs.'? Researchers now find it in-
dispensable for structure refinement.?

Still, the state of the art in molecular modeling leaves much room for
more progress:

_ Systems 'of-lar'ge ' ¢ Simulations of biopolymers must be extended from the current few
bio'mdfecules fnferacting - thousand atoms to systems of 100,000 or more atoms.
i : E ¢ The time scale of simulations in molecular dynamics must reach be-
fﬂ time. Obstacles are yond the present nanosecond horizon to describe longer processes of
formidable: the pbtential ' biologically relevant duration. Examples are substrate binding, enzyme
- . 4 . reactions, and the folding of proteins into their native form.
bene‘ﬁt, vast, . ¢ Descriptions of interatomic forces must be improved to include such

factors as atomic polarizabilities and to combine molecular modeling
and quantum chemical calculations.
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Molecular dynamics simulations must speed
up by several orders of magnitude to allow the
increases in system size and time scale that re-
searchers need. "T'o achieve this speed and to im-
prove the quality of force-field representations,
scientists will exploit advances in processor
speed and in numerical and parallel algorithms.
The increasingly important role of molecular
modeling in biology and medicine has already
led to the formation of multidisciplinary teams
to provide the needed knowledge of hardware,
software, mathematics, and science.

Qur groups are actively developing computer
programs with improved schemes for numerical
integration, parallelization, and efficient and
scalable evaluation of electrostatic force fields.
These programs are targeted for a variety of
scalable shared-memory and distributed-mem-
ory machines, including networks of worksta-
tions. Describing this current research and its
background will give readers a taste of the chal-
lenges ahead in computational biology.

Modeling macromolecules

Computational structural biology has been con-
fined so far to the study of only the smallest
functional units in living cells: small and

medium-sized pro-
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Multidisciplinary teams are
combining knowledge of
hardware, software,
mathematics, and science.
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teins or protein com-
plexes, segments of
DNA, minute patches
of membranes, and
biomolecules solvated
by minuscule droplets
of water. Most simu-
lations have dealt with
less than 10,000
atoms. To be more re-
alistic, simulations of molecular dynamics need
to include more of the natural environment, like
water or membranes, that surrounds the mole-
cule in question. This often increases system
size to about 100,000 atoms. Moreover many
biological functions, even simple ones, involve
aggregates of biopolymers; for example, poly-
mers with proteins as subunits. To describe
supramolecular structures like complexes of
regulatory proteins with DNA, the aggregations
of proteins that form muscle strands, or protein
coats protecting the genetic material of a virus,
requires simulations of up to a million atoms.
Experimentalists have had dramatic success
deciphering the structures of some large-scale
biomolecular systems observationally. Examples
from the past 10 years include the myosin-actin
complex in muscle strands, the F; fraction of
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ATPase (which synthesizes the important cellu-
lar energy source ATP or converts it into a pro-
ton gradient across the cell wall), the TATA-
box binding protein (which plays a crucial role
in gene expression), and the protein coats of
virus particles. This observational progress in
determining certain structures opens up oppor-
tunities for computationally determining how
those structures function.

On the other hand, many important biopoly-
mer structures are inherently too flexible and
disordered to be solved by available observa-
tional means such as crystallography. Solving
their structures will likely require large-scale
modeling efforts in concert with observation.
Computational structural biologists eventually
hope to predict entire structures from first prin-
ciples. The structure of a protein, for instance,
should be computable from its sequence of
amino acids. The principles linking amino acid
sequences or, equivalently, gene sequences and
protein structures are often referred to as the
second part of the genetic code. Once these
principles are cast into computer programs—if
that is achievable at all—the rapidly increasing
database on the genomes of humans and other
organisms could be used for structure predic-
tion. The opportunities resulting from this
would be far-reaching.

This goal may long remain elusive. Mean-
while, though, researchers will try to model par-
ticular proteins which they judge to be amenable
to computation. They will also begin to design
proteins with new properties, for example, en-
zymes that can remediate toxic materials.

At present molecular modeling is carried out
mainly in batch-job mode. Researchers thus
tace long delays between having an idea for
structure building and being able to view the re-
sulting structures. The process often involves
extremely lengthy searches for optimal geome-
tries, made longer by the lack of interactive pro-
grams that would let the researcher guide the
search. The design of new biopolymer struc-
tures would benefit tremendously from interac-
tive simulations. This would require, however,
much greater simulation speed, realized
through better algorithms and the pooling of
parallel processors. Such advances need to be
combined with visualization and analysis tools.

A few examples will illustrate the progress
now being made in macromolecular modeling.

Simulating membranes and membrane proteins

Biopolymers function in two environments,
water and membranes, which in turn affect
structure. Water has been studied extensively
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and we have suitable, if not perfect, models of it
to use in biomolecular simulations. Membranes,
however, have resisted modeling attempts.
Why? Suppose we want a patch of membrane to
serve as an environment for an embedded pro-
tein. If we are modeling the protein bacterio-
rhodopsin embedded in a membrane of
[-palmitoyl-2-oleoyl-sz-glycero-3-phosphotidyl-
choline, or POPC (Figure 1), we need to model
a cube of membrane measuring about 100
angstroms on each side. Moreover, the proper-
ties of lipid bilayers of membranes are deter-
mined by solvation and long-range electrostatic
interactions. This means that we must add wa-
ter and that the Coulomb forces of attraction
and repulsion between charged particles cannot
be cut off. As a result, membrane studies require
simulations of large size (N = 30,000 atoms) and
long duration (¢ = 1 nanosecond). In the world
of molecules, where vibrations (and, hence, time
steps for integrating the equations of motion)
are measured in femtoseconds or picoseconds, a
nanosecond is actually quite a while.

The first simulation of a lipid bilayer patch by
one of our research groups (at Illinois) covered
a total time span of 263 picoseconds and con-
sisted of 200 molecules of POPC on an 85 x
100-angstrom rectangle, with 5,483 water mol-
ecules covering the lipid head groups. The sys-
tem was equilibrated in both the gel and the liq-
uid-crystal phases. Structural and dynamic
properties like order parameter profiles for nu-
clear magnetic resonance, distribution of mole-
cular groups, and self-diffusion coefficients
were determined.* The simulations included
over 25,000 atoms, ran on a self-built MIMD-
type parallel computer with 60 processors, and
required about two years of uninterrupted com-
puting. We have extended the simulations to a
patch of a DLPE (dilauryl-phosphatidyl-
ethanolamine) membrane with 32,000 atoms. In
the DLPE simulation we determined, among
other things, the potential experienced by
charged particles when crossing the membrane.
This potential depends crucially on the struc-
ture and distribution of water at the membrane
surfaces and requires a faithful description of all
electrostatic forces in the system. The calcula-
tion became feasible only when we incorporated
a method called the fast multipole algorithm
into our programs, since this approach yields
only an O(N) computational complexity.

Presently, the DLPE-membrane model is
used to study the function of phospholipase A,.
This enzyme associates with membranes and di-
gests the lipid molecules by cleaving their sn-2
ester bonds. It occurs in the venom of bees and
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rattlesnakes, but also plays a role in the diges-
tive tract and in body fluids. Human synovial
phospholipase A, has attracted pharmacological
interest since it is involved in inflammation
processes. Our present goal is to understand
how phospholipase A; binds to membrane sur-
faces and to explain how the binding dramati-
cally enhances the enzyme’s effectiveness.

Protein-DNA interactions

Hormone receptors are proteins that interact
with DNA to regulate the transcription of genes
into proteins. In 1991 the structure of a key
component of the glucocorticoid hormone re-
ceptor (GR) complexed with DNA was solved.*

This protein belongs to a class of nuclear re-
ceptors that has been implicated in a variety of
human cancers of reproductive tissues. The GR
dimerizes, or joins with another GR molecule,
when it binds to DNA; each monomer subunit
of the receptor forms specific interactions in
what is called the major groove of DNA, and
can recognize local DNA sequences.

Our simulation of this system (see Figure 2)
included two GR protein units, a DNA seg-
ment, and an ellipsoid of water surrounding the
proteins and DNA; altogether about 13,000
atoms. Tom Bishop in our group at Illinois did
the simulations on a 64-Transputer T803 paral-
lel machine (Parsytec’s GC-el64). The simula-
tions started from the structure previously de-
termined® and mutated the DNA into a
biologically more relevant sequence. This mod-
eling revealed how the proteins “read” local
DNA sequences and that the proteins bend the
DNA and unwind the DNA helix to a signifi-
cant degree. The simulations pave the way to
study other regulatory proteins involved in ma-

Figure 1. The pro-

tein bacteri-
orhodopsin em-

bedded in a patch

of a POPC mem-

brane. (Courtesy

Helmut Heller)
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lignancies. A prime candidate for further study
is the protein p53, implicated in a very wide
class of human cancers.

Muscle strand

The primordial dynamic system in higher or-
ganisms is muscle. Its smallest functional unit,
the sarcomer, consists of actin and myosin fila-
ments gliding past each other to contract or ex-
tend the muscle. Figure 3 presents one compo-
nent of muscle fibers, the F-actin strand, which
provides the scaffolding along which the myosin
filaments move.5 As Figure 3 shows, the F-actin
strand consists of many units, the so-called G-
actin proteins. Presently, Willy Wriggers in our
group at Illinois carries out simulations of iso-
lated G-actin and of G-actins that form a repeat
unit (about 40,000 atoms) of the F-actin strand.
The goal is to understand the aggregation of G-
actin into F-actin and the ensuing flexibility of
F-actin strands during muscle action. This fig-
ure illustrates a new role for biopolymer simula-
tions, namely the modeling of biomolecules that
take on new structure and properties when
joined together in aggregates. Another protein
aggregate we study is the coat of poliovirus (see
below). Protein polymerization may be a key
factor in mad cow disease, a poorly understood
disorder of the central nervous system. This dis-
ease is of great concern because of its possible
wide impact on public health. Molecular dy-
namics simulations can contribute to our under-
standing of it.

Figure 2. Simulation of the DNA-binding domain of a dual-molecule
glucocorticoid receptor (upper) complexed with DNA (lower). The
receptor bends and unwinds the DNA, which may help explain its
function. (Arrows denote certain sequences of amino acids.) (Courtesy
Tom Bishop)
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Simulating how viruses attack

The determination of the atomic structures of
the coats of virus particles is a triumph of mod-
ern crystallography. The most intensely studied
viruses belong to the picornavirus family and
are connected with poliomyelitis, the common
cold, hepatitis A, and foot-and-mouth disease.
Crystallographers have provided nearly com-
plete structures of the coats, or capsids, for sev-
eral picornaviruses and related viruses. Knowing
these structures makes possible exciting molec-
ular dynamics studies of how viruses infect the
body, what determines the level of virulence,
and how infections can be prevented through
vaccination or drugs. However, remaining
structural uncertainties and system size pose
enormous technical difficulties for modeling.
The 60 subunits forming the coat of po-
lioviruses encompass 399,000 mostly well re-
solved atoms, to which about 200,000 polar hy-
drogen atoms must be added. Water must also
be added, since solvent effects are expected to
play important roles. Altogether these require
ambitious simulations of over one million
atoms; recently our group embarked on the first
phase of this project.

Supercoiled DNA: Energetics and dynamics

The folding and knotting of topologically cir-
cular DNA is an important aspect of many fun-
damental biological processes such as replica-
tion and recombination. Its study spans biology,
chemistry, and mathematics, and forms a com-
putational challenge for modelers.” Supercoiling
is a higher level of folding of the DNA that in-
volves bending and twisting about the global
helix itself. Little in detail is known about its
structural and dynamical aspects, much less
about the associated enzymes that affect DNA
topology. Thus, systematic data are critically
needed to interpret the effects of supercoiling
on fundamental biological functions. Simulation
work is challenging because the systems are very
large—thousands of base pairs—and the time
scales are very long. One of us (Schlick), work-
ing with W K. Olson, has devised a model that
macroscopically represents DNA as essentially a
charged elastic ribbon, and combines this with
large-time-step simulations to capture global
folding and many interesting related processes.?
These include the knotting of DNA, salt effects
on DNA mobility, and the profound effects of
solvent on the thermal fluctuations of DNA (see
Figure 4). These studies add detailed informa-
tion to low-resolution experimental data ob-
tained by gel electrophoresis, electron mi-
croscopy, knotting recombination experiments,
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Figure 3. Simulations help explain the flexibility of muscle strands. This piece of the F-actin filament of
muscle contains 17 “repeat units” (different colors) of a protein G-actin, together about 40,000 atoms.
X-ray fiber diffraction supplied the basic structure; computers refined it.6 (Courtesy Willy Wriggers)

and light scattering, and suggest new lines of
experimentation.

However, much progress must be made in
modeling to extend such observations to the all-
atom level necessary for investigating many im-
portant details of protein-DNA interaction.
This extension is a focus in our collaboration.
We are working to determine an all-atom struc-
ture for several dozen nucleotides. The results
will be plugged into the macroscopic super-
coiled-DNA model in the form of a rigid re-
straint on a part of the curve that is later sub-
jected to relaxation under given topological
strain. Such improved modeling and long simu-
lations should provide further insight into the
topological and geometrical changes induced by
proteins, as well as the covalent binding of vari-
ous chemical mutagens that alter superhelicity
and therefore biological activity.

Long-time integration methods

We have emphasized that biomolecular models
simulate not just a structure but a process. Life is
not static, nor are the molecules that make it up,
so computer simulations of them must model
changes over time. Molecular dynamics, or
MD, is a useful tool for sampling a range of bio-
molecular structures and obtaining insight into
how they change over the durations relevant in
the microscopic domain. The idea is to solve
Newton’s second law of motion

MV (t)=-VE(X(t)), X(t)=V(2) (1)

for the atomic positions X and velocities 7 as a
function of time. Above, the dots denote differ-
entiation with respect to time, M is a diagonal
mass matrix, and E(X) is the potential energy.
The function E(X) is obtained by fitting para-
meters semiempirically to thermodynamic and
structural properties of representative molecules
while incorporating some quantum-mechanical
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calculations. This function models bonded in-
teractions, electrostatic forces, and the van der
Waals attraction and repulsion. The initial posi-
tions typically come from observational data,
such as those available from determined crystal
structures, and initial velocities are assigned
randomly to yield a Boltzmann distribution.
From MD, structural and dynamical informa-
tion can be obtained for many interesting quan-
tities, such as the fluctuations of dihedral angles
between sets of bonded atoms, average energies,
conformational distributions, large-scale pro-
tein bending and other collective motions of
subgroups, rates of conformational change,
structural rearrangements due to solvent, and
correlations between various geometric parame-
ters. However, MD suffers from today’s limited
simulation times. Therefore, the sampling is
typically far from completely representative,
and it is difficult to have a global perspective on

OS>
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Figure 4. Supercoiling: snapshots from a 2,000-base-pair DNA simula-
tion. Selected frames from a DNA trajectory model the relaxation of
closed circular DNA in standard solvent and sodium salt conditions from
the circle, which is torsionally stressed, to the interwound structure,
which is at a potential-energy minimum.
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many measurements and observations. Progress
is still required to extend our results beyond the
nanosecond horizon to capture the many realiz-
able conformational states and transitional path-
ways of biomolecules.

For these problems, the trajectories depend
sensitively on the initial conditions and the pa-
rameters. Experiments show that the size of a
perturbation doubles every picosecond or so
until it reaches the molecular scale.’ Thus, the
kind of information obtained from a molecular

dynamics simulation

PPE204008640002 0000008 60 dease 1S Statistical in nature.

In particular, it in-

New algorithms show promise s energetically

for lengthening the time step
in molecular dynamics.

tavorable changes in
and fluctuations about
the structure of the

2600040060000 050 008000080 00sse DiOmolecule.
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In many situations,
such as the modeling
of a protein without explicit solvent molecules,
it is very important to include effects of the en-
vironment. This is most easily done by adding
simple terms for frictional and random forces
to the systematic force described in the New-
ton equation. This results in the Langevin
equation, which is widely used in biomolecular
simulations to mimic a thermal reservoir.!?
This equation takes the form

MV (1) = -VE(X(t)) - y MV (t) + R(r),
X)) =V ()

where R is a random force satisfying the condi-
tions

(R(1)) =0, <R(t)R(t')7 > = 2yky TMS(t — 1)

Here yis the damping constant, k; is Boltz-
mann’s constant, 7 is the temperature, & is the
Dirac delta symbol, and angle brackets denote
the expected (that is, average) value.

The standard procedures for numerically
solving the Newtonian equations of motion
(Equation 1) are explicit.!:* While simple to for-
mulate, explicit schemes severely restrict the
size of the integration time step: At must be at
least as small as the most rapid vibrational
mode. This generally limits At to the femtosec-
ond (107" s) range and the trajectory time to
the picosecond to nanosecond (10712 to 109 s)
range. Since key conformational changes—
rotations about chemical bonds, for instance—
occur on time scales of anywhere from a pico-
second to one hundred seconds, many enhanced
sampling techniques combining Monte Carlo,

high-temperature MD, free-energy, global opti-
mization, and other methods have been devel-
oped. In addition, researchers have devoted
considerable effort to devising methods that al-
low a longer integration time step to be used.
However, several formidable difficulties arise:
(1) reality of the results, if some local resolution
is sacrificed, (2) computational cost of suitable
long-time-step schemes, and (3) estimates of
accuracy.

In MD we are dealing with nontraditional
ways of assessing accuracy. Appropriate mathe-
matical theories of error analysis and long-time
stability are not yet available for ordinary dif-
ferential equations of the type that arise in
chemistry—multidimensional, highly nonlin-
ear, frequently chaotic systems. Most error
analyses are performed on systems for which
accurate trajectories are easy to calculate. From
a practical point of view, in MD we would like
to merge both qualitative and quantitative be-
havior of biological systems. Therefore, we can
imagine that different models, in combination
with different integration or propagation meth-
ods, could be designed to address different as-
pects of dynamical problems for macromole-
cules. Fssentially, the appropriateness of an
algorithm should be tightly coupled to the sci-
entific questions that are being asked of it.
Some compromise might therefore be neces-
sary between, on one hand, modeling the de-
tailed dynamics of a system correctly but miss-
ing its global features and, on the other,
obtaining a more global view of conformation
space at the expense of detailed resolution.

Most popular among standard integration
methods for the Newton equation is the Verlet
(or leapfrog) scheme. It has excellent long-time
behavior, because it is stable but nondamping
for linear problems—if At is suitably restricted.
In addition the Verlet scheme is symplectic (or
canonical).!! This attractive area-preserving
property of phase space is a feature possessed by
the dynamics of Hamiltonian systems, and has
recently been explored by mathematicians and
physicists in a variety of applications, including
molecular dynamics.!? While symplectic inte-
grators may be implicit or explicit, most compu-
tational chemists have adopted the Verlet ex-
plicit method because of its simplicity. In
explicit methods, the solution at the end of the
time step is obtained by performing operations
on quantities available at the beginning of each
time step. For example, in one form of the
Verlet method we begin a step at time nAr
with positions X7, velocities /7, and forces F" =
—VE(X") and advance the solution as follows:

IEEE COMPUTATIONAL SCIENCE & ENGINEERING



Vn+1/2 - Vn +%AtM—1Fﬂ
Xn+1 — Xn +AtVn+l/2
Fn+l =_VE(XH+1)
Vn+l - V11+1/2 + LAIM—IFnH
2

With implicit integrators, the final solutions
are functions of both the initial and final vari-
ables for positions, velocities, and so forth.
Therefore, coupled nonlinear equations must
usually be solved to determine the results at
each time step. Generally, the explicit versions
involve very simple algorithms that use little
memory, while implicit methods involve more
complex algorithms but may be more suitable
for treating systems with disparate time-scale
dynamics.

To reduce the severity of the requirement of
very short time steps to keep the Verlet algo-
rithm stable, the favored approach has long
been a constrained formulation for the bond-
length and possibly bond-angle motion. How-
ever, this increases the time step only modestly.
Another viable approach, variously called multi-
ple time steps, distance classes, or multiple time
scales, uses different time steps for different in-
teractions. These methods certainly provide
added speedup but do not fundamentally attack
the more global problem of enhanced sampling
and much longer time frames.

Numerical analysts typically resort to implicit
numerical schemes to handle problems with
multiple time scales. For example, if we replace
the explicit force evaluation F**! = —“VE(X"*1) in
the Verlet method by

Fn+l — _VE(Xn+l + %(At)2M—1Fn+I)

we get an implicit symplectic method, which
can be shown to be equivalent to the popular
implicit midpoint method. It has the generally
high computational cost of solving coupled
nonlinear equations for the unknown forces,
eased somewhat by the fact that the Jacobian
matrix is symmetric and, for reasonably small
At, positive definite. In fact, the nonlinear sys-
tem can be formulated as a minimization prob-
lem. The value of such a method is that for lin-
ear problems, at least, it is stable but
nondamping regardless of how large At is—in
fact, the implicit midpoint method exactly con-
serves total energy for linear problems.
However, the implicit midpoint method is
only marginally stable. When it is applied to
mildly nonlinear dynamics problems in struc-
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tural mechanics, instabilities have been ob-
served unless the time step is severely limited.
And generally, there is some concern that
longer time steps are prone to instability.
Therefore, it may be necessary to adjust the
MD model to counteract numerical artifacts. In
particular, it may be desirable to increase the
damping constant ¥, especially if we are using
no damping at all.

Moreover, the success of implicit schemes
with large At often relies on the assumption
that the rapidly vary-
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contribute signifi-
cantly to the major
motion of interest.
This assumption is
false in molecular sys-
tems, where vibra-
tional modes are inti-
mately coupled and
the cooperative motion among the correlated
vibrational modes may require energy transfer.
Indeed, the freezing of the bond-angle motion
was found long ago to have severe effects on
the overall dynamics of molecular systems.

One possible way to exploit a highly stable
implicit scheme is to combine it with another
procedure that more adequately resolves the
high-frequency motion. Our idea in the
Langevin/implicit-Euler/normal-modes meth-
od, or LIN,™1* is to obtain an approximation
to the solution which captures most of the os-
cillations within that time step by using nor-
mal-mode analysis based on a linearization of
the Langevin dynamics equations with an ap-
proximate Hessian H),. We then correct it
with a large-time-step integration by the im-
plicit (or backward) Euler scheme, which is
one of the simplest implicit integration
schemes with high stability.

In this way, the rapidly varying motion (X},
V}) is captured by the normal-mode (NM)
analysis, while the slowly varying motion (Z, W)
is resolved by the correction.

Numerical tests with LIN have been per-
formed for butane and for deoxycytidine. To
make the minimization problem efficient, a
truncated-Newton method is used.’® Current
efforts focus on development of LIN for bio-
molecular applications. This involves careful
implementation of the NM details. Since the
approximate Hessian in the linearized Langevin
equation is system-dependent, systematic pro-
cedures for protein and nucleic acid systems
must be developed regarding the choice of the
approximation of Hj in the linearized Langevin

Code for exact Coulomb
forces is easy to write;
expensive to run.

$04000000000400809004060004 2000
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equation, the frequency of the normal-mode
decomposition, and efficient implementations
for large systems.

Rapid evaluation of electrostatics

As we just described, researchers are tinding
ways to reduce the number of force evaluations
necessary by using information in the best way.
What are we to do, though, when each set of
force evaluations still takes an inordinately
long time?

Among the many types of forces present in
simulations of biomolecules, the nonbonded
forces (Coulomb and van der Waals) are both
the easiest to characterize and the most time-
consuming to compute. It is trivial to write code
to solve exactly for the Coulomb force (and the
van der Waals force to a very good approxima-
tion) by summing over all nonbonded pairs of
atoms in the system, but it is costly to evaluate
these forces. The runtime of this direct summa-
tion procedure grows with the square of the
number of atoms. Employing this technique on
large numbers of particles requires enormous
simulation time, even on large, dedicated, paral-
lel machines. The direct summation method is
limited to relatively small systems with at most a
few tens of thousands of atoms.

An alternative to direct summation that is
common to MD programs today is to approxi-
mate the Coulomb force by truncating its effect
at a certain radius (typically 12 angstroms or
s0). The force evaluation complexity then grows
only linearly with the size of the system, but ac-
curacy is greatly reduced.

A class of new algorithms developed over the

Figure 5. Multipole-accelerated algorithms allow a
particle P in the central black box to interact with
distant boxes (shaded) via truncated multipole ex-
pansions. Interactions with particles in nearby
(white) boxes must be calculated individually.

last decade combines the best features of both
methods. The best multipole-accelerated algo-
#ithms and related methods have runtimes that
grow linearly with the size of the system, while
still including contributions from all atoms.
Perhaps the best known of these algorithms is
the fast multipole algorithm of Greengard and
Rokhlin;!'¢ the tree code of Barnes and Hut
shares many features with the FMA.!7

Such algorithms approximate the force that a
group of distant particles exerts on a particle P
by a single function representing the entire dis-
tant group, instead of by having P interact indi-
vidually with each far-away particle (see Figure
5). The multipole-accelerated algorithms, in-
cluding the FMA, use a truncated multipole ex-
pansion to represent the distant group of atoms.

The multipole expansion of a distant group of
particles is given by

oo ] 1Mm

)=y Y ; i CY/"(6,¢), where  (2)
1=0 m=—1 ¥
k o

My =29ipiY1m(ahﬁi) (3)

=]

For a given distant box (shaded box in Figure 5)
containing k particles, the position of the ith
particle is given in spherical coordinates by (p;,
aj, B;). ®(r) represents the aggregate potential
field due to all £ particles at any point r = (7, 6,
¢) outside the given box. The infinite multipole
expansion describes the potential field exactly.
For practical implementations, rigorous error
bounds have been derived to show how the ac-
curacy of the force and potential depend on the
number of terms retained. The series is
summed over the legal values of the order /
(0 <7< o) and degree m (-l < m < ) of the
spherical harmonic function ¥;”(6, ¢).

The various multipole-accelerated algorithms
differ essentially only in the details of determin-
ing which groups of particles are sufficiently
“well separated” to interact via the series ap-
proximation. In most cases, spatial decomposi-
tion is used to separate the simulation region
into increasingly fine subregions; various rules
are used to determine which subregions meet
the “well separated” criteria. Some of the rules
have been shown to result in linear-time algo-
rithms for evaluating the Coulomb force to ar-
bitrarily high accuracy. For all the algorithms,
some particles (typically those in adjacent sub-
regions at the finest level of spatial decomposi-
tion) fail the well-separatedness test; the poten-
tial and forces between these nearby atoms
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are computed explicitly (white boxes in Figure 5).

All of the multipole-accelerated algorithms
are much faster than all-pairs summation. In
Figure 6, which shows uniprocessor timings on
a fast workstation (Hewlett-Packard 735/125),
three algorithmic variants are compared with
direct (all-pairs) summation. The PMTA curve
is for the parallel multipole tree algorithm, a
method very similar to that of Barnes and Hut.
The “enhanced PMTA” hybrid scheme com-
bines features of the FMA and PMTA. These
algorithms are described in more detail else-
where.!” Parameters for the three schemes have
been adjusted to give similar accuracy, five to six
significant figures in computations of potential
and four to five significant figures in force.

We can speed up force evaluations further by
parallelizing the FMA code. The granularity of
the FMA is such that it can run successfully on a
wide range of parallel machine types, from net-
worked workstations to tightly coupled ma-
chines such as the Cray T3D and Kendall
Square KSRI1. Our parallel approach exploits
spatial decomposition, which is an integral part
of the FMA. We have run the code on 128
processors, and scaling indicates that for large
simulations we can use up to 512 processors
with reasonable efficiency.

Using an FFT formulation for the multipole
manipulations further accelerates the potential
and force computations. This approach recog-
nizes that evaluating the appropriate multipole
expansion expressions resembles a convolution
operation on the arrays of coefficients of the ex-
pansions. The curves in Figure 6 reflect this en-
hancement. Additional speed can be had from
observing that the potential (and force) between
groups of particles separated by great distances
changes very slowly with time, while the poten-
tial between relatively nearby groups of parti-
cles changes much faster. This suggests that all
potentials and forces need not be updated at
each time step. An initial implementation of this
“hierarchical time step” idea indicates that it
can save at least an order of magnitude in exe-
cution time.

High-performance implementations

Running simulations of big molecular systems
interacting over long durations with accurately
calculated forces takes a lot of computing
power. Many of the algorithms involved in bio-
molecular modeling are challenging from the
point of view of parallel implementations that
efficiently scale to large parallel machines with
hundreds of processors. We are working on
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some of these challenges in a project we call
NAMD.

Currently available parallel computers with
hundreds of processors provide tens of gigaflops
in performance. Within the next 2 to 3 years,
computers with thousands of microprocessors
may reach teraflops performance. However,
there remain significant hurdles to jump before
this power can be harnessed effectively. A major
one is development of software. Parallel com-
puter architectures are so diverse that programs
written for one machine are not easily ported to
another. Parallel programming is also more dif-
ficult because of issues such as load balancing—
which tasks should be assigned to each proces-
sor; scheduling—the sequence in which a
processor should execute its tasks; and synchro-
nization—how to coordinate the work of the
different processors. Finally, reusing indepen-
dently written modules is difficult because the
module interfaces are too complex in the paral-
lel context.

To ensure that the software we develop for
biomolecular modeling is portable, we are writ-
ing two versions of NAMD, one in Charm++!8
and one in PVM. Charm++, a parallel language
developed at the University of Illinois, is
message-driven, object-oriented, and portable.
Object orientation facilitates the modular devel-
opment of programs for MD while message-
driven execution boosts efficiency by automati-
cally adapting the runtime schedule to tolerate
communication latencies. PVM, the “parallel
virtual machine,” supports portable message-
passing primitives. It is being used in many ap-
plications, and is a commonly supported system
in new offerings from IBM, DEC, and Cray Re-
search. Using both PVM and Charm++ allows
us to cover a larger set of parallel machines, and
Charm++ provides a greater degree of flexibility
for developing complex algorithms. MPI, the
emerging Message Passing Interface standard,
is likely to subsume the functionality of PVM,

Figure 6. The “en-
hanced PMTA”
multipole-acceler-
ated algorithm
can compute the
interactions be-
tween 100,000
particles in 50 sec-
onds, compared
with about 10,000
seconds for “di-
rect” (all-pairs)
summation, on a
fast workstation.
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Charm

Charm is C with a few syntactic extensions
for parallelism; Charm++ is to Charm as Ca+ is
to C. Programs written with Charm can run ef-
ficiently without change on any MTMD ma-
chine. The system currently runs on the
iPSC/860, Paragon, Ncube/2, CM-5, IBM SP1,
Sequent Symmetry,

MultiMax,
network
workstations. Charm
provides a suite of dy-
namic load-balancing
strategies and five spe-
cific modes of infor-
mation sharing. Each

Scalability guides us:
programs should run on
machines with a few to
a few hundred processors.

Encore
and a
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veloped for Charm.

Charm is a stable, robust system that is being
used for applications such as CFD, VLSI CAD,
and operations research in addition to computer
science. It is particularly useful for our project
because of its support for irregular computa-
tions and modularity. The modularity support is
crucial: modules for various energy calculations,
numerical algorithms, and dynamical schemes
can all be separated cleanly in Charm. Thus we
shall have a test bed in which various pieces, de-
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Figure 7. Message-driven execution greatly speeds
completion time for concurrent reductions. Here
the number of atoms N = 40,960; the array is di-

and if adopted, will be more widely supported
than it is now.

mode is supported by
a uniform set of prim-
itives, which are implemented differently on
different parallel machines. A graphics-based
“expert” performance analysis tool has been de-

Message-driven —o—
Traditional -

T

-O--

2 4 8 16 32
Number of processors

vided into k = 160 partitions.
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veloped relatively independently by different
subgroups, can be plugged in and experimented
with easily.

One useful Charm feature is message-driven
execution: A program consists of many
processes on each processor; each process may
be waiting for more than one message at a time,
and a process is scheduled for execution only
when there is a message for it. This technique
tolerates the communication latency and unpre-
dictability of remote response times. With mes-
sage-driven execution, one can invoke multiple
library modules concurrently on one processor
so that the idle time in one module can be uti-
lized for computations in another. In contrast,
in traditional message-passing programs, such
overlapping often requires breaking the library
abstractions and merging the modules. We re-
cently demonstrated the advantages of message-
driven execution in a “concurrent reduction”
kernel. The example we used is abstracted and
modified from the nonbonded force calculation
in a parallelized version of a molecular mechan-
ics code. Each processor has an array 4 of size
N in which to store forces, where N is the total
number of atoms in the system being simulated.
Each processor is also assigned a subset of pairs
of atoms. The processor computes the forces
between each assigned pair, and adds them to
the forces being accumulated in array A. The
computation thus requires each processor to
compute the values of the elements of its own
array and to compute the global sum of the ar-
rays across all processors. Thus, the ith element
of A on every processor after the operation is
the sum of the /th elements computed by each
processor. Global summing is expensive, partic-
ularly for a large array.

One can divide the array 4 into % parts, and
in a loop, compute each partition and call the
reduction library for each segment separately. A
traditional SPMD (single-program multiple-
data) message-passing program would have to
transfer full control to the reduction library.
Thus the substantial idle time during the reduc-
tion cannot be used effectively. A message-dri-
ven formulation, on the other hand, can start a
reduction for a partition concurrently while it is
computing the next partition. With this strat-
egy, multiple reduction operations overlap with
each other and with computations of later parti-
tions. Figure 7 shows the completion time of
the traditional and message-driven implementa-
tion of this example. Reduction time does not
increase with the number of processors, because
of the pipelining-like effect obtained by mes-
sage-driven execution.
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Parallelization strategies

Even after a parallel algorithm is chosen,
many different parallel implementation strate-
gies are possible. The algorithm specifies the set
of computational actions, while the implemen-
tation strategies involve specifying the data dis-
tribution, assigning computational actions to
processors, and scheduling or sequencing these
actions. These choices have a significant impact
on the performance of a parallel program.

Our choice of parallel algorithms and paral-
lelization strategies is guided by scalability: the
programs should run on machines with a few to
a few hundred processors. Ideally, we should be
able to simulate systems of larger numbers of
atoms in the same amount of wall-clock time
“simply”” by using a proportionately larger
number of processors, so that systems consist-
ing of over a million atoms become as feasible
as systems of a few thousand atoms. Also, mem-
ory scalability should be ensured by keeping the
memory requirements of a processor propor-
tional to the number of atoms per processor.

"Three ways of partitioning work into separate
processes are as follows: a fixed assignment of
atoms to a process, a fixed set of forces to a
process, or a fixed region of space to a process.
‘The last of these we call spatial decomposition,
and on physical grounds it might be expected to
reduce the overall communication load enough
to render the program scalable. This is the de-
composition strategy we have adopted, follow-
ing the example of a molecular dynamics pro-
gram called PMD written by Andreas
Windemuth, now at Columbia University.

For large systems it is appropriate to use
FMA and other tree-structured algorithms.
However, these algorithms have an irregular,
unpredictable structure. Such irregularities can
be handled by using the following mechanisms,
which are available in Charm:

¢ Message-driven execution can be used to tol-
erate latencies and can exploit dynamic sched-
ules that adapt to runtime conditions.

¢ Dynamic load-balancing strategies can deal
with computational loads that change over
time.

¢ Priorities can be used to focus execution on
critical paths.

We should not close without remarking on
another critical component of the biomolecular
modeling enterprise—the hardware. It is diffi-
cult to forecast the shape of large-scale comput-
ing in the future. At present, networked very
high performance workstations are attractive
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both because they are relatively affordable and
because a research group like ours can have ex-
clusive use of the machines and thereby get ex-
cellent performance in terms of wall-clock time.
We are developing the NAMD project, for in-
stance, on a cluster of twelve HP 735/125 work-
stations connected with an ATM, or asynchro-
nous transfer mode, switch. ATM technology is
expected to evolve into a low-cost, high-perfor-
mance protocol because of its wide adoption for
communications.

Tle development of computer technology
has allowed computational chemists and biolo-
gists to understand biochemical processes of in-
creasing size and time scales. Researchers stud-
ied condensed systems of several hundred atoms
in the 1960s, modeled biomolecules with hun-
dreds of atoms in the 1970s, and simulated
biopolymers with several thousand atoms in the
1980s. Each increase in scale opened up qualita-
tively new computational research areas—the
theory of elementary reactions, of liquids and
polymers, of enzyme catalysis. Combining net-
works of workstations and efficient parallel al-
gorithms now lets us model, in the 1990s,
biopolymer systems on a large scale and for long
times. This will open new avenues for research
in molecular biomedicine, namely, the study of
interactions among large biopolymers such as
proteins and DNA. The new research will con-
tribute to our understanding of the molecular
architecture and control of biological cells, and
of disease and its prevention, to a much greater
extent than ever before. ®
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