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The magnetic field dependence of the triplet yield of biradicals of the type 2A*—(CH,),-2D~ has been calculated for three
different lengths n=8, 9, and 10 of the linking aliphatic chain. The calculations are based on the solution of the stochastic Liouville
equation under the assumption of a “through space” exchange interaction and compare well with experimental observations. We
show that the field dependence of the triplet yield is governed by the “spectrum of the exchange interaction”.

1. Introduction

In a previous paper [1] we have shown, following
work by de Kanter et al. [2], that the magnetic field
dependence of the triplet yield in biradical photoin-
duced electron transfer [3,4] can be explained
through a stochastic folding motion of the polymeth-
ylene chain linking the intermediate radicals. The re-
action observed in refs. [3,4] follows the reaction
scheme

hy
'A*—(CH,),—'D  «— 'A—(CH,),—'D

magnetic

'(’A~—(CH,),—’D*) *(*A-—(CH,),—’D*)

interactions
ks kr
'A—( CH,),—'D 3A*—( CH,),—'D.

(D)

'A and 'D denote the electron acceptor (pyrene) and
donor (dimethylaniline) in their electronic ground
state. After excitation by a nanosecond laser flash
these molecules transfer an electron and, thereby, be-
come radical ions 2A* and 2D~ each carrying an un-
paired electron spin. The two electron spins are
initially in an overall singlet state !(*A--
(CH,),-*D"). Magnetic perturbations reorient the
spins and induce the formation of an overall triplet

state *(2A~-(CH,),-2D™). The electron can return
by jumping from 2A- back to D*. Energetically
there are two routes open: the electron jump can
either lead to the singlet ground state 'A-(CH),-'D
or to the triplet excited state >A*~(CH,),.-'D. Which
route is taken depends on the instantaneous overall
spin state of the radical pair, i.e. electron back-trans-
fer from the '(?’A-~(CH,),~2D*) state populates
the singlet ground state, back transfer from the
}(’A~-(CH,),-?D") state populates the triplet ex-
cited state. The triplet excited state 3A* can be mon-
itored spectroscopically.

An important contribution to the observed mag-
netic field effect on the triplet yield is due to an ex-
change interaction between the unpaired electron
spins on ?A* and ?D~. The origin of this interaction
is a matter of dispute: it is either transmitted through
the space (solvent) between the radicals or through
the polymethylene chain [5]. In any case the inter-
action should be stochastically modified through the
folding motion of the polymethylene chain. The aim
of our work [1,6] has been to show that, no matter
what the origin of the exchange interaction, its main
effect can be cast into a single spectral line shape func-
tion which includes both the range of interaction
strengths adopted in the various folding patterns as
well as the stochastic folding dynamics. We have ar-
gued, however, that the spectral line shape function
which explains the observed magnetic field effects
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can be reconciled with “through space” exchange
interaction.

The line shape function desbription is based on the
“static ensemble approximation [1,6] for the sto-
chastic quantum system. This approximation strictly
holds only for biradical lifetimes shorter than ob-
served. In this Letter we present calculations based
on the solution of the stochabtic Liouville equation
(SLE) which can account for biradical lifetimes con-
sistent with the observations. We want to show that
the new description improves the agreement with the
experimental data [3,4]; however, the “static en-
semble approximation” provides a satisfactory de-
scription as well. We conclq’de, therefore, that an
explanation of the exchangé mechanism of poly-
methylene-linked biradicals should focus on the line
shape function presented in this Letter.

Similar calculations and further experimental in-
vestigations have been completed recently by the
Géttingen group [7].

2. Theory

The spin dynamics of the biradical 2A—-
(CH,),~*D* is described by the stochastic Liouville
equation for the spin density matrix p(t)

dqp()=(—iH*—~k+L)p(2) . (2)

The terms occurring in this; equation will be ex-
plained below. The density matrix p(¢) is.a function
of the electron and nuclear sjpin states, and of the
configuration of the polymethylene chain. H* is the
Liouville operator associated with the Hamiltonian
H. Electron back-transfer is described by the reac-
tion constant k, and L accounts for the stochastic
motion of the polymethylene ichain. The spin Ham-
iltonian H of the biradical system has the form [8]

H=H| +H2 +J(&+2Sl Sz) s
H,=B-S;+Y aylS;, i=1,2.
2 ‘

H; describes the Zeeman interaction of the electron
spin §; with the external magnetic field B, and the
hyperfine coupling of the electron spin S; with the
nuclear spins I;. The constants a; account for the
strength of the hyperfine coubling. For pyrene and
DMA the constants are given for example in ref. [1].
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The exchange interaction J causes a dependence of
the Hamiltonian H on the configuration of the
polymethylene chain. In the following we adopt a
model of an exchange interaction dependent only on
the distance r between the radical ions. This model
has been used by de Kanter et al. [2] to explain the
magnetic field dependence of biradical CIDNP in the
form

J(r)=Jo exp(—ar),
Jo=9.46X10°G, a=2.136A-!. (3)

Since the polymethylene chain undergoes a folding
motion, the distance r is a stochastic variable. The
distribution of end~end distances p(r, ¢) in a “mean
field” description satisfies the Fokker—Planck equa-
tion [9]

o,p(r,t)y=L(r)p(r, 1),
L(r)=D3,po(r) 0,[po(r)]~". 4)

D denotes the effective diffusion coefficient. We have
used D=4x10"% ¢cm?/s in our calculations. This
value is smaller than the relative diffusion coeffi-
cient 4.53X 10~3 cm?/s for pyrene and DMA in ace-
tonitrile [10] and is comparable to the diffusion
coefficient 5X10~-° cm?/s for the restricted diffu-
sion (RD) model of ref. [2] #!. The function py(r)
is the equilibrium distribution of end-end distances.
This distribution is not available from experiments.
We have chosen an analytical function

pO(’)=r2(r—rmax)2exP{_[(r"rl)/’zlz} (5)

that provides a smooth fit to end-end distributions
generated by computer simulation [1]. To model al-
iphatic chains with 8, 9, and 10 —CH,- groups we
used the parameters r,,,, r, and r, as given in table _
1.

3. Solution of the stochastic Liouville equation

The observable reported in refs. {3,4] is the yield
@1 (B) of triplet products >A*. This can be obtained
from the spin density matrix p(¢) by the relation

#! The restricted diffusion (RD) model of ref. [2] is a discreti-
zation of the Fokker-Planck equation (4).
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Table 1

Parameters used in eq. (5) to model the end-end distance distri-
bution py(r) for biradicals linked by polymethylene chains of 8,
9, 10 -CH,~ groups

CHEMICAL PHYSICS LETTERS

n=8 n=9 n=10
Foms 10.5 115 12.5
" 20 25 30
rs 4 5 6
r(B)=k| drtr1Qep(0)] . (6)
0

Under the assumption of a distribution of the
end-end distance r according to the equilibrium dis-
tribution po(r) and identical quantum mechanical
initial conditions p(¢=0) at all end~end distances,
eqs. (6) and (2) lead to

@1 (B) =ktr<QTJdr [k+iH*(r)—L(r)]™!

X po(r) p(O)) . 7
Since H* is real symmetric eq. (7) can be reduced
to a real form. With the definition
Ryj=HYy—H%y , i<kAj>1,
=—(Hyy+Hy;), i>kAj<l,
i>kAj=l, (8)

eq. (7) assumes the form

= _H?kjl ’

¢T(B)=ktr(QTIdr [k+R(r)-L(r)]~"

xpompw)). )

To evaluate (9) we discretized the distribution py(r)
following ref. [2]. Our calculation differed from that
in ref. [2] in which py(r) was divided in segments
of equal probability in that we divided py(r) in seg-
ments of equal width dr. The discretization trans-
forms the differential operator L(r) into a tridiagonal
matrix L'. Eq. (9) then reads

@ (B) =k tr{Qr (0| [k+R-L"]71]0) p(0) ,
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(10)

with |0) and (0] being the right and left eigenvec-
tors of L’ to the eigenvalue zero. The algorithm em-
ployed for the numerical evaluation of (10) was
Gaussian elimination for a block-tridiagonal matrix
[11]. We reduced the dimension of the numerical
problem by taking only one nuclear spin at each rad-
ical site. The hyperfine coupling constants a; have
been adjusted according to

1/2
ai=(§zk:aik1fk(1ik+l)> ; (11)

which gives the correct effective coupling [8].

4. Results and discussion

In a previous paper [12] we presented calculated
triplet yields for biradical systems 2A~-(CH,),-*D*
with n=38, 9, and 10, based on the “static ensemble
approximation” (6] for the solution of the SLE. This
approximation is strictly valid only for short reac-
tion times T, consequently we adopted t,=1 ns in
our calculation, which is shorter than the observed
lifetimes 10<7,,<20 ns. We found reasonable
agreement between the calculated triplet yields and
the experimental values. The calculations predicted
maxima of the triplet yield at magnetic fields By,
which compared well with the corresponding exper-
imental values. However, the relative increase
Roax = D1 (Bmax ) / P+ (B=0) of the field dependence
of @1(B) was not reproduced very accurately for
n=9 and 10. We attributed this deviation to the dif-
ference in the reaction times 7., and Ty

With the method described in section 3 we cal-
culated triplet yields using reaction rates k consistent
with the experimentally observed rates for electron
back-transfer, i.e. k=7;]). In fig. 1 we present the
triplet yields @ (B) for biradical systems
2A~-(CH,),~*D* with n=8, 9, and 10. In table 2
we give the experimental and theoretical values of
B,..x, the half-width of the maximum B,,,, R\, and
R, defined below.

The results given in table 2 confirm our previous
findings that the magnetic field dependence of the
triplet yield in biradical electron transfer experi-
ments can be explained by a “through space” ex-
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Fig. 1. Calculated magnetic field dependence of the triplet yield
®+(B) for the biradical 2A~-(CH,),~2D*: n=8, 9, and 10.

change interaction in conjunction with the stochastic
folding motion of the linking polymethylene chain.
The calculated values of B,,,, agree better than our
former calculations with the observations. The
agreement between observation and calculation is
also improved in the quantity R,,, for n=10 and 9.
The calculations, like the experiments, show an in-
crease in ratio R, for decreasing chain length. The
ratio R, for biradicals is of the order of 10%, while
for a system with a constant exchange interaction
corresponding to the position of the maxima, R,,,,
would be several hundred percent. We find also rea-
sonably good agreement in the half-width of the
maxima. The half-widths increase in a similar way
to the ratio R, for decreasing chain length. A de-
viation of the calculated values from observation
arises in the ratio R, defined by R_=
@ (B=5000G)/@(B=0 G). This shortcoming may
be due to our simplifying assumption that the re-
action rate for electron back-transfer is the same for

Table 2

Experimental and theoretical quantities describing the magnetic field dependence of the triplet yield @1 (B). The experimental data are o
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the singlet and triplet channel. The experimentally
monitored decay of the biradical state could be fitted
with a single exponential [4], which seems to argue
for our assumption. However, the decay constant
shows a magnetic field dependence. This arises if the
rates for singlet and triplet recombination differ.

Besides the better agreement with experiment this
calculation shows that our approximate description
in refs. [1,12] gives essentially correct results. This
description is based on the “spectrum of the ex-
change interaction”

I1(2j)=(1/m) J dzexp(i2jt)

—_C0

X <exp(—i£ dr 2J(¢t ))>

(which holds for any mechanism for the exchange
interaction that results in a stochastic time depen-
dence of J), and describes the system by an evolu-
tion operator for the density matrix

(12a)

v= | 410) v,
where U§(j) is the evolution operator for a system
with static exchange interaction j (static ensemble

approximation ). For the particular exchange mech-
anism introduced in section 2 the spectrum reads

1(2j)=(2/m) Re(0| [i2(j—J)—~L]~'|0). (12b)

As shown in fig. 2, I(2j) closely correlates with the
field dependence of ®;(B). The maxima in 7(2j)

taken from ref. [4]. The values in parentheses for BY,, and R, are values from a previous calculation [12] based on the “static

ensemble approximation”. All values of B are given in G

n B3, B, By B Rz Ribus Rg RY
8 750 760 510 635 1.33 1.41 0.75 0.47
(730) (1.30)
9 285 300 230 305 1.29 1.17 0.64 0.39
(300) (1.10)
10 111 110 90 145 1.06 1.08 0.61 0.45
(70) (1.01)

61



Volume 146, number 1,2

1(2j)

0. 250. 500. 750. 1000. 1250. 1500.
exchange interaction 2j / Gauss

Fig. 2. “Spectrum of the interaction” I(2/) as defined in eqgs. ( 12)
for the biradical 2A~-(CH,),~*D*: n=8, 9, and 10.

correspond to the maxima in @r(B) for the three
chain lengths With 2jpn.x® Bmex. The width of the
maxima of I(2j) increases in the same way as the
width of &1 (B) with decreasing chain length, and
the ratio I(2jmax)/I(0) increases as Rpax With de-
creasing number of linking -CH,- groups. These
similarities between 7(2j) and @1 (B) demonstrate
that the “spectrum of the exchange interaction”
which is very easy to determine properly relates ex-
change interaction, the stochastic motion of the
polymethylene chain and the observed magnetic field
dependence of the triplet yield.

5. Conclusion

By solving the stochastic Liouville equation for the
spin motion in a biradical we have confirmed our
previous result that the magnetic field dependence of
the triplet yield in electron transfer experiments can
be reproduced in calculations involving a “through
space” exchange interaction modulated by the sto-
chastic folding motion of the linking ~CH,~ chain.
We obtained better agreement between our calcula-
tions and experiment by using realistic biradical life-
times. For a further investigation of whether the
exchange interaction is mediated “through space” or
through the aliphatic chain (superexchange) we
consider it sufficient to examine the “spectrum of
the exchange interaction” as defined in eq. (12). Any
mechanism for the exchange interaction which yields
the same “spectrum of the exchange interaction” as

62
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those in fig. 2 is consistent with the observed @ (B).
In this respect it would be of particular interest to
examine whether different diffusion coefficients and
decay parameters (cf. eq. (3)) for through space ex-
change result in identical spectra for the exchange
interaction.
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