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A short-time approximation for the evolution of quantum systems governed by a Hamiltonian
with stochastic time dependence is derived. The evolution operator of the system is replaced by
an ensemble of evolution operators with time-independent Hamiltonians, weighted by a
distribution function related to the “line shape function” of a randomly modulated harmonic
oscillator. The approximation conserves the trace of the density matrix and converges to the
exact solution in the case of very slow and in the case of very rapid stochastic modulation. The
approximation is applied to hyperfine-induced singlet-triplet transitions of a biradical-like

system with fluctuating exchange interaction.

1. INTRODUCTION

In this article we consider stochastic quantum systems
described by a Hamiltonian

H@t)=f()D'+ 4", (1.1)

where D’ and 4 ' are time-independent operators, and f(#)
describes random fluctuations. We assume the random pro-
cess f(1) to be stationary, Markovian, and ergodic.! D’ is
assumed to have only two distinct (possibly degenerate)
eigenvalues. 4 ' is an arbitrary operator and does not com-
mute with D’'. The off-diagonal elements of 4’, in a basis
where D' is diagonal, introduce transitions between the ei-
genstates of D' and define the perturbation operator 4, i.e.,
A=A'—diag(41,,43,,...).Systems governed by fluctu-

. ating Hamiltonians like Eq. (1.1) can be described by a sto-
chastic Liouville equation.?* The numerical solution of this
equation, in case that the number of realizations f;, of f(?) is
large [ f(2)e{ £,k = 1,2,...,n} assuming a discrete process],
consumes enormous computational resources and does not
reveal much physical insight.

The stochastic process which we assume to govern the
fluctuations of f(¢) is described by a master equation or by a
Fokker-Planck equation in the case that the realizations of
f(¢) are taken from a discrete or a continuous set, respective-
ly.! In either case the evolution of the stochastic process can
be cast into an equation of the type

3,q(2) =1q(1), (1.2)

where 1 is a matrix (master equation, discrete process) or a
differential operator (Fokker-Planck equation, continuous
process). q represents a vector, ie.,
9" = [¢,(0),9,(1),...,4, (1) ] or a function, i.e., q=g( /1),
which gives the probability that a certain realization of f
occurs at time . Since (1.2) is assumed to describe a station-
ary, ergodic process 1 posesses a unique eigenvector (eigen-
function) to the eigenvalue zero

lp:o’ (1.3)

*) New address: Department of Physics, University of Illinois, 1110 West
Green Street, Urbana, Illinois 61801.
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where p is the equilibrium probability of fand is, like g, either
a vector, i.e., p” = (p},...,P ), OT a function, i.e., p = p(/).

For the time evolution of systems governed by random
Hamiltonians of the particular form of Eq. (1.1) we will
derive an approximation in which the system is described by
an ensemble of time-independent Hamiltonians
H(j) =jD’' + A’ with distribution I( j), jeR. The distribu-
tion function I( j) is related to the line shape function of a
randomly modulated harmonic oscillator.® This “static en-
semble approximation” computationally is more easily man-
agable than the original problem and through J( j) provides
an interesting physical interpretation of the stochastic quan-
tum system. The main features of the approximation are:

(1) The approximation is exact to third order in the per-

turbation operator 4, when the initial density matrix

po = p(t =0) satisfies [D’,p,] =0.

(ii) In the case of very rapid or very slow stochastic

motion the approximation converges to the exact solu-

tion.

(iii) The approximation reproduces the trace of the den-

sity matrix, i.e., total probability, exactly.

The approximation suggested describes the exact evolution
operator for the density matrix to Eq. (1.1) by an infinite
series in the perturbation operator A; the truncation of the
series to third order agrees with the respective truncation of
the exact evolution operator [feature (i)]. The remaining
terms of the series endow the approximation with a physical-
ly reasonable functional form F(A) such that features (ii)
and (iii) hold.

In Sec. II we first expand the exact evolution operator of
the stochastically modulated quantum system in a power
series in the perturbation operator 4. For this purpose we
make use of the superoperator formalism.” We then intro-
duce the approximate (static ensemble) evolution operator
and show its equality with the exact evolution operator up to
third order in the perturbation. We discuss the properties of
the approximation in the limit of very fast and very slow
stochastic modulation. Finally, we investigate in how far the
exact and the approximate evolution operator differ in their
fourth order terms. We restrict our discussion in Sec. II to
the case of a discrete stochastic process, but the approxima-
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tion developed holds also for a continuous stochastic pro-
cess.

In Sec. III we apply the approximation to a physical
system which has been investigated recently in experiment®°
and theory.'®"" This system is similar to the ones investigat-
ed in Refs. 12-15 and involves two doublet (spin 1/2) mole-
cules which are connected through short polymers
~(CH,),-,n = 6,8,9,...,16. The two doublets can exist in ei-
ther a singlet or a triplet overall spin state. The experiment is
capable to prepare through photoinduced electron transfer
the doublet molecules in an initial singlet state. One can also
monitor the subsequent overall spin state because reverse
electron transfer according to the momentaneous spin state
selects a product spin multiplicity (singlet or triplet) which
can be identified spectroscopically. The dynamics of the
doublet molecules, i.e., the dynamics of a pair of two electron
spins, is governed by hyperfine interactions, which induce
singlet—triplet transitions on a nanosecond time scale, and by
Zeeman interaction with an external magnetic field. These
two interactions are time independent and define the opera-
tor 4’ above. A third interaction, the exchange interaction
between the doublet molecules, which energetically sepa-
rates singlet and triplet states, is time dependent and must be
considered a random variable, defining the term f(z)D’
above. The likely reason for the random fluctuations of the
exchange interaction is that this interaction depends on the
distance between the doublet molecules and that this dis-
tance varies through the random folding motion of the poly-
mer segment —(CH,),—. It has been argued that the ex-
change interaction might also be mediated through the
polymer (superexchange) in which case torsional motions
around the polymer bonds lead to random fluctuations. ¢

The exchange interaction provides actually the domi-
nant contribution to the spin Hamiltonian and, therefore,
folding or torsional motion exerts a strong influence on the
observed spin dynamics. This has been shown in Refs. 8-11.
For the sake of demonstration we will study in this paper
only a simple model of such spin dynamics in which the
exchange interaction assumes six distinct values between
which the system undergoes Markovian transitions. Our
treatment does not rely on the mechanism of the exchange
interaction, i.e., “through space”, solvent-mediated “super-
exchange” or bridge-mediated superexchange.

il. THEORY.
A. Preliminaries

The evolution of the quantum system of interest in the
Hilbert space Q spanned by the quantum states is governed
by the stochastic Hamiltonian H(¢) defined in Eq. (1.1) and
is described by the solution of the Liouville equation

d,p = H*(1)p, (2.1)

where p is the density operator. H * is the so-called supero-
perator’ associated with the Hamiltonian H and is defined
through

H = [Hp]. (2.2)

H *is an operator which acts on elements of a space denoted
by % the latter is the space spanned by the operators acting

on elements of 2. (We will usein the following the phrase “O
is an operator acting in the space S’ when O acts on elements
of §.) H”* acts, e.g., on the density operator p. The matrix
element of H * coupling the matrix elements p; and p,, of the
density operator has to be labeled by four indices and is

i = Hy 6y — Hyby. (2.3)

The time dependence of the Hamiltonian H(¢) is due to
arandom process of the scalar variable f(¢) with realizations
Ji from the set { £;, f5...., £, }. To the stochastic states labeled
by the index k,k = 1,...,n, correspond different realizations
H, of the Hamiltonian

H,=fD'+4" (2.4)
Random transitions between states k and / switch the Hamil-
tonian from H, to H,. This stochastic process is described by
the master equation (1.2) where g is an element of the proba-
bility space X spanned by the realizations of the stochastic
variable and where the master operator I acts in 3.

It is well known that the time dependence of the Hamil-
tonian makes a solution of Eq. (2.1) cumbersome. A time-
independent Liouville equation can be achieved'” by extend-
ing the space in which Eq. (2.1) holds to the product space
)" ® 2 (asstated above, *is the space spanned by the quan-
tum mechanical operators and = is the space spanned by the
stochastic states). The density matrix in this space is de-
noted by a vector p with n elements p, .k = 1,...,n, which are
density matrices acting in the space () of quantum states.
The index & refers to stochastic states. p obeys the stochastic
Liouville equation (SLE)

dp=(—iH*+L)p. (2.5)

The operators acting in the space * ® = are denoted by
uppercase, bold symbols. (Lowercase bold symbols, e.g., 1,
denote operators acting in 2, upper case symbols, e.g., H,,
denote operators acting in £ and uppercase symbols with
superscript x, e.g., H *, denote operators acting in Q*.) H” is
defined by the following block-diagonal matrix of supero-
perators associated with the Hamiltonians H,

HY
(2.6)

L is the Cartesian product of the identity superoperator 1%,
acting in 0%, and of 1, acting in 3.
Equation (2.5) has the formal solution

plz] =exp[( —H*+ L)t ]p,, (2.7)

where p, = p[# = 0]. The discussion in the following will be
in the Laplace domain since in this domain a power series
expansion can be done more conveniently. Equation (2.7)
reads after Laplace transformation

p(s) = (s+iH*—L) 'p,. (2.8)

Here and in the following, we denote by curved brackets,
e.g8., p(s), operators in the Laplace domain, and by square
brackets, e.g., p[¢], operators in the time domain.® The en-
semble-averaged density matrix p(s) we seek is
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n
p(s) =(p(s)) = Y pi(s). (2.9)
k=1

In case of identical quantum mechanical initial conditions in
all stochastic states, i.e., in case there exists a single density
matrix p, defined in Q withp, [t = 0] = p,,k = 1,...,n,and a
population of the stochastic states according to their equilib-
rium probability, p, can be written as the product |0)p,,
where |0) = 1* ® p with p determined by Eq. (1.3). We also
define the element k with respect to the basis of the stochas-
tic states in 2: |0), = 1"p;,k = 1,...,n. The summation in
Eq. (2.9) over all stochastic states can be expressed by
(0|p(s), where (0| = 1”@ e,e = (1,1,...) denoting the left ei-
genvector of 1 to the eigenvalue zero. With these definitions
the equation for the ensemble averaged density matrix p(s)
reads ’

p(s) = (0|[s + /H* — L] ~'|0)p,. (2.10)

B. Definition of the relevant propagator (/(s)

For a substitution of the ensemble-averaged propagator
(0|[s + H*—L]~'|0) in Eq. (2.10) by an approximate
propagator we decompose the superoperator associated with
the Hamiltonian into its diagonal and off-diagonal part. We
choose the basis in a way that the stochastic part f(#)D’ of
the Hamiltonian H in Eq. (1.1) and the initial density matrix
Po are simultaneously diagonal. This is possible since we re-
quired [D’,p,] = 0. The diagonal part D *is defined in terms
of D'*and 4 "* by

D:uuu =Al’lﬁllv +D;‘:uvf(t)' (2'11)

The off-diagonal part 4 *is not modulated stochastically and
is the off-diagonal part of 4 ' in this basis

uFu'Vo#v'. (2.12)

4 ivu’v’ = :J:u’uf ’
A4 * induces transitions between the eigenstates of D * and is
the perturbation operator. For a power series expansion of
the propagator in the perturbation 4 * we write H* in the
form

H*=D*4+ 4"~ (2.13)
The parameter A will be used to count the order in 4 * and
will be set to one afterwards.

We are interested in the occupation probabilities of the
quantum mechanical states and, thus, need only the diag-
onal part of the density matrix p. The operator P* projecting
onto the relevant part of the density matrix p is defined by'®
P’p = diag(p,,,0525--sP mm ) Wherem = dim(2) is the num-
ber of quantum states. For P* holds P*P* = P*. For every
superoperator H * associated to a Hamiltonian H holds

P*H*P* =0, (2.14)
J

U*(s) =s"'P*— A%~ 2P*(0|A*[s + iD* — L] ~ 'A*|0)P*

and, in particular, for the diagonal part D7,

P*D*=D*P*=0. (2.15)
Since p, is diagonal in our basis we have
P*py = po. (2.16)

Hence the propagator of interest U *(s), which determines
the relevant part P*p(s) of the density matrix, according to

Eq. (2.10) is

U*(s) = P*(0|[s + H*—L] ~'|0)P* (2.17)

C. Expansion of (/(s)

To evaluate Eq. (2.17) we write the resolvent in the
form
[s+MH*=1]"'=[(s+iD*—L) +ilA%)]
(2.18)
where D* and A* are the extensions of D * and A4 *, acting in

7, to the product space 2”@ 2. A formal expansion of Eq.
(2.18) in a power series in A is

[s+MH*~L]!?
= (s+D*—L)~!
X 3 [(—idA)s+D —L)7]" (219
n=0

In the following we also use P*, the extension of P* to Q*
® 2. To perform the projection and the ensemble average we
make use of the relations

P*(0] = (0[P, |0)P* = P*|0), (2.20)
P(s+D*—L) " '=P*(s—L)",
(s+D*~L)"'"P*=(s— L) 'P*, (2.21)
(Oj(s—L)~"'= (057,

(s—L)7'0) =s""0). (2.22)

With Eq. (2.21) we obtain (note that the term linear in A
does not contribute since P*A*P* = 0)

P*[s +iH* - L] ~'P*
=(=D7P{1+ 3 [(~ AN +D*~1)~']"

n= |
X (— il A5 )P*(s—L)"'}
and on account of Egs. (2.17), (2.20), and (2.22),

(2.23)

U*(s) =s~'P={1+ (0| 3 [(—iA A%

n=1

X (s + D*—L)~']"( — il A%)|0)P s~}
(2.24)

Explicitly stating the terms up to order A ? yields

+ iA3s~?P*(0|A*(s + iD* — L) ~'A*(s + iD* — L) ~'A*|0) P*

+s~2P*(0| i (—id)"*'[A%(s + iD*— L)~ ']"A%|0) P~

n=23

(2.25)
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The fact that the off-diagonal part 4 * is identical in all stochastic states implies

A*|0) ={0)4% (O]A*=A4*(0|
and, therefore, we can rewrite Eq. (2.25) in the form

(2.26)

U*(s) =s~'P*— A%~ 2P*4 *(0|[s + iD* — L] ~'|0)4 *P*

+iA32P*4*(0|(s + D" — L) 'A*(s + iD* — L) ~'|0)4 *P* + O(4*).

In the following we evaluate the expansion (2.27)
further and demonstrate in how far the assumption of only
two distinct eigenvalues of D’ simplifies the propagator
U*(s) up to order A °.

D. Expressing the second order term of /(s) through
Kubo’s line shape function

We examine the expression
D*(s) = (0|[s + D*=L]~'0) occuring in Eq. (2.27)
with a prefactor A 2. D*(s) is a diagonal superoperator de-
fined in Q™. Since L is diagonal with respect to the elements
of Q* the resolvent [s+ /D*— L]~ is represented by a
block-diagonal matrix, with a block [s + id,, —1] ' forev-
ery diagonal element D}, of D *. The blocks describe oper-

ators acting in X. The matrix d,, is diagonal in £ and defined
by

X
wvuv, ki

= (A l’lf)uu + Dlll.:uufk )6kl'

duv,k! =

(2.28)

The indices u,v refer to quantum states in 2, the indices &,/
refer to stochastic states in =. The decomposition- of
[s + /D* — L] ! into the above block-diagonal matrix im-
plies that each diagonal element wvuv of D*(s) can be ex-
pressed by

D%, (5) = (O[5 + id,, —1]7'|0) ., (2.29)

where Io)uv,k =pk1§vuv = Prs and wu,k (OI = I:vuv =1 In
the following we will suppress the index wv of ,, (0| and of
|0),, since the reduction to a particular element uv is ob-
vious from the appearance of d,,, .

The expression (0|[s + id,, —1] ~'|0) can be written
by means of Kubo’s line shape function of an oscillator with
random frequency modulation®®

O|[s+id,, —1]17'[0) =fw do I, (0)(s+iw)™"
- (2.30)

with the line shape function /,, () given by

I, (o) =—}T—Re(0|[id,w —w)=1]7"0). (231

The approximation suggested in this paper tests on the
fact that the stochastic quantum system considered (D " hav-
ing only two distinct eigenvalues) can actually be described
by a single distribution rather than a set of distributions [one
distribution 7, (w) for each element of D *], as Eqgs. (2.30)
and (2.31) seem to suggest. To show this we denote the two
different eigenvaluesof D ‘by D {, D 5. Since D ' isdiagonal in

(2.27)

our basis, a particular element D |, can assume the value D |
or D ; With this definition the elements of d,, read
Aok =A iy + (D, — D)

=40, +A8,D7—~D3)f, (2.32)
where A, assumes one of the three values — 1,0, or 1, since
the difference (D, —D,,) canbe — (D] —-D3), 0, or
(D} —Dj). We can assume (D] —D;) =1 since this
term can be absorbed by a transformation of the stochastic
variable f(r) —»}”(t) =f(#)(D; — D}). The constant part
Ak ofd,, canbeseparated from the distribution 7, () by

shift of the variable.
For A,, = 4 1 we obtain, after a variable transforma-

tionw=jA,, +4.,.,

Do () = f GIG) [ + i(A e +7A0) ]

[ @t +.01 e

with -
1() = %Re(O[[i(f——j) —11-'0), (2.34)
where d,,()=A4, +jA,,. f is the matrix

f = diag(f,/5,--.f, ) and acts in =. For A, = 0 follows from
Egs. (2.28) and (2.29) D3,,,(s) = [s +i4 %, ] ™" Equa-
tion (2.33) holds also in this case, since the distribution 7(j)
as defined in Eq. (2.33) is normalized,

f dl(j) =1. (2.35)
Hence, with the definition
‘D:qu (i) =A l’lﬁuv +jAllU (2‘36)

we obtain for D *(s),

(O[[s+z‘D"—-L]"|0)=f GI() [s + iD*() 1.
- (2.37)

E. Expressing the third order term of {*{(s) through
Kubo’s line shape function '

Next we examine the operator
A*(s) = (0|[s + iD* — L]~ 'A*[s + /D* — L] ~'|0) which
actsin Q*and occurs with a prefactor A *in Eq. (2.27). Since
for the superoperator 4 *in Q*holds 4,,,,,, = Oforu # u' A
v # v', the number of possible combinations of indices for
nonvanishing elements of A*(s) is limited to two: (i)
Ax . (s)and (ii) 4%, (s). As before we make use of the
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fact that the matrix [s 4+ /D*— L]~ is represented by a
block-diagonal matrix with blocks [s + id,, —1] ™', where
we defined,, =45, + fA,,. This and the fact, that A” re-
duced to the space 2 is the identity operator acting in =
implies that the nonvanishing elements of A*(s) canbe rep-
resented by

(i) (O|[s +id,, —1] 7' [s+id,, —1]7'|0)4 ;s>

(i) (O [s + id,, — 1]~ [s + id,, —1] 71OV 4 5u-

We will discuss only the term (i) since equivalent argu-
ments hold for (ii). From the definition of A, in Eq. (2.32)
follows that neither A, nor A, can have a sign different
from A,,. One can conclude that expressions with different
signs of A do not occur in 4 *(s). In the following we use
again the definition d,, (j) = AL, +JjA,,. In the case
A, =4, =0Eq. (2.35) implies
O|[s + id,, —1]""[s+id,, —1]7'0)

7 @1 [s+idu )] [+ iduw D]
o (2.38)
In the case A,, #0 A A, = 0 one can simplify
(O|[s + id,, —1]'[s+id,, —1]7'|0)
= (Ol + iy —1]7'[0) [+ id e ]
that is,
O|[s+id,, —1]""'[s+d, —1]7'0)

=f GG [5 + iy (D] 7[5+ iduy (D]~ (2.39)

Equation (2.39) holds obviously also in the case
A, =0A A, #0. Tostudy thecase A,, = A,, #0 wein-
vestigate the back transformation of
g(s) = (O|[s+dd,, —1]"'[s+id,, —1]7'|0) into the
time domain. By means of the convolution theorem one finds

g[t]=J;dt’(Olexp[(-—z‘d,,.,-‘rl)(t-—t’)]

X [( = id,y —1)2']]0)

U*(s) = P*(0|[s + iH* — L] ~!|0) P*

R. Bittl and K. Schulten: Stochastically modulated systems

from which follows by means of

4 X ’x
duv’ - duv =4 w'u’ 4 uouv?

glt] = (Olexp[( —dd,, +l)t]10)£dt’
Xexp[ —i(4 Guy — A4 5wt ]- (2.40)
Equations (2.29) and (2.33) in the time domain yield
str)= [ girespl —idn ][ ar
Xexp[ —i(d Gy — A 5]

from which follows by means of

A ;ﬁ’uu’ -4 ;)l:uu = duu’ (]) - duv (l)’

glr] =f_: de(i)J:dt'

Xexp[ —id,,(j)(t —t')]Jexp[ —id,, ()t'].

(2.41)
In the Laplace domain this reads
(O|[s +id,, —1] -1 [s+d,, —1] ~10)
[ @I+ du ) s+ i ]
(2.42)

Thus, on account of Eqs_. (2.38), (2.39) and (2.42) all possi-
ble matrix elements of 4 *(s) can be expressed in the form

(0|[s + iD* — L] ~'A*[s + iD* — L] ~'|0)
=fw dil()[s +iD*(N]1~'A*[s+iD*(H] "
o (2.43)

Equations (2.37) and (2.43) allow us to represent final-
ly U*(s) uptoorder A > by means of a single distribution I(j),

=s"1P*—A%~2pY XJ diIG) [s + iD*(j)]~'4*P*

+iA3s™2P*4 *Jm diIG) [s +iD*()] A *[s + iD*(j)] ~'A*P* + O(A*).

F. Definition of approximate propagator {#(s) and proof
of agreement with {(s) up to third order

We want to demonstrate now that the exact evolution
operator (2.17) can be approximated by an evolution opera-
tor U*(s) which is an ensemble average of propagators cor-
responding to time-independent Hamiltonians
H(j) =jD'+ A’', namely

(2.44)

U*(s) = fw diIGYP*[s + iH ()] P~ (2.45)

With the definitions (2‘1123 (2.12) and (2.36) for D*(j)
and 4 * the approximation U *(s) can be written

U*(s) = P*fw dji IG) (s + i[D*() + A1}~ 'P~,
- (2.46)
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To show that U*(s) is identical with  the exact propagator U*(s) up to third order in 4 * we insert in Eq. (2.46) like in Eq.
(2.13) the parameter A, and expand U *(s) in a power series in A4 *. Applying the expansion (2.19) to Eq. (2.46) we obtain

T*(s) =P‘J. dj IG){s + i[D*(j) + A4*]}"'P*

| =p*r G IG) s +iD*(D]1~* 3 {(— 4™ [s +D*()]~"}P*
- n=0

=s"'P*—A%~2P*4* | djIG)[s+iD*()]~'4*P*

= 00

+iA%~2P*4 *f diIG) [s + iD*() 1 A *[s + iD*() ] ~'4*P*

@

+ 572

— ® n=3

Comparing this expansion with the expansion of U*(s) as
given by Eq. (2.44) shows that U*(s) and U*(s) are identi-
cal up to third order in 4 *. This implies that U*is a short-
time approximation, the time scale being defined by the off-
diagonal elements of 4’ in Eq. (1.1).

The approximation U *(s) as given by Eq. (2.46) can be
extended to a continuous stochastic process f(¢) in which
case the discrete stochastic operators 1L are replaced by dif-
ferential operators /(f),L(f). The vector p of density matri-
ces is replaced by a distribution p(H, eg,
po = |0)po— 17 p(f)p,, and the sum over all stochastic states
by (O|p is replaced by an integral j{{ dfp(f).

G. (7 converges to U~ in case of fast and slow
stochastic modulation of H(f)

In case of extremely fast stochastic modulation the spec-

trum I(j) of the stochastically modulated parameter f(n)
approaches a delta function®' at the mean value
(Y =251 pufi of (1), ie, I()) =60 — {f)). In this so-
called motional narrowing limit the approximation (2.46)
yields

U*(s) = P*{s+i[D*({(f)) + 4] 'P*

=P*[s+i({fYD*+A4)]"'P* (2.48)

=P*[s+i(H*)]7'P%,

where (H*) =3k="p, H = (f)D'*+ A'* is the supero-
perator corresponding to the average Hamiltonian. Equa-
tion (2.48) according to Ref. 22 is also the asymptotic form
of U*(s).

For vanishing stochastic motion as shown by Ku-
bo®21](j) is the equilibrium distribution of f(7) defined by
Eq. (1.3),i.e, I(j) = 2] P60 —£,). Hence, U*(s) isin
this limit

Uxs)= Y pUi(s), (2.49)

k=1
where U5 (s) = P*[s+ iH}]~'P* According to Ref. 22
the exact propagator U*(s) in this limit is also given by Eq.
(2.49).

dj I(j) i (—id)"*+ P [A*[s +iD*()] ~']"4 *P*.

(2.47)

H. U” conserves the trace of the density matrix

The evolution operator U * defined by Eq. (2.45) reads
in the time domain

U*[t]= r dji I()P* exp[ — iH*()t 1P*. (2.50)

This is the time evolution operator for the relevant part
P*p[t)P* of a density matrix p[f] obeying the Liouville
equation

a1 =—i [ GIQHGBL).

From Egs. (2.2), (2.35), and (2.51) one can conclude that
the approximation U*[7 ] conserves the trace of the density
matrix, i.e., tr p[£] = tr p[z = 0]. Hence, with p[0] = p[0]
the approximation U*[¢] reproduces the trace of the exact
density matrix at all times.

(2.51)

. lllustration in how far {(s) and U(s) deviate in fourth
order

To illustrate in how far the approximation U*(s) devi-
ates in order A ¢ from the exact solution U *(s) we consider a
special form of the stochastic operator 1. The 1 considered
describes what is called the Kubo-Anderson process
(KAP),? the strong collision approximation,™ or equiv-
alently, the random phase approximation.?” This process, a
particular realization of a stationary, Markovian, and ergo-
dic random process, is characterized by a time scale 7 and
assumes that for any stochastic state |k) with (0]k) =1
holds

k) =77"[|0) — |)].
This leads to
exp(lt)|k) = |0) + exp( — 0k — 0],

[s—17"k) =s7"10) + [s+ 717 "[[&) — [O].
(2.53)

For the intended illustration it suffices to consider only a
particular contribution to the fourth order term in Eq.
(2.25):

(O[5 + idyy — 1]~ "4 [s + i, =117
XA %[5 + id,, —1]710).

(2.52)

(2.54)
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We will further assume A, = 0. Inserting theidentity2 ., |k) (k | and suppressing the constants A%

R. Bitt! and K. Schulten: Stochastically modulated systems

* up ONE CAn write

S (0| [5 + idy, —1] " [5 + iy —1] 1K) k|5 + id,, —1]7']0)
k=1

2 O|[s+id,, — 1] "M{[s+id 5. ]7'0) + [s+id uw + 77 k) —
—[s+id 5 + 7117 HO| [s + id,, —117'0)

(0|[s+ld,,,, —l]—l|0){[s+lA w'w' ]

|0)1}(k |[s + id,, —1]'|0)

+ (O[s+ iy, = 1] ™" [s+ 4y +77'] 7 [s + iduy —1]77]0)
f dhf(h)f djp 1G2) [ + i, ()] 7' [s + iduy ) ] 7[5+ 1A Gy ™) =[5+ i i +77171}

+f GIG) [s + idy (D] 7 [+ A s + 77 7 [s+ i (D]

The corresponding term in expansion (2.47) of U * reads

f GIG) 5+ idu (][5 + A ]~

X [s+id, (1" (2.56)
Comparing Egs. (2.55) and (2.56) one finds that the ap-
proximation U *(s) does not include the double integral over
Jrandj,in Eq. (2.55). This double integral arises from jumps
between stochastic states while A,,, = 0. Theintegral (2.56)
contains only paths with the same stochastic state |k) at the
begin and end of A,, =0. The expressions (2.55) and
(2.56) differ further in the single integral over j. Whilein Eq.
(2.55) the integrand explicitly depends on the time scale 7 of
the stochastic process, in Eq. (2.56) the integrand depends
on 7 only implicitly through I(j).

lll. APPLICATION

In this chapter we demonstrate the application of the
approximation U*(s) to the case of a pair of doublet mole-
cules with a stochastic modulation of exchange interactions
involving six different realizations.?® The spin dynamics of
this system is governed by the Hamiltonian H(see Refs. 26
and 27),

H(t)=H,+H,+J()(Qr —
H =al-S, +BS,;,, i=1,.2,
J(e(Jk = 1,...,6},

Or=3+5S,S,, Os=1— S,'S,.

Os)s

3.1

H, describes the hyperfine interaction of the electron spin S,
on molecule / with a single nuclear spin 1/2 described by I,
and with the magnetic field B (Zeeman interaction). We
assume that on each molecule only a single nuclear spin in-
teracts with the electron spin. The constants a; account for
the strength of the hyperfine coupling between S, and I,. We
assume values a,=11 G and a;=37 G. The term
J(t)(Qr — Qg) describes the randomly modulated ex-
change interaction. Q5 and Q are the projections onto the
electronic singlet and triplet states. D ' defined in Eq. (1.1) is

(2.55)

in this case D’ = Q@ — Qs. The time-independent operators
H, and H, in the Hamiltonian yield the operator 4 ' of Eq.
(1.1),i.e.,4' = H, + H,. The Zeeman part of H, is diagonal
in the same basis as the projectors @ and Qg and, thus,
contributes to the diagonal operator D defined in Sec. I1. The
hyperfine part of H; contributes to the off-diagonal operator
A and induces transitions between singlet and triplet states.
The observable which we consider for the system governed
by Eq. (3.1) is the magnetic field-dependent triplet yield®®
@, (B) = tr[sQ;U*(s)p,] where s is determine by the life-
time 7, of the doublet pair, i.e., s = 75 ".

Our approximation can be applied to this system, since
the doublet pair is prepared in a pure singlet state, i.e., the
initial density matrix p, = Qs/tr(Qs) commutes with the
stochastically time-dependent part of the Hamiltonian
J(1)(Qr — Qs), and since D' = Q@ — Qs has only two
eigenvalues, namely + 1 for triplet states and — 1 for sing-

let states.
The randomly modulated exchange interaction in our

model system leads to a time-dependent (fluctuating) ener-
gy separation 2J(7) between the triplet states and the singlet
state. The approximation derived in Sec. II represents this
fluctuating separation by a static distribution /(;) of separa-
tions 2j. Application of Eq. (2.34) to the present case yields

10) =%Re(0|[2f(J —j)—1""o,

J = diag(J,,J5,---s/)- (3.2)
The function I(j) can be interpreted as the “spectrum of
exchange interactions” which the electron spins experience
due to random jumps between the six possible values J,.. 1(j)
depends on the transition operator 1 and, hence, on the sto-
chastic dynamics of J(¢). This dependence will be discussed
now.

We assume that the stochastic jumps between the real-
izations of the exchange interaction J, take place only
between nearest neighbors J,,J, ., (birth—death process).
Assuming equal equilibrium probabilities of the states corre-
sponding to each J, the stochastic operator I has the form
(only nonvanishing matrix elements are presented)
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=771 . . . , (3.3)
1 -2 1
1 -1
where 7 denotes the mean time interval between two succe-
sive jumps. To obtain the spectrum I(j) one first solves the
tridiagonal linear system

T T T T
- (a) A
s i
L
-
ES
B
E - 4
2
k)
-100. 400.
exchange interaction j/Gauss
T T T T
L () A
s i
£
b
3
2
E - -
2
°
l 1 l 4
-100. 0. 100. 200. 300. 400.
exchange interaction j/Gauss
{ T T 1
f (C) -
= 4
2
-l
]
=
.l: - -
]
°
1 i
-100. 0. 100. 200. 300. 400.

exchange interaction j/Gauss

FIG. 1. Distribution of singlet-triplet energy differences 2; as given by the
function I(j) of Eq. (3.2). The system can exist in six different states & to
which correspond six differént exchange interactions J,: 0, 60, 120, 180,
240, and 300 G. Three different first order transfer rate constants 7~ ' had
been assumed: (2) 10~ 2ns™ % (b) Ins™'; (¢) 1072 ns™".

[2i(3 —j) —1]|x) = |0)
and evaluates I(j) = (2/7)Re(0|x), where |0) and (0] are

defined as in Sec. II D.
Figure 1 shows the spectrum of exchange interactions

I(). for J, =0, 60, 120, 180, 240, and 300 G and for
7=10%ns [Fig. 1(a)], for 7=1 ns [Fig. 1(b)], and for
7=10"? ns [Fig. 1(c)]. The shape of the spectrum I(j)
depends sensitively on the ratio of the jump frequency 7~ to
the frequency differences implied by J, — J, . ,. The differ-
ence between the exchange interactions J,, is AJ =60 G.
This corresponds to a frequency difference of about 2 ns™*.
For slow jumps characterized by 7= 10? ns the ratio
77 1/AJ is very small. In this case I(j) shows peaks centered
at the values J, [see Fig. 1(a)]. An intermediate jump rate
7 = 1 nsleads to a spectrum /(j) smeared out over the whole
range of possible J, values [see Fig. 1(b)]. For fast jumps
characterized by 7 = 10~2 ns the ratio 7~ !/AJ is very large
and I(j) peaks at the average J value (J ) = (1/6)Z% _,J,
[see Fig. 1(c)]. The rate 7 = 10~ ? nsis not large enough yet
to make I(j) collapse to a § function as described in Sec. II G
for the motional narrowing limit. _

To demonstrate the accuracy of the approximation U*,
based on the distribution of exchange interactions I(j) given
by Eq. (3.2), we compare the exact triplet yield @ - (B) with
the approximation ®;(B) = tr[75 'Q-U*(75" ")p,]. The
approximation U~ implies that the quantum system with
stochastically modulated Hamiltonian H(¢) evolves like an
ensemble of quantum systems with time-independent Ham-
iltonians H(j) =H, + H, +j(Qr — @s) when the ex-
change interaction j is distributed according to I(j). The ap-
proximation holds only to third order in 4 *r,. This follows
from

U*(15 ") = 7P*(0|[1 + iTo@" + A*) — 7L] ~'|0)P*.
The time scale associated with 4 * for the example consid-
ered is given by the hyperfine coupling constants a; and is
@~ '=1.5 ns, i.e., the approximation holds to order (7,/1.5
ns)>. In Figs. 2 and 3 we compare ®,(B) and ®,(B) for
lifetimes 7, smaller and larger than 1.5 ns, respectively.

For a short lifetime 7, = 1 ns, i.e., 7@ =~ 2/3, the approx-
imation agrees well with the exact solution as shown in Fig.
2. The exact solution denoted by X in Fig. 2, obtained by

0.08

0.08

0.04

triplet yield ¢4(B)

0.02

0.00 L
0. 100. 200. 300. 400. 500.
magnetic field B / Gauss
FIG. 2. Magnetic field dependence of the triplet yield ®,.(B) for the sto-
chastic quantum system of Fig. 1(c) evaluated by simulation ( X X X and
evaluated by the approximation (2.45) (—). The assumed lifetime 7, is 1
ns.
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Monte Carlo integration,'® shows the characteristic fluctu-
ations of the Monte Carlo method. For a long lifetime
7o = 10 ns, i.e., 7,@=7, the case shown in Fig. 3, one ob-
serves a systematic deviation between approximation and
exact solution.

However, the approximation agrees qualitatively with
the exact solution. The triplet yield ® . (B) as well as @ . (B)
exhibit a maximum at the magnetic field B,,,, =300 G, i.e.,
at a field for which the singlet state and the triplet state 7_,
are degenerate in the case of the most probable exchange
interaction J,,,, = 150 G in the static ensemble. Further
agreement between @ (B) and ¢ - (B) can be demonstrated
by inspecting other characteristics of the magnetic field de-
pendence of the triplet yield. The first characteristic consid-
ered is the ratio R = ®,(B,,,, )/P,(0), the second charac-
teristic is the width B,, defined by
D (Bpax — By) = [P (B ) + ©£(0)]/2. In Fig. 3 the
ratio  ®,(B,.)/P(0) is about 7, whereas
D, (B, )/ P (0) is about 10. B, for ®, as well as P is
about 70 G. This implies that the qualitative magnetic field
dependence of the triplet yield is described well by means of
the spectrum I(j) of exchange interactions even in the case of
a long lifetime of the doublet pair.

In Ref. 11 the authors have shown that the magnetic
field dependence of the triplet yield as observed in Refs. 8
and 9 for doublet pairs linked by aliphatic chains —-(CH,), -
with n = 8,9,10 can be explained by an analysis of the spec-

trum I(j) of exchange interactions. Since the lifetime 7, of -

the doublet pairs investigated in Refs. 8 and 9 is, according to
Ref. 9, greater than 10 ns, the static ensemble approximation
does not give quantitatively correct results. However, com-
paring the triplet yield, obtained for this system by a numeri-
cal solution of the SLE (2.8), with the spectrum of the ex-
change interaction I(j), the authors showed in Ref. 11 that
the magnetic field dependence of the triplet yield can be de-
scribed well, as in the example given above, by means of the
spectrum /(j). It has been found that the magnetic field B,,,,
at which the triplet yield assumes a maximum and the ex-

0.25 T T T T

020 . E

0.10

triplet yield &(B)

0.05

0.00 | 1 - 1 3
0. 100. 200. 300. 400. 500.

magnetic field B / Gauss

FIG. 3. Demonstration of the error connected with the approximation
(2.45): The diagram shows the magnetic field dependence of the triplet
yield @, (B) as evaluated by a simulation ( X X X ) and by the approxima-
tion (—) for a long lifetime, i.e., 7, = 10 ns.

change interaction J,,,, with highest probability 7(;) are re-
lated by B, ., =2J,...,. The values R and B, for ¥, defined
above, show the same dependence on the length » of the
aliphatic chain —(CH,),— as the corresponding quantities
for the spectrum I(j), e.g., R; = I(J,,,, )/1(0). This implies
that the spectrum of exchange interactions 7(j) qualitatively
describes the magnetic field dependence of the triplet yield
and, thus, the physically interesting dynamics of this sto-
chastic quantum system.

IV. SUMMARY

In this paper we have introduced a static ensemble ap-
proximation for a stochastically modulated quantum sys-
tem. The stochastically modulated part of the Hamiltonian
is assumed to be represented by the product of a randomly
modulated scalar function and a quantum mechanical oper-
ator with only two distinct eigenvalues. A time-independent
perturbation induces transitions between the initially occu-
pied eigenstates of the randomly modulated part of the Ham-
iltonian. The suggested approximation replaces the random-
ly modulated Hamiltonian of the system by a distribution of
time-independent Hamiltonians. The distribution of the
time-independent Hamiltonians has been derived. We have
shown that the static ensemble approximation is exact up to
third order in the perturbation operator and, thus, is a short
time approximation. The approximation, however, involves

“ an infinite series in the perturbation operator such that the

limits of very slow and of very fast stochastic modulation as
well as the trace of the density matrix are described exactly.
The distribution of the time-independent Hamiltonians can
be obtained easily and describes the evolution of the stochas-
tic quantum system qualitatively well, even over longer
times.
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