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We investigate the relaxation of a spin 1:2 system by random perturbation fields in the strong cotlision
approximation. In contrast to prior studies no assumptions are made about the fluctuation frequency or
about the magnitude of the perturbation fields. A general result for the Laplace transform of the spin
latticc and phase relaxation is derived. We discuss the result for phase relaxation induced by a perturbation
field with only two opposite modes along the x, y.and z axis. Using the method of the general moment
approximation we demonstrate how the spin lattice relaxation can be approximated by a sum of expo-
nentials, and we discuss approximations by a single exponential and a bi-exponential function.

1. Introduction

In the presence of an external static magnetic field nuclear
spins are aligned along its axis leading to a total nuclear
magnetization vector which is parallel to this field vector.
After perturbing such a system of nuclear spins, it will re-
laxate towards its equilibrium state. The relaxation of the
magnetization component parallel to the external field is
denoted as spin lattice relaxation, the relaxation of the per-
pendicular component is called phase relaxation [1]. Spin
relaxation is induced by perturbation fields [1] due to the
environment of a nuclear spin. If one considers for instance
biological tissues, which become a heterogeneous magnetic
environment in the presence of an external magnetic field
[2], the perturbation fields may be due to susceptibility dif-
ferences of adjacent compartments, or to fields induced by
magnetic compounds as ferritin 3, 4].

Nuclear spin relaxation is determined by the magnitude
of the perturbation fields and the dynamics of the pertur-
bation field modulation [1, 5]. In general, this dynamics is

given by a superposition of a deterministic and stochastic

component of the perturbation field modulation [5]. For
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+ instance, in the case of nuclear spin relaxation via magnetic

dipol-dipol interactions between a nuclear spin and another
spin (electron or nuclear spin) the deterministic component
is given by the precession of the second spin in the external
magnetic field, the stochastic one is due to the rotational
and translational diffusion motion of both spins [5, 6].

In general, the dynamics of interactions inducing spin re-
laxation are very complex. Therefore analytical approaches
for the calculation of spin relaxation are only feasible in
special cases where certain assumptions of perturbation field
dynamics are employed. If this dynamics is a stationary
process, it can be characterized by the temporal autocor-
relation function K(At) of the stochastic interaction part
V(t) of the Hamiltonian 5] K(At) = (V(to + At) V(o))
where the brackets (X denote the average value of an
observable X of the spin system. The temporal autocorre-
lation function reveals information about how long on av-
erage the dynamics of a nuclear spin is affected by the par-
ticular perturbation ¥ (). A simple and well known ap-
proach is the assumption of a single exponential decay for
K(AN) [1,5,7], i.e. K(At) = (V{t5)°) - exp(— At/1), with the
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correlation time 1. This correlation time is the average du-
ration of the influence of a perturbation field form V' (t) on
the dynamics of a nuclear spin [1]. The assumption of a
single exponential decay was successful for the description
of spin relaxation by translational diffusion motion in aque-
ous solutions of paramagnetic ions [5, 7,8], by rotational
diffusion motion in the presence of intramolecular spin-spin
interactions [6] and by local fluctuating magnetic fields [1).
In these applications the fluctuation rate ! of the pertur-
bation fields is much greater than their precession frequency
(motional narrowing limit). This condition allows the de-
scription of nuclear spin relaxation by means of the quantum
mechanical perturbation theory. Taking into account the
assumption of the mono exponential decay of K(At) this
approach yields an analytical solution of the spin lattice and
phase relaxation time.

Only in the motional narrowing limit the single exponen-
tial autocorrelation function K(At) provides enough infor-
mation for the determination of spin lattice relaxation [5].
In general one has to consider also autocorrelation functions
of higher order.

K, = (Vito) Vite + At ... Vito + Z-, At)y,

for the evaluation of the perturbation field dynamics and its
influence on spin relaxation [9]. An important group of
stochastic field fluctuations are those in which the stochastic
modulation is governed by a stationary Markov process
[10—12]. Such a process implies that the probability for a
nuclear spin to jump from the influence of one perturbation
field form V(1) to the influence of another ¥ (r+d:) is in-
dependent from perturbation field forms in the past
V(t—dr), V(t—2dt), .... A special case is the Random phase
approximation (RPA) or strong collision model which makes
the additional assumption that the transition probability of
two perturbation field forms V(t) and V(t+dt) is inde-
pendent of V(r) [10]. This independence implies that two
successive perturbation field forms are uncorrelated, i.e. it
is not possible to determine the perturbation field forms
having influenced a nuclear spin in the past. The RPA model
was applied to the description of spin relaxation by fluctu-
ating magnetic fields [10,13]. This model however was
mainly developed to reveal fundamental relationships be-
tween perturbation field dynamics and spin relaxation [10],
and not to apply to special physical situations.

Though the RPA model appears to be rather simple, an-
alytical approaches for the quantum mechanical description
of spin relaxation were only made in the case of very long
or very short correlation times [10]. In this paper we will
present an analytical approach for the calculation of the
frequency spectrum of phase and spin lattice relaxation of
a spin system (I = 1/2) within the RPA model. We will as-
sume that the distribution function of the perturbation field
components is symmetrical in each of the three coordinate
axis. Additionally the x and y components are assumed to
be identically distributed, i.e. this includes the cylindric and
isotropic distribution as special cases. No assumptions are
made about the magnitude of the correlation time and about
perturbation fields or the relationship of both.

In the following we will consider the relaxation of a nu-
clear spin system in an external magnetic field where relax-
ation is induced by uncorrelated fluctuating perturbation
fields (RPA model). The time evolution of this system will
be determined by the stochastic Liouville equation [10, 12].
From this equation we will derive the Laplace transform
0(s) of the spin density operator g(t). We will reveal simple
expressions for the Laplace transform of spin lattice and
phase relaxation which easily lead to the determination of
the frequency spectra of the corresponding relaxation proc-
ess. As an example we will consider a fluctuating pertur-
bation field with only two opposite field forms in each space
axis. The frequency spectrum of phase relaxation will be
discussed for various correlation times. In the last chapter
we will demonstrate by means of the Laplace transform, how
the algorithm of the generalized moment approximation
(GMA) provides an appropriate approximation of the spin
lattice relaxation by a sum of exponentials. Especially the
approximation by a single exponential function will be dis-
cussed, and we will show that in the motional narrowing
limit the relaxation time derived from the GMA algorithm
is equivalent to the well known result obtained from per-
turbation theory. Furthermore we will use the GMA to ap-
proximate spin lattice relaxation by a bi-exponential func-
tion.

2. Mathematical Analysis of Spin Relaxation in the RPA
Model

In the presence of an external magnetic field B = w, /y -
e, and additiona! stochastically fluctuating perturbation
fields b(t) = £2(t)/y the time evolution of the spin density
operator g(t) is determined by the Liouville equation
e =—i(—o I,-2(t) e, 2.1)
where y denotes the gyromagnetic ratio, e, the unit vector
in z direction, w_ and Q the precession frequency of the
external field and the perturbation field, respectively; / is the
spin operator. The superscript ' defines a Liouville operator,
i.e. I'g = [1,0] [14]. Liouville operators are superoperators
which means that they are operators which themselves act
on operators, in this case spin density operators [14].

When the dynamics of perturbation field fluctuations is
determined by a Markov process, the transition rate r; j be-
tween two perturbation field forms 2;, £, is independent
from interactions in the past. The time evolution of the den-
sity operator g;(t), which describes the behavior of nuclear
spins under the influence of the perturbation field €2, at the
time ¢, is determined by the stochastic Liouville equation

(123,

doi = —i(Hb+ VDo + g rie 22)
with

Hy= - 1}, 2.3)
Vies -1, (24
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he formal solution of Eq. (2) is given by the expression

!t):exp(—iz~Z(H{,+ Vf)F,+t~R>g(t=0), (2.5)

here the transition rates r, ; are comprised in the rate ma-
ix R, and the spin density operators g, in the vector g. The
atrix F, = (F,.); has the components Fon =1 for
=m =i, and F,,, =0 else.

Under thermal equilibrium conditions the probability dis-
ibution of the perturbation field forms is determined by
1€ stationary solution Py = (p,,) of the rate matrix R. If the
itial (¢ = 0) state of a spin system is given by the spin
ensity operator g, the vector o(t = 0) has the form g(t = 0)
= (Por * @0 Pz * Qo, --.)*. According to Eq.(5) the time
zvelopment of the spin density operator o(t) is given by

)=1* exp(—it-z (Hy+ VHF, +t- R)Po-qo, (2.6)

ith the vector 1* = (1,1,...) and with the relation o(t) =
.0;*. Thus, the Laplace transform g(s) of the spin density
rerator ¢(t) has the form

s) = lee"’" “o(t), @7
o

1
s+iX (Hb+ V)F,—R

+

(2.8)

Py go.

* the case of the RPA model the transition rates r, in
4-(2) take the values [10]

1
—'t_'p&" l#]o

=11 2.9)
‘;'(Po.—l), i=j,

1ere T denotes the correlation time, i.e. the mean time a
clear spin experiences the influence of a perturbation field
'm. The quantity 4 = =" is the fluctuation frequency [5].
i-(9) reveals that the transition rates from an initial state
> a state i do not depend on the initial state, i.e. both
ites are uncorrelated. If the transition rates have the form
Eq.(9), the Laplace transform of Eq.(8) can be consid-
bly simplified [10],

L(s+A+iHy+iV) ' py
)= 1—2-L(s+A+iH)+iVY) " py

- . (2.10)

More precisely, one should replace the spin density operators
Xt} and g, by the operators 0(f) — @ and g — @oq, Tespectively,
~here ¢, denotes the density operator in the equilibrium state
>f the spin system [1]. However, in the remaining part of this
»aper the above notation will be used.

To solve this Laplace transform, the super operator

u(s)=z‘(s+}.+iH.')+in)“-p(, (2.11)

~(7am)

T \§+iH!
with§ = s+ 4 H! = H)+ V! has to be determined first.
The brackets { ) denote the average for all perturbation
field forms.

In the following, we will solve Eq.(11) for a spin system
I'=1/2. Since every spin density operator of such a spin
system can be written as a linear superposition of the Pauli
spin matrices o; together with the 2 x 2 unity matrix e = (J; ;)
[15], the superoperator in Eq. (11) can be written as a matrix
within this base of the matrices. As the Liouville operators
Hj and V| satisfy the relations Hle = 0 and V'e = 0, one
obtains for the operator u(s) in Eq.(11)

u@sle=(s+4)"'e. 2.12)

The fact that the Lioville operators H} and ¥} project Pauli
matrices into the vector space given by these Pauli matrices,
[01,02,05), can be expressed by the relation

Hyo;, Vis;e[o1,03,04]. (2.13)
From the relations (12), {13) one can derive
u(s)([al 302, 63]) < [oi s 02’63] . (2'14)

The Eq.(12) and the relation (14) show that the superoper-
ator u(s) has only to be considered in the vector space of
the Pauli matrices.

Employing the algebra of Pauli matrices [15), one can
write the superoperator 5+ iH! within this matrix base in
the form

§ "(wL + Qi.x) Qi.y
§+1H: = (DL+Q,'.Z § _Qi_x s (2‘15)
-, Qix s
with
d=5E+o0l+Q+20.0,) (2.16)

being the determinant of the matrix §4 iH!. Inversion of
this matrix reveals the components {(§ +iH!)~') = (c, )

e = A7 (F+ L)),

€2 =75 (0L + Q)
¢y =0,

Gy =75 (—o—Q.,)),

€2 = di™' - (7 + QL))

Cy3 = 0,
c3.l = 09
62=0,

63 = di7" - (F + (o + 2.,)9),
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where we made use of the symmetry of the distribution func-
tion of the perturbation fields. Transformating from the base
of the Pauli matrices g, to the base of polar spin matrices

(04,0:,05) = (0,,0_,03),

with ¢, =0, t1 - g,, one observes that the operator
(5 + iH!)~") is a diagonal matrix within this new base with
the diagonal elements being

EHIHD) ™, =T E+ QN £ A5 (0L +Q..),

(2.17)
E+iH) D5 = '@ + (0L + 2.0 (2.18)
Since the operator {(5 + iH!)™') is a diagonal matrix within
the base of the polar spin matrices, the superoperator in
Eq. (10) must be a diagonal matrix within this base, too.
Due to this fact it is possible to determine the Laplace trans-
form of the spin lattice and phase relaxation. If one considers
for instance a spin system which is initially polarized in z
direction, i.e. the initial spin density operator has the form
Qo= b - ay+1/2 - e [15]*), the Laplace transform M(s) of
the normalized nuclear magnetization

M) = M, (2.19)
m.o— m:.eq
is given by
& sIh—1
M(s) _ (S +1H)™ D3y (2.20)

A AKE+IHY Y

where we made use of Egs. (10) and (18). A similar expression
can be derived for the phase relaxation where the subscript
(3,3) in Eq.(20) has to be replaced by (+,+) or (—,—).

3. Magnetic Field Fluctuating in Six Space Directions

In this chapter we will present an application of the result
given by Eq.(2.17). The frequency spectrum of phase relax-
ation will be determined for various correlation times in the
case when relaxation is induced by a stochastically fluctu-
ating perturbation field with only two opposite field forms
in each cartesian space axis. There are six perturbation field
forms b; = n(j) - Q/y,j = 1, 2, ... 6, where the vectors n(j)
are positive or negative unit vectors along the x, y nd z axis.
The probability that a nuclear spin is affected by the per-
turbation field &; is assumed to be §, i.e. all perturbation
field forms b, b,, ... b have the same probability. We will
consider a system of nuclear spins precessing in the x—y
plane, i.e. the initial spin density operator is given by g, =
b, - o, (polar presentation) [15], where b, denotes the in-
itial magnitude of the nuclear spin magnetization.

*) The number b is determined from b = (m.o— m. )/Nvh [1],
where m, g, m. ., is the nuclear magnetization in z direction at
t =0 and in the equilibrium state respectively. N denotes the
nuclear spin density.

The frequency spectrum I{w) of the relaxation process
from the transverse nuclear magnetization *) is given by

I) = 71? Re (A , (i), 3.1)

where Re(z) denotes the real part of :. The evaluation of
M ,(s) requires the determination of {(§+iH!)~"> in
Eq.(2.17). For the perturbation field described above one
obtains

iy (] %)
{E+i H}) >+‘+"6 s“_.i(wL+Q)+§"i(wL—Q)

+

1
?(§3+w{+(22

. 1(§1+92+s‘-wL)
IS -F+wi+923)/°

In our example we will assume the Larmor frequency w to
be that of a proton spin in a magnetic field of 1 Tesla i.e.
wy = 2.67 - 108 s~!. The magnitude of the perturbation field
is 1 GauB, i.e. 2 = 267 - 10* s~! which implies that the
relation Q/wy <€ 1 is valid. Figs.1a and 1b show the fre-
quency distribution of the transverse magnetization decay
given by Eq.(1) for four different correlation times 1. The
fields fluctuating in z direction induce the secular, the fields
fluctuating in the x—y, plane the nonsecular part of the
transverse relaxation [1]. For t > Q~', three maxima can
be seen in the frequency spectrum (Fig. 1a). For an explain-
ation one has to consider the influence of the fluctuating
field in z direction seperately from that of the fields in the
x—y plane. Due to the relation > Q™' a nuclear spin
which is under the influence of a perturbation field in z
direction precesses a long time either with the precession
frequency w, + Q or with w — Q. The nuclear spins pre-
cessing with those frequencies are responsible for the side
maxima in Fig.1a. The x, y fields have much less influence
on the precession frequency as the following consideration
will show. A nuclear spin which is under the influence of a
x —y perturbation field sees a total magnetic field of the
magnitude

Bges = l/ ((wL/Y)Z + (Q/y):) )

rafy-(1+1/2-(Q/wy)?,

Thus, the precession frequency becomes wy +1/2 - Q¥w,
and the difference from w is Q/w, times smaller than the
one induced by the perturbation fields in z direction. If, as
itis the case in our example, the perturbation fields are much
smaller than the external field, the nuclear spins have a pre-
cession frequency which is nearly identical with the one of
the external field. Hence, the central maximum is induced
by spin relaxation due to the x, y perturbation fields.

*) We consider the normalized transverse magnetization, i.e.
M, (t=0)=1.
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Frequency spectrum / of phase relaxation for four different corre-
lation times t of the fluctuating perturbation fields. The magnitude
of the external field is 1 Tesla, that of the perturbation field is 1
GauB

For correlation times decreasing down to 1~ Q' the
spectra beneath the maxima spread and their height de-
creases until the side maxima vanish (Figs. 1a, 1b). For cor-
relation times in the range of Q7' (1= 20 - 10™*sto 1 -
10~%s), the influence of a perturbation field is too short for
a nuclear spin to precess with either of the frequencies ~ w,
{(x—y perturbation fields) or wy + Q (z perturbation fields).
Thus, the frequency spectrum is widely spread around the
maxima. Since the phase coherence of the nuclear spins dis-
sipates very fast due to this widely spread frequency spec-
trum, the phase relaxation is markedly enhanced.

For fluctuation frequencies A = 1~' greater than the pre-
cession frequency of the perturbation field Q, only a central
maximum of the frequency spectrum is present (Fig. 1b). Due
to the fast field fluctuations a nuclear spin does not precess
with any of the perturbation field frequencies. Instead, the
spin precesses with the Larmor frequency of the external
field, w;, and the perturbation fields only cause stochastic
modulations of the precession frequency around w.. The

higher the fluctuation frequency the smaller becomes the
variance around g (motional narrowing effect) (Fig.1b)
meaning that the relaxation speed decreases.

4. Approximation of Spin Lattice Relaxation by
Generalized Moment Approximation

In principle every observable M (t) can be reconstructed
from its Laplace transform M (s) by backward transforma-
tion [16]. However, for complex expressions as in Eq.(2.20)
enormous difficulties are encountered so that backward
transformation fails in gaining an analytical result for the
observable.

In this chapter we will demonstrate that by means of the
generalized moment approximation (GMA) {17] the spin
lattice relaxation can be approximated by a sum of single
exponentials. Particularly the approximation by a single ex-
ponential function will be discussed, which is denoted as the
mean relaxation time approximation (MRT approximation)
{17]. We will show that in the motional narrowing limit
(short correlation time and small perturbation field) the spin
lattice relaxation time derived from the MRT approxima-
tion is identical with the well known result [1] from per-
turbation theory. . i

Once the Laplace transform of an observable, for instance
the spin lattice relaxation (s. Eq.(2.19)), is known, the low-
frequency moments of (n+ 1)-th order are given by [17]

(=" d"M(s)

Honmt =0 ds"  s—0 @1
1 X
=— [diem M@, 42)
n. 0
and the high-frequency moments of n-th order are
(=1 d(s- M(s)
= d/s)  s—x (43)
dll
= M(t)~o. (4.4)

The low-frequency moments characterize the long time be-
havior, while the high-frequency moments determine the
short temporal behavior of an observable. It has been shown
that the Laplace transform of a relaxation function, e.g.
M (s), can be approximated by a series of Lorentzians [18]

M(s) =~ m(s),

N-—1 1

)= X fi-——, (4.5)

n=0

representing an [N—1, N] Padé approximant where ri(s)
correctly describes the N, high- and N, low-frequency mo-
ments of the Laplace transform M (s) (N, + N, = 2N) [18].
With this requirement Eq.(5) represents a two sided Padé
approximation around s = 0 and s = oo [19], which we will
call (N, N)) generalized moment approximation (GMA)



726

W. R. Bauer and K. Schulten: Nuclear Spin Dynamics (I = 1°2) under the Influence etc.

[17). The parameters f, and [, of Eq.(5) are determined
from the generalized moments p,, m = — N, =N +1,...1,
...N,—1 through the relations [18]

N1
L ST = bm (46)

Eq.(5) means that with the GMA the relaxation function
M (¢) can be approximated by a sum of single exponentials

1

N—
M@ > .L:o fo-exp(=T.0). 4.7

4.1. Mean Relaxation Time Approximation

Knowing the moments y,, the solution of Eq.(6) provides
an approximation of the relaxation function by a sum of
exponentials that can be tailored to an arbitrary exactness.
Generally, the coefficients f, and the rate constants I, in the
exponent can only be determined numerically. An exception
is the (1,1) or mean relaxation time approximation [17]. In
this special case the relaxation function M(¢) is approxi-
mated by a single exponential function.

M(t) = po - exp(—1t/6), 4.8)
with the relaxation time [17]
0 = p_/1o 4.9)

Since we consider the normalized magnetization M (), we
have yo = 1 and therefore 8 = y_;. In the RPA model the
first low-frequency moment has the form (s. Eqgs. (2.18) and
(2.20))

M(=0),

H-1

< A+ (o + Q) >
_ AR+ 22+ 2 + (o + 2.))
= Tt t oy > . (4.10)

I—A‘</I(/'.’+Qi+Q§+(wL+Q,)’)

Under the condition of short correlation times and small
perturbation fields (motional narrowing), i.e.

A > |2] (4.11)
and
12! € w, 4.12)

the approximations w, + ©; ~ @, and, therefore

2 4 (o + 2.)
ot rmrar/ =\
x y 2

Q1 +9Q3) )“
2+ w?

can be made. The relaxation rate 1/6 = 1/u_, is then given
by

1 i

0 At+of

(B2 (4.13)

The spin lattice relaxation rate derived by GMA in Eq.(13)
is equivalent to the result obtained from perturbation theory
[1]. In contrast to the latter approach, however, Eq.(10)
provides the relaxation rate even without the restriction (11).

4.2. Approximation by a Bi-Exponential Function

As a further application of the GMA we will study the
approximation of spin lattice relaxation by a bi-exponential
function. We will try to find the best approximation to long
time behavior, i.e. we choose a (1,3) approximation. All per-
turbation field forms are assumed to have the same mag-
nitude Q and to be cylindric symmetrically distributed in
the x—y plane. The Laplace transform is then given by
(Eq.(2.20)

£+ i

M(s) = . .
6 = et + )

4.14)

According to Eq.(6) the parameters f; and I'; are determined
from the relation

HTT+fi TT = pm, (4.19)
with m = 0, —1, —2—, —3. The moments y, are
w=1, (4.16)
i+ o}
”-l - /«'Qz ’ (417)
2 2
-yl 2, _WL— A
By =y (1 +Q (wf,+12)2)' (4.18)
2 2 202
_ ). wi— A ), Wi )
H-3 Moy (1 +2Q ((1){+A,2)2 + ().2+(0i)} . (419)
The rates I';, are then calculated to
I‘"—Ai A*—4BC 420
12 = 2B s ( . )

with A = pop_y—p_p-2, B = pop_—p*, and C =
H_1pi—3— p2 4. The coefficients are

4.21)

Eqs. (18) and (19) demonstrate that the terms depending on
the magnitude of perturbation field are of the order of QY
A2 and Q*/%. In the motional narrowing limit (A > Q) this
results in p_,—p’, and p_3— p . Thus, one obtains
fi=/fi=1/2 and I'y = I = pZ§, which means that in the
motional narrowing limit the bi-exponential function con-
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verges to a single-exponential function, with the relaxation
rate given by the rate of the MRT approximation (s. Eq. (9)).

As an application of the approximation of spin lattice
relaxation by a bi-exponential function we dicuss the ex-
treme case of a very slowly fluctuating perturbation field,
i.e. we consider a situation opposite to the motional nar-
rowing limit. The fluctuation frequency 4 is assumed to be
smaller than the perturbation frequency 2, 4 = 0.1 - Q. Fur-
thermore we assume that the magnitude of the perturbation
field is in the range of the external field w, i.e. @ = ;.
Obviously, this example cannot be treated by a perturbation
approach. Spin lattice relaxation is characterized by its fre-
quency spectrum /(w), which is determined by /(w) = 1/n
Re(M (iw)).

y
i
101 5
P
'/ ‘\‘
8 ; '\
g A
& 6 4 1/ \\ -,
o e 4 % ™
8 4 1f \.
Ll ' “.<
r's \.\\;\
2+ A e
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w/Qe 10

p=—~—x~—rrry] CLL I

Fig. 2

Frequency spectrum /(w) of the spin lattice relaxation for a very
slowly flucutating perturbation field £. The fluctuation frequency
J was assumed to be 4 = 0.1 - Q, the magnitude of the perturbation
ficld is equivalent to the one of the external field i.e. @ = .. The
spectrum of the exact relaxation decay (dashed line) according to
Eq. (14), the single exponential approximation (dotted) and the bi-
exponential approximation (dashed-dotted) '

Fig.2 shows the frequency spectrum of the exact relaxa-
tion process (dashed line) according to Eq.(14) as well as
the approximation by a single exponential (MRT) (dotted
line) and a bi-exponential function (dashed-dotted line). The
frequency spectra were obtained from the Laplace trans-
forms which were derived according to Eq.(5). Obviously
the single exponential approach is a very bad approximation
in the low frequency range, i.e. the frequencies which are

relevant for the long time behavior. In contrast the bi-ex-
ponential is an excellent approximation of the exact fre-
quency spectrum in the low frequency range.
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