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The role of diffusive transport on the enhancement of nuclear spin relaxation through
NMR contrast agents is described by means of diffusion-Bloch equations. These equations
are solved in the mean relaxation time approximation [W. Nadler and K. Schulten, J.
Chem. Phys. 82, 151-160 (1985)]. A model presented considers relaxation enhancement
in tissue in which contrast agents confined to intravascular spaces affect nuclear spin in
the extravascular volume. We show how the mean relaxation time depends on capillary
density, on permeability, and on diffusion. A second model describes enhanced phase
relaxation of liver tissue in the presence of magnetic particles in Kupffer cells. The rela-
tionship between relaxation rate and density of Kupffer cells is investigated. The diagnostic
value of enhanced nuclear relaxation in the presence of contrast agents is discussed on the
basis of the systematic mathematical results obtained. © 1992 Academic Press, Inc.

1. INTRODUCTION

Contrast in magnetic resonance imaging (MRI) originates from the signal intensity
of tissue and is due to magnetization of the nuclear spins detected by the instrument,
usually protons. The nuclear magnetization is determined by the pulse sequence applied
in the NMR imaging procedure, by the density of the nuclear spin subfractions, e.g.,
water protons or protons of fats, and by the spin-lattice relaxation time T, and phase
relaxation time 7', of each nuclear spin subfraction.

The concentration of nuclear spin subfractions and the respective relaxation times
depend on tissue type. Tissues which differ in nuclear spin subfraction composition
and in relaxation times produce different total nuclear magnetizations and, hence,
can be distinguished by different signal intensities in MRI. On the other hand, tissues
with identical nuclear spin subfraction compositions and relaxation times cannot be
distinguished.

An approach to contrast enhancement and contrast differences is furnished by NMR
contrast agents, substances which shorten to various degrees spin-lattice and/or phase
relaxation times and, thus, alter the signal intensity of tissues. This enables one to
distinguish regions of tissue with different concentration or with different activities of
contrast agent.

An effect of transport on the activity of NMR contrast agents in tissues can develop
as follows. Due to their pharmacological properties contrast agents can exhibit a specific
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distribution in tissue, e.g., they may be located in the intravascular space (/) or in
special macrophages of liver tissue (2). Contrast agents, if confined to specific com-
partments in tissue, may develop their contrast enhancement effect mainly through
transport across compartmental boundaries and intracompartmental diffusion. In this
paper we will explain this possibility in terms of two mathematical models.

The models presented in this paper describe two different types of contrast agents,
(1) intravascular contrast agents and (ii ) superparamagnetic or ferromagnetic particles
in macrophages (Kupffer cells) of liver. The models are based on spatially inhomo-
geneous relaxation of nuclear magnetization. The overall relaxation behavior for such
model systems will be calculated as a function of inhomogeneous diffusion parameters
in tissue. We will show that diffusive transport of water is most likely the relevant
mechanism for enhancement of nuclear magnetization relaxation in tissue by several
common NMR contrast agents. Since pathological processes may affect transport pa-
rameters, we will then outline how such conditions could alter relaxation times of
nuclear magnetization.

Our models for the effect of NMR contrast agents in tissue describe generic types
of relaxation inhomogenities in tissue. Beyond the examples discussed below the de-
scription developed in the present paper can be applied to liposome Systems as carriers
for contrast agents (3, 4), to spleen, bone marrow, and cell suspensions as model
systems. The nature of the mathematical treatment used for the modeling, i.e., diffusion-
Bloch equations, limits our descriptions to ideal circumstances. More realistic situations
need to be modeled by computer simulations. The theory presented below can guide
such simulations as well as provide valuable tests for such simulations.

2. MECHANISM OF ACTION OF VASCULAR NMR CONTRAST AGENTS
2.1. Review of NMR Contrast Agents

Vascular NMR contrast agents are substances which are injected into blood vessels
and which enhance relaxation and, thereby, affect the contrast in NMR images of
tissue supported by blood vessels. The contrast enhancement efficiency is determined
by the local density of blood vessels. Substances used as contrast agents are paramagnetic
lanthanide ion chelates like Gd-DTPA and Dy-DTPA (DTPA = diethylenetriamine
pentaacetate) (5) and lanthanide chelates linked to macromolecules like albumin-
(Gd-DTPA )5 (1). s

In this section we will only consider situations in which agents develop their contrast
enhancing effect while remaining in the intravascular space. Such agents are the lan-
thanide chelates linked to macromolecules, e.g., albumin-(Gd-DTPA )z, which, except
in liver, spleen, and bone marrow, stay within the intravascular space; furthermore,
the agents Gd-DTPA and Dy-DTPA in brain belong to the group considered as it is
known that these agents remain within the intravascular space (blood-brain barrier)
(5). The mentioned agents have been observed to reduce the nuclear spin relaxation
time. Schmiedl et al. observed that albumin-(Gd-DTPA ), in heart tissue decreases
the spin-lattice relaxation time (7", ) from about 520 ms to 300 ms (/). Villringer et
al. observed a 50% reduction of phase relaxation times (77;) in brain (5). Due to the
short range of dipole-dipole interaction (6) these contrast agents interact directly with
intravascular nuclear spins only. However, the following consideration will show that
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intravascular contrast agents bring about a relaxation of extravascular nuclear mag-
netization.

The fraction of the intravascular space in heart, for example, is about 7% of total
volume (7), and as the concentration of water molecules is about the same in intra-
and extravascular space (8), the intravascular water proton fraction is also less than
7% of total proton number. If one assumes that the observed effect of the agent is
limited only to the intravascular proton fraction of 7%, intra- and extravascular nuclear
magnetization would relax independently. The overall relaxation time T of two in-
dependent fractions of tissue is derived from a magnetization decay M(¢) = f,exp(—t/
Tw) + fwexp(—t/T.,), where f,,,f., is the fraction of intravascular/extravascular
protons with the corresponding relaxation time T, T,,.! Assuming a single exponential
decay, M(t) = exp(—t/T') one derives for the overall relaxation time, T'= [° dtM(t)
= .fi‘v71iv + févTev .

We want to apply this formula to an observation of spin-lattice relaxation times
T, . Assuming a relaxation time of proton spins in blood with albumin-(Gd-DTPA )5
of 88 ms (/) and a relaxation time of heart tissue of 500 ms (this value has been
adjusted from the value 520 ms reported in (/) to the pure extravascular fraction of
the tissue) we obtain a relaxation time greater than 470 ms. This value is significantly
larger than the value of 300 ms actually observed. The discrepancy implies that the
fraction of nuclear spins affected by the contrast enhancement agent must be signifi-
cantly larger than f, = 0.07. One can conclude that the agent must also exert an
influence on the spin-lattice relaxation of extravascular nuclei. An analysis of obser-
vations of phase relaxation times (5) in the presence of the agent Dy-DTPA leads to
the same conclusion, i.e., that an agent, even though it is strictly localized in the
intravascular space, must affect the magnetization of extravascular nuclei. The question
arises as to how the influence of contrast enhancing agents can be exerted beyond the
vascular walls. An answer to this question should apply to both spin-lattice and phase
relaxation.

2.2. Critique of a Model by Villringer et al. (5)

Villringer et al. (5) suggested that due to its paramagnetic properties Dy-DTPA
induces inhomogeneous fields around blood vessels which lead to a dephasing of nuclear
spins. This model cannot explain, however, an enhancement of spin-lattice relaxation
since this kind of relaxation should not be affected very much by diffusion in a field
gradient. That assumption can readily be verified for the experiments of Schmiedl ez
al. (1).

For the concentrations of albumin-(Gd-DTPA),;s which these authors used one
can estimate by means of the laws of magnetostatics (9) that the inhomogeneous field
around the vessel has a magnitude of less than 10~7B where B denotes the external
field. Taking into account that the fastest spin-lattice relaxation rate is achieved when
the perturbing field By, = Ywper occurs with the Larmor frequency, (1/7)max =
1 ({ wier y/wr) (10), one concludes for an external field of 1 T that the relaxation rate

“is in the range of 107 s™!. This rate is much smaller than the observed rate 77! > 1
s~ ().

! M(¢) is considered to be normalized, i.e., M(t = 0) = 1.
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In the next section we describe a model which satisfactoﬁly explains enhancement
of spin-lattice and phase relaxation of extravascular nuclear spins.

2.3. Exchange-Diffusion Mechanism

The model which we suggest is based on the assumption that nuclear spins (water
protons) exchange between intra- and extravascular space. The vascular contrast agents
rapidly relax the magnetization of the intravascular spins. However, diffusion across
the vascular wall will mix intravascular and extravascular spins, such that after a while
spins relaxed through the presence of the intravascular contrast agent will appear in
the extravascular space. As a result the whole population of nuclear spins will exhibit
relaxation enhancement. It is obvious that the suggested mechanism applies to both
spin-lattice and phase relaxation.

The mechanism suggested has been investigated also by other authors in different
settings. An example involved exchange of water protons across the erythrocyte mem-
brane. A corresponding theory had been provided and applied by Conlon and Oethred
(11) and reviewed by Morariu and Benga (/2). These authors assumed, however,
first order kinetics for the exchange across the erythrocyte membrane. In our descrip-
tion, in contrast, the exchange is described by the diffusion equation. We identify, in
particular, an inhomogeneous distribution of magnetization near compartmental
boundaries and a dependence of the exchange process on the volumes of the com-
partments and on diffusion to the compartment walls.

The degree to which the suggested mechanism affects relaxation times of extravas-
cular magnetization depends on two conditions: (i) the exchange time across the
vessel wall must be sufficiently small compared to the native (i.e., without presence
of contrast agents ) relaxation time of extravascular nuclear spins; (ii) the vessels must
have a sufficiently high density in tissue; we will quantify below what criterion deter-
mines such densities. Condition (ii) ensures that a discernable fraction of extravascular
magnetization is affected by the intravascular agents. Blood vessels which satisfy the
above conditions are capillaries in the body tissue. The reason is that capillaries have
the thinnest vascular walls (0.2-1 um) (13), exhibit a maximal exchange surface
between intra- and extravascular space, and have the highest density of all blood
vessels in tissue [e.g., the intercapillary distance in heart measures 20-25 um { 14)].

Let us first estimate the transport time across the capillary wall, in order to dem-
onstrate that condition (i) is satisfied for capillary vessels. Measured permeability
coefficients of capillary walls (8, 15, 16) allow one to estimate an effective diffusion
coefficient D, in the capillary wall of 0.005-1 um? ms™!. A rough estimate for the
transition time 7. to cross a capillary wall of thickness R, is 7. ~ R2/D, which yields
transition times 7, 1-500 ms which are well in the range of transition times across
membranes of in vitro liposome systems ( 17). Since typical relaxation times at fields
of 1 T in tissue are in the range 50-150 ms for phase relaxation ( 7,), and in the range
200-800 ms for spin-lattice relaxation (7;) (18), the first condition obviously is
satisfied.

In order to consider in how far condition (ii) is satisfied we need to estimate over
which distance d extravascular spins can diffuse within the native relaxation times
toward and away from the vascular walls to get the fraction fof spins being affected
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by diffusion-mediated relaxation: according to arguments presented in detail further
below it holds '~ ((d + R.)/intervascular distance)?, where R, is the capillary radius
which measures about 3 um (/9). The diffusion constants in extravascular tissue are
approximately 1-1.5 um?/ms (20). Using the rough estimate d ~ VD« 74w Where
Trative 1S the native nuclear spin relaxation time, i.e., either T, or T», and D the diffusion
coeflicient in the extracapillary medium, one obtains d = 7 um and for the ratio ((d
+ 3 um)/average intercapillary distance)? a value greater than 0.16. This value is an
estimate for the fraction of spins affected by relaxation. This value, which we consider
to be a lower limit to the actual value, appears to be high enough for diffusion-trans-
mitted relaxation to be discernable.

2.4. Model for Contrast Enhancement in Capillary Systems

For an exact description of the influence of contrast agents on nuclear spin relaxation
in tissue a realistic capillary architecture of a specific tissue should be considered.
Knowledge about transport parameters ( diffusion coefficients) and relaxation rates of
nuclear spin would be required for every point in the tissue. The consideration of that
much detail in a mathematical model would result in an extremely cumbersome de-
scription. The aim of this paper is to study the principles behind the action of contrast
enhancing agents rather than simulate specific tissue situations. For this reason we
will study in the following a model which appears to be generic to the circumstances
under which tissue contrast enhancement by means of intravascular agents develops.
This model is defined by the following assumptions

1. Only the water proton fraction of nuclear spins is considered. This is justified as
this fraction is clearly dominating in most tissues (8).

2. The initial nuclear magnetization is assumed to be homogeneous throughout
the whole tissue volume considered. Since the initial magnetization is proportional to
water proton concentration, and since the water proton concentration is nearly ho-
mogeneous in most tissues (8), the assumption made appears to be realistic.

3. Only three different compartments in a tissue are distinguished: (i) an intracap-
illary space in which the contrast agent is residing, (ii) a capillary wall, and (iii)
extracapillary tissue. In each compartment the diffusion coefficient and the relaxation
rate of nuclear spins are assumed to be constant. The latter implies that diffusion
across cellular boundaries in the extracapillary tissue is rapid, such that one does not
need to distinguish between intracellular and extracellular spaces. The magnetic field
is supposed to be homogeneous in the whole tissue.

4. The capillaries are considered as long parallel cylinders. This geometry holds
approximately in skeletal muscle, in heart, and in certain areas of brain (I 4). Each
capillary is assigned the tissue volume (supply area), which is predominantely supplied
by the capillary under consideration. According to the assumed capillary geometry
the supply areas form concentric cylinders around the capillaries. Figure 1 shows a
section through two adjacent capillaries. The radius of a cylindrical supply area will
be referred to as the supply radius R,. To determine R, we consider a tissue with
several capillaries all running parallel and the cross section perpendicular to the axis
of the capillary cylinders. If there are # capillaries intersecting a cross section of area
A, the supply radius is determined by #R2 = A/n, i.e., R, = VA/(xn). 2R, corre-
sponds to the average intercapillary distance.
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I i

FiG. 1. View of two parallel capillaries (cross section) with supply areas denoted by I and II. R, is the
capillary radius, R, the thickness of the capillary wall, and R, the supply radius. A sample trajectory (a) of
a nuclear spin (ns) which leaves supply area I and enters supply area II is shown. In our model we replace
trajectory (a) by trajectory (b) which is identical to (a), except that the trajectory is reflected at the boundary
of supply area I.

5. We assume that any nuclear spin will interact with only one capillary, the capillary
closest to the spin’s initial position. This assumption implies that if the trajectory of
a nuclear spin leaves the supply area of capillary I and enters the supply area of
capillary II, we replace this trajectory by a trajectory that is reflected at the boundary
between the supply areas of capillary I and capillary I, actually returning then to
capillary 1. Such a trajectory is presented in Fig. 1. The diffusion of nuclear spins
around capillaries is then described by a diffusion equation with reflective boundary
conditions at the supply radius R, .

2.5. Mathematical Analysis

We will now derive an expression for the relaxation time of nuclear magnetization
around a capillary vessel which contains contrast enhancing agents. The derivation
will be based on assumptions ( /-5) above. The relaxation time obtained will depend
on transport parameters (diffusion coefficients D., D,, D, in the three compartments,
i.e., capillary vessel, capillary wall, and extracapillary space, on the average intercapillary
distance, i.e., on capillary density, and on the relaxation times of nuclear spins T,
T., T, in the three tissue compartments. R, denotes the capillary radius, R, the thickness
of the capillary wall, and R, the supply radius of the capillaries (see Fig. 1).

We assume that a diffusion coefficient D(x) accounts for stochastic transport of
nuclear spins in a tissue at location x = (x, X3, X3). We further assume that the x-
y-magnetization of spins is subject to phase relaxation with local rate 75'(x),
and that the z-magnetization is subject to spin-lattice relaxation with local rate
T7Y(x). The local magnetization is then governed by the diffusion-Bloch equa-
tions (21),
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Oy y(X, t) = (V D(x)V — m - tw(x))mx_y(x, t), [2.1]

am,(x,t) = (V- D(x)V — )mz(x, ). [2.2]

Ty(x)

In our model we consider the magnetic field in tissue to be homogeneous. This
corresponds to a spatially independent Larmor frequency w. The corresponding term
in [2.1] leads to a multiplication of the x-y-magnetization by a phase factor e ™',
Redefining m = e™*« m,_,, both Eqgs. [2.1] and [2.2] can be written

om(x, 1) = (V D(x)V — —)m( , 1), [2.3]
T(x)
where m(x, t) describes either the x—y-magnetization or the z-magnetization, and
where T~ '(x) describes the spatially dependent phase relaxation rate or spin-lattice
relaxation rate of a nuclear spin, respectively.
For the initial condition we assume a constant magnetization in the whole tissue,
ie.,

m(x, t=0)= my. [2.4]

The flux of magnetization D(x)Vm(x) in {2.3] is coupled to the transport of nuclear
spins and, hence, of particles. At the boundaries between the different compartments
of tissue defined above, the flux component normal to the compartment boundaries
must be continuous, otherwise particles would be generated or destroyed at these
boundaries. The tissue compartments have cylindrical symmetry around the capiliary
axis. Conditions for the radial components of the flux, i.e., for j, = D(r)dm(r, t)
result from this property. At the boundary between the intracapillary space and the
capillary wall the continuity condition,

Dcarn'l:r—»Rc,rdQc = Dearm:r*Rc,r>Rc> [25]
holds, and similarly at the boundary between the capillary wall and the extracapillary
space holds

De arm:r—»Rc+ Rer<Rc+Re = Dv aJV‘nIi:,"—»lQ,ﬁ Rer>Rcir,* [ 2.6 ]

Spatial boundary conditions need to be envoked also at | x| = R,. The conditions
result from the assumption of our model that particle trajectories are reflected when
they attempt to enter the supply area of a neighboring capillary vessel, i.e., that no
net magnetization is transported across the boundary |x| = R,. This assumption
implies the condition

D.9,m(R,, t) = 0. [2.7]

To account for the symmetry we employ cylindrical coordinates which render Eq.
[2.3] in the form

am(r, t) = (1 0,rD(r)d, — T)) m(r, t),

= Lm(r, t). [2.8]
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where the operator L = ((1/r)d,(r - D(r)d,) — (1/T( r»)) is restricted to a function
space characterized by the conditions [2.5], [2.6], and [2.7]. The formal solution of
Eq. [2.8] is given by the expression

m(r, t) = exp(tL)my. _ [2.9]

The mean local rate of relaxation T}, (x) is the rate which approximates best the
relaxation of the local magnetization by a single exponential decay (10), i.e., m(x, t)
=~ MoeXP(—1t/ Tieax(X)). This approximation corresponds to the mean relaxation time
approximation for the time development of m(x, ¢) and can be systematically improved
(22). The criterion for the optimal match between the monoexponential approximation
implied by a single relaxation time and the exact decay of observables has been in-
vestigated in (22) and references therein. The criterion for the optimal match is that
the approximation reproduces the exact initial value as well as the time integral over
the exact solution. The latter condition implies

T(X) = fo w%;”dz, [2.10]

from which follows
LTrelax(r)= —e€. [211]

e is the function which assumes the value 1 everywhere in the supply region.
Since we assumed constant values D(r) and T(r) for each tissue compartment, Eq.
[2.11] in each compartment is piecewise equivalent to

H

(5 28 = - o) = -1, (212]

where the index i denotes the compartment, i.e., i = ¢, ¢, V.

The mean relaxation time of the overall nuclear magnetization M(¢) = f y m(x,
t)dx3 is determined by the spatial average of the local mean relaxation time T,y Over
the diffusion space V,

1 (&
T = (Trerax(x) )y = m J; Trerax(¥) - 27wrdr. [2.13]

2.6. Results

In this section we discuss some typical features of the model developed above. For
this purpose we investigate the dependence of the local mean relaxation time 7 eja, (X)
and of the global mean relaxation time 7 = { Tyeax(X) Yy On the supply radius and on
the permeability of the capillary wall. For the determination of the local mean relaxation
time Trqa(X) the differential equation [2.12] has been solved numerically by the
shooting method (23), taking the boundary conditions [2.5]-[2.7] into account. The
global mean relaxation time was then determined by numerical integration [ Simpson
method (23)] of the local mean relaxation time according to Eq. [2.13].

The relaxation times of nuclear spins in the extracapillary space, T, and T, were
chosen to be 50 ms, i.e., equal to typical phase relaxation times in muscle tissue (/8).
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The intracapillary relaxation time 7, was chosen very short, i.e., 5 ms, to demonstrate
the effect of rapid intracapillary phase relaxation.

The local mean relaxation time 7, in the vicinity of a capillary having a supply
radius of 15 um is shown in Fig. 2 for four effective diffusion coefficients D, of the
capillary wall. The smaller D, the larger is the difference between intra- and extracap-
illary mean relaxation time. This is due to the fact that relaxation of the extracapillary
nuclear magnetization develops when nuclear spins that have lost their magnetization
in the intracapillary space pass from intra- to extracapillary space. The flow of nuclear
spins leaving the intracapillary space is determined by the time 7, needed by a nuclear
spin to pass the capillary wall. 7. is a function of the effective diffusion coefficient D,
and of the thickness R, of the capillary wall. The estimate suggested above 7, ~
R2/D, for R, = 0.2 yum and D, = 0.1 um?/ms yields a value 7, ~ 0.4 ms. An effective
wall diffusion coefficient D, = 0.005 pm?/ms leads to a transit time which is 20 times
longer, i.e., the effect of enhanced intravascular relaxation on the decay of extravascular
magnetization would be much smaller in this case.

If one changes 7. by variation of the capillary wall thickness one finds that an
increase of this thickness and, hence, an increase of 7., enlarges the difference between
intra- and extracapillary mean relaxation time. This effect is demonstrated by the
results presented in Fig. 3.

When the supply radius R, increases, i.e., capillary density decreases, the global
mean relaxation time 7T becomes longer. This behavior is shown in Fig. 4 which

50. T T T T T

&~ 20.

10.

0. 1 1 1 1 1
0.0 28 5.0 7.6 100 126 15.0

radius / pm

FI1G. 2. Dependence of the mean local relaxation time T, (#) of local nuclear magnetization m(r, t) on
the distance r from the capillary axis; T, (7) has been evaluated according to Eq. [2.12] and is shown for
four different diffusion coefficients: D, = 0.5 um?/ms (—), 0.1 um?/ms (------- ), 0.01 ygm?/ms (- — - —),
and 0.005 um?/ms (- - -). Other constants assumed are D, = D, = 1.5 um?/ms, R, = 3 um, R, = 0.2 um,
R,=15um, T, = 5ms, T, = T, = 50 ms.
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50. T T T — Y

40.
E 30.
]
& 20.
10.
0. L 1 1 1 1
0.0 2.5 5.0 7.5 10.0 125 15.0
radius / um
F1G. 3. Dependence of the mean local relaxation time T, (7) on the distance r from the capillary axis.
Two different wall thicknesses R, have been assumed, R, = 0.2 pm (------- )and R, = 1.0 um (—). The

diffusion coefficient D, in the capillary wall had been chosen to be 0.1 ym?/ms. Other parameters are the
same as in Fig. 2.

represents the global relaxation rate as a function of R,. An increased supply radius
implies longer diffusion from the intracapillary space to the periphery of the supply
region. The nuclear spins traveling this enlarged distance need a longer diffusion time.
Thus, the influence of nuclear spin exchange between intra- and extracapillary space
on relaxation enhancement of extracapillary nuclear magnetization decreases, i.e., the
mean relaxation time increases.

The permeability of the capillary wall is determined by the effective diffusion coef-
ficient D, and by the thickness of the wall R.. If the permeability of the capillary wall
decreases by reduction of the effective diffusion coeflicient D, or by enlargement of
the wall diameter R,, the global mean relaxation time increases. The effect of D, and
R, on the global relaxation rate is shown in Figs. 5 and 6, respectively. The effect
demonstrated in these two figures can be explained as follows: decreased permeability
of the capillary wall reduces the exchange between intra- and extracapillary nuclear
spins; this causes a reduced relaxation of extracapillary nuclear magnetization and,
hence, lengthens relaxation time.

2.7. Possible Diagnostic Application

Our exchange-diffusion model above gives a better understanding of the processes
in tissue leading to pathological deviations of relaxation rates in the presence of contrast
agent. This may allow one to develop new strategies for earlier as well as better clas-
sification of pathological tissue. As a first attempt to correlate the theory developed
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50.

40.

30.

T /ms

20. |- ]

10. ! i ] 1 1
10. 16. 20. 25. 80. 38. 40.

supply radius /um

FIG. 4. Dependence of the global mean relaxation time 7" on the supply radius R,. 7 has been evaluated
according to Eq. [2.13] and is shown for four different diffusion coefficients D,: 0.5 um?/ms (—), 0.1 pgm?/
ms (------- ), 0.01 um?/ms (- — — —), and 0.005 um?/ms (- — -). Other parameters are the same as in
Fig. 2.

with data we have analyzed contrast enhancement in in vitro liposome systems. Such
systems contain, for example, contrast agent confined to the liposome interior, yet
exhibit increased relaxation rates of bulk water in the region exterior to the liposome
particles (/7). In the following we will use the terms enhanced and reduced relaxation
rates to imply a comparison between normal tissue and tissue with- contrast agent.

We first consider the common disease arteriosclerosis. Arteriosclerosis is distributed
over multiple arterial systems, e.g., the coronary arteries. The density of capillaries in
the tissue area, which is supplied by an affected artery, decreases up to 20% (24). To
describe this situation by our model one needs to assume an increased intercapillary
distance. According to the results presented above (see Fig. 4) the relaxation rate in
this case is reduced. If we now assume that our model is relevant for heart tissue we
can conclude that the pathological tissue should exhibit reduced (with respect to normal
heart tissue) relaxation rates and, therefore, should reveal itself through a contrast
difference.

Another disease accompanied by reduced density of capillaries is hypertrophy of
the heart muscle which occurs as a consequence of arterial hypertension (25) or as a
compensatory mechanism in the surviving myocardium after infarction (26). In nor-
mal muscle each capillary has a well-defined supply area. During hypertension muscle
fibers between the capillaries enlarge whereas the total number of capillaries remains
the same (one capillary/one muscle fiber) (24), i.e., the density of capillaries decreases
by, 17-20% (26), or by 30% (27). The supply radius of single capillaries increases
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50. T T T | 1

40.

S0.

T /ms

20. - -

10. 1 | 1 1 ]
10. 15, 20. 25. 30. 86. 40.

supply radius /um

FI1G. 5. Dependence of the global mean relaxation time 7" on the supply radius R, for two different sizes
of the capillary wall, R, = 1.0 gm (---~--- )and R, = 0.2 um (—). The diffusion coefficient in the capillary
wall, D,, had been chosen to be 0.1 um?/ms. Other parameters are the same as in Fig. 2.

45.0

| S e

376

T /ms

35.0 -

825

.
~——
\T__

B Ao »
0.2 04 0.6 0.8 1.0

30.0 L

diffusion coefficient Dy /(um 2/ ms)

FiG. 6. Dependence of the global mean relaxation time 7 on the capillary wall diffusion coefficient D,
for a wall size R, = 1.0 pm (------- yand R, = 0.2 um (—). Other parameters are the same as in Fig. 2.
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and the peripheral regions of the supply areas suffer from decreased nutrition (25,
28). As a result, the contractility of the heart decreases and the heart develops insuf-
ficiency (24). This disease provides an excellent example to illustrate (i) the physio-
logical meaning of the supply area introduced, and (ii) the role of transport from
intra- to extracapillary space. According to the results obtained for the diffusion-ex-
change model, the enlarged supply radius leads to a reduction of the relaxation rates
in the affected heart tissue.

Examples of tissues with increased number of capillaries are certain tumor tissues
(29). Most tumors expand rapidly and consequently require enhanced metabolism.
This can only be achieved by increasing the density of capillaries in the tumor (29).
According to the results of our model the relaxation rates should be increased. However,
often one observes also the opposite behavior. This arises due to a degradation of
tissue in the necrotic core of a tumor which is then devoid of any capillaries and hence
of contrast agent.

In the following we consider pathological states which we assume to influence the
permeability of the capillary wall. Since such influence cannot as yet be proven our
conclusions contain a strong element of speculation. Although morphological alter-
ations of capillary walls have been observed in certain pathological tissues, it has not
been shown that these alterations are accompanied by altered transport properties.
The reason is that until now it has often been impossible to study transport in tissue
under physiological conditions, especially in vivo. NMR imaging methods might, in
fact, be used to prove that transport is an important factor of the pathological states
of certain diseases.

A disease which changes the morphology of capillary walls is diabetes (microan-
giopathia diabetica). The lamina basalis of the capillaries involved becomes thicker
and the endothelia cells suffer from destruction (30). Assuming that this development
of the tissue is due to poor supply, these symptoms make it appear probable that the .
permeability of the capillary walls is reduced in microangiopathia diabetica. According
to the diffusion-exchange model a decrease of capillary wall permeability enhances
the relaxation time of the tissue, i.e., it should be observable by MRI.

Oedema after intoxication, allergy, or trauma is caused by increased permeability
of the capillary wall (24). In following the results of the diffusion-exchange model
one expects a decreased relaxation time and an enhanced contrast in the affected
tissue.

3. CONTRAST ENHANCEMENT BY MAGNETIC PARTICLES

In this section we investigate the mechanism of contrast enhancement by magnetic
particles in Kupffer cells of liver. We will show that transport of nuclear spins to
Kupffer cells is likely to be the origin for contrast in liver. Our discussion leads to the
suggestion of a model describing enhanced relaxation rates around Kupffer cells by a
diffusion-reaction mechanism. A formula is derived which reveals the dependence of
the relaxation rate on the concentration of Kupffer cells in liver. The latter is important
as no other means of measuring the concentration is available. We will also discuss
to what extent the relaxation rate, as observed in MRI, can be used for diagnosis of
liver diseases.
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3.1. Ferromagnetic Particles in Kupffer Cells

Ferromagnetic and superparamagnetic substances recently used for contrast en-
hancement of liver (2) are magnetite particles Fe3*O; - Fe>* O of size 0.5-1.0 ym or
smaller. These contrast agents are injected into a vein and, after a certain period,
become deposited mainly in liver, spleen, and bone marrow. Histological examination
of liver reveals that the particles are present only in Kupffer cells, macrophages of
liver, whereas the parenchymal cells, e.g. hepatocytes in liver, remain free from contrast
agent (2). Thus, the effect of contrast enhancement is connected with the presence of
Kupffer cells.

This latter feature is important for diagnosis since Kupffer cells can serve as markers
for pathological processes in liver. Hepatitis and chronic alcohol abuse are accompanied
by an enhanced number of Kupffer cells (29). In liver metastasis and liver carcinoma
the number of Kupffer cells is reduced with respect to normal (317). Based on this fact
Saini ef al. (31) showed that after application of magnetic particles focal liver carcinoma
could be distinguished well from normal liver tissue by observing differences of contrast
enhancement in liver. Thus, a model describing contrast enhancement as a function
of the density of Kupffer cells could be very useful for diagnosis of liver diseases as
long as other changes in the tissue are not more important in affecting local relaxation
rates. Before we develop such a model we review first the mechanism of contrast
enhancement in liver due to magnetic particles in Kupffer cells.

3.2. Relaxation Enhancement by Magnetic Field Inhomogenities

Contrast enhancement of liver by magnetic particles originates from reduction of
phase relaxation time 7, (2). Since the spin-lattice relaxation time 7’| is only rarely
affected (2), enhancement of the phase relaxation rate 75! should be mainly due to
enhancement of the secular part of 7! (20).? The secular part of the phase relaxation
rate is determined by stochastic modulation of the precession frequency of a nuclear
spin (20) which occurs when precessing nuclear spins diffuse in an inhomogeneous
magnetic field, the latter being parallel to the external field. In the presence of an
external magnetic field superparamagnetic particles have the property to acquire very
large magnetic moments which can induce strong inhomogeneous magnetic fields
around Kupffer cells (2). Hence, nuclear spins which diffuse in the proximity of
Kupffer cells rapidly lose their transverse magnetization.

We want to consider now the spatial dependence of nuclear relaxation enhancement
around a Kupffer cell. As enhanced phase relaxation is due to diffusion in an inho-
mogeneous magnetic field, a quantity describing the inhomogenity is required. This
quantity is given by the gradient of the magnetic field component parallel to the
external field, i.e., by the gradient of the space-dependent spin precession frequency
G = Vw(x). A precessing nuclear spin which diffuses a distance 6x in the gradient
experiences a modulation of its Larmor frequency dw = éx - G. The larger the gradient

2 This conclusion can be derived from the fact that 7' can be decomposed into a secular and into a
nonsecular contribution (20), T5' = T3 kecuar + T3 honsecutar * T 7 honsecutar 1S due to spin flip processes, i.e., the
same processes as involved in spin-lattice relaxation. Hence, T3 onsecusr 20d 77! have the same magnitude
(10).
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the more pronounced is the variation of the Larmor frequency and, hence, the faster
nuclear spins lose their transverse magnetization ( 20).

In the following we always assume that the external field is parallel to the z-direction.
If the gradient were constant, the transverse magnetization m,._, would decay as m,_,(¢)
= f-m,_, (¢t = 0), where fis the factor '

f= exp(—%DlGllﬁ), [3.1]

and where D is the diffusion constant (21). As can be seen from Eq. [ 3.1], the quantity
describing phase relaxation is the square of the gradient G.

The magnetic field around Kupffer cells can be approximated by a dipole field (20),
1.e., the spatially dependent Larmor frequency can be written in spherical coordinates
(x = (r, %)) as (32)

po 3cos® — 1
olr, 9) =y, g2 -, [32]
where p, is the dipole moment of the Kupffer cell, u, is the magnetic permeability,
and v is the gyromagnetic ratio. g, is proportional to the amount of magnetic material
stored in a Kupffer cell. The square of the gradient is

g 2
|G(r, 19)|2=r—18 <9(1 —2c0320+5cos4z9)(7nz:—:_) . [3.3]
To derive an approximation for the transverse magnetization decay around Kupffer
cells, we consider, |G(r, 9)|?, to be the relevant quantity. Eq. [3.3] reveals that due
to the radial dependence r~3 of |G(r, 9)|? the relaxation develops near the Kupffer
cell, and the effect of magnetite decays rapidly with increasing distance from the
Kupfler cell.

3.3. Diffusion-Reaction-Mechanism

We suggest that the enhanced phase relaxation of nuclear magnetization spreads
around Kupffer cells through diffusion. To describe this relaxation we divide the space
around a Kupffer cell into two subspaces. The first subspace, which we will refer to
as the effect volume, is adjacent to the Kupfler cells. A magnetized nuclear spin entering
this volume will experience instant relaxation. The second subspace is the comple-
mentary space to the effect volume. In this subspace the influence of Kupffer cells on
phase relaxation of a nuclear spin is neglected. Hence, the overall phase relaxation
will depend on the rate with which nuclear spins enter the effect volume. This rate
itself is a function of the density of Kupffer cells and of the geometry of the effect
volume. Since the demagnetization (“reaction’) of a nuclear spin takes place only in
the effect volume around a Kupffer cell and the rate with which spins enter the effect
volume is diffusion controlled, the term diffusion-reaction model is used for our de-
scription.

3.3.1. Definition of the effect volume. The fast decrease of nuclear phase relaxation
with increased radius as described by Eq. [3.3] suggests that a division into two com-
plementary subspaces, the effect volume, in which nuclear spins instantaneously lose
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transverse magnetization, and the complementary volume, in which an influence of
the magnetic substance is neglected, should provide an adequate description. The
boundary between the effect volume and the complementary volume is determined
by a critical gradient G, the magnitude of which is the threshold above which an
influence of the magnetic field surrounding a Kupffer cell is accounted for, i.e., G,
should induce a relaxation of nuclear spins which is very fast compared to the native
relaxation.
The surface Q. of the effect volume is defined as the set of points x which satisfy

|G(r, 9)| = G.. [3.4]

According to Eq. [3.3] this implies the condition

1 2
= -9(1 —2cos20+5cos4z9)(wzﬂ) = G2 [3.5]
r 4

The critical gradient separates volumes with high and small phase relaxation rate, a
behavior which, in our model, is replaced by a discontinuity in the local relaxation
rates. Such discontinuity is certainly an oversimplification and should provide a de-
scription which is the better, the faster |G(r, ¥)|? decays in going from the effect
volume to the complementary volume. In order to investigate this decay we consider
the gradient 9,|G(r, ¥)|? at the surface Q. of the effect volume, Q. being defined
through Eq. [3.5]. From this equation and from Eq. [3.3] one can derive

3,|Glia, = —8- |x|71- G2 [3.6]

Equation [3.6] demonstrates that our assumption of a discontinuous jump in
|G |4, holds better for smaller effect volumes (| x| small).

Unfortunately, even after the assumption of the defined effect volume surrounding
Kuppfer cells, the resulting model is still not amenable to an analytical mathematical
description. The reason is that the surface Q. is too complicated. However, Q_ deviates
actually only very little from a spherical surface, a shape, for which the system can be
described more readily. In order to show that Q. is almost spherical we note first that
the distance of Q. from its center (r = 0) is smallest for the angles ¢, = 0, = and largest
for the angles defined through cos(¥,) = 0.2, the smallest and largest distances being
r = r(¥) and r, = r(¥,). From Eq. [3.5] one can determine that the ratio r,/r, has
the value 1.2. This value is close enough to “1” to allow us to replace €. by a spherical
surface.

We defined the radius of the spherical effect volume as the mean value of the radius
r(¥) over the angle ¥, i.e., R, = (r(¥)). One obtains the value

. Re=1f dy sin 9 r(9)
2 Jo

1 1/4
= ﬁ(wz :7‘; '5) , [3.7]
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where (3 is

B = % JW dd sin 9 (9-(1 — 2 cos?(¥) + 5 cos*(¥)))!/8 ~ 1.35.
0

The small value of the standard deviation A = (V( r2(9)) — {r(3))2/{r(¥))) ~ 6%
implies that the above definition of R, provides a close approximation to the surface
of the exact effect volume. It is noteworthy that R. in Eq. [3.7] depends solely on the
ratio u,/G.. We will assume later on that this quantity is proportional to the dose of
the magnetic substance; this linear relationship can be expected to hold for low dose
levels, i.e., when saturation effects can be discounted.

3.3.2. Model for enhanced phase relaxation around several Kupffer cells. A math-
ematical description of enhanced phase relaxation around Kupffer cells would still
elude us if we needed to include, in an exact manner, the possibility that diffusing
spins can interact with more than one Kupffer cell. However, one can rationalize that
one needs to consider only situations in which spins interact with a single Kupffer
cell. Encounters with second, third, . . . Kupffer cells are accounted for effectively by
reflecting the trajectory of a spin, once it leaves a Kupffer cell to approach more closely
a second Kupffer cell, back to the first Kupffer cell. This approach amounts to sur-
rounding Kupffer cells with a spherical diffusion space, the radius of which measures
half the medium distance between Kupffer cells. The diffusion space is limited at that
radius by a reflective boundary described by a boundary condition as discussed in
Sect. 2.5 above (see Eq. [2.7]).

Our model of enhanced phase relaxation around Kupffer cells involves then the
following assumptions:

1. Only the water proton fraction of nuclear spins is considered.

2. The initial nuclear magnetization is assumed to be homogeneous in liver tissue.

3. The external magnetic field is supposed to be homogeneous outside the effect
volumes of Kupffer cells.

4. The diffusion constant and the native phase relaxation rate in liver tissue are
considered to be constant. This assumption may not apply in the presence of pathologies
since the value of the diffusion coefficient in liver tissue is actually determined by the
permeability of the membranes of hepatocytes.

5. We assume that any nuclear spin will interact only with the effect volume of a
single Kupffer cell, the Kupffer cell closest to the spin’s initial position. We, therefore,
restrict the diffusion space to a sphere around the Kupffer cell. The volume of this
spherical diffusion space is given by the mean tissue volume per Kupffer cell, i.e., the
radius of the diffusion space R, is determined by

R = (i)m, [3.8]

4mc

where c is the density of Kupffer cells. 2 R, corresponds approximately to the mean
distance between Kupffer cells. The assumption that diffusion of nuclear spins is re-
stricted to a sphere with radius R, implies that diffusion is described by a diffusion
equation with reflective boundary conditions at the surface of this sphere. Thus, a
magnetized nuclear spin diffuses inside a spherical diffusion space until the spin has
reached the effect volume where it is demagnetized instantaneously. After this event
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the nuclear spin “disappears” from consideration as it is only through nonvanishing
magnetization m(x, t) that a spin can be observed.

3.4. Mathematical Analysis

We assume, in accordance with the NMR pulse sequence applied, homogeneous
initial magnetization, i.e.,

My_y(X, = 0) = my. [3.9]

According to the model suggested, the m,_, component of nuclear spin magnetization
vanishes instantaneously as spins enter the effect volume. This is expressed by the
condition

My (X, 1) =0, |X| < R, 1> 0, [3.10]

where R, is the radius of the effect volume. The spatial boundary condition at the
surface of the diffusion space is determined by the assumption that nuclear spins are
reflected at this surface, the reasons being analogue to those given in Section 2. This
implies the condition

dm,_,(x, 1) =0, |x| =R,. [3.11]

In the space R, < | x| < R, the local nuclear magnetization is governed by (21)
1
oMy (x, 1) = (DV2 — lwy — -——) Mmy_y(X, 1), [3.12]
Tap

where D is the diffusion constant, V? the Laplace operator, w, the Larmor frequency,
and T3} the native phase relaxation rate. Taking the spherical symmetry into account
and defining m = exp(¢(iwg + 1/ T>y)) - m,_, leads to the simple diffusion equation

am(r, t) = D%Bf(rm(r, 1)). [3.13]

The formal solution of Eq. [3.13] is
m(r,t) = exp(fL)my. [3.14]

with L = (D(1/r)d?r). The relaxation rate Tl (7) of the transformed local mag-
netization m(r, t) is the rate which approximates best the relaxation of m(r, ¢) by a
single exponential decay, i.e., m(r, t) ~ myexp(—1t/ Treax (1)) (10). The relaxation
rate of the transformed magnetization m(r, ¢) and the original magnetization m,_,(r,
t) differ by the native phase relaxation rate 75 }. Thus, the rate T, gives the increment
of the relaxation rate in the presence of magnetic particles.

According to the mean relaxation time approximation (22) T,x(7) can be deter-
mined by an approach which is identical to the one adopted in Sect. 2.5, i.e., it holds

LTrelax(r) = —e.
Integration yields
n 72 C2
Tem(n) = =+ Gt —, [3.15]
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with C, and C, as constants to be determined accofding to the boundary conditions
[3.10]and [3.11], i.e.,
__ R
G = 3D’ | [3.16]
R, R
6D 3:D'R,

The global mean relaxation time of the overall transformed magnetization M(t) =
X m(r, t)4wr?dr is the spatial average of Tyes(7),

1 R
=m b Tmlax(r)-47rr2dr. [318]

With ¢ = R./R, one obtains

G

[3.17]

T

Rl
T——l‘)‘ - F(q), [3.19]
where

=—2.__1___51£13 -1 _3__1_2
F(g)=g¢ 10(1 q)+3 2+q (1-¢% 2(1 q?)|. [3.20]

The global relaxation rate 7! as a function of R./R, is presented in Fig. 7. Since
Eq. [3.8] relates the density of Kupffer cells ¢ to the radius R, of the diffusion space,
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FiG. 7. Dependence of the (incremental) phase gélaxation rate 7~ due to magnetic particles in Kupffer
cells on the ratio R,/R,. T has been evaluated according to Egs. {3.19] and [3.20].
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the global relaxation time in Eq. [3.19] can be expressed also as a function of the

density of Kupffer cells
2 4 143
T=%-F(Re'<§7rc) ) , [3.21]

When the radius of the effective volume R, is much smaller than the mean distance
between Kupffer cells, i.e., ¢ = R./R, = 0, which obviously holds for very small
intracellular concentrations of magnetic particles or widely spaced Kupffer cells, [3.19]
can be written

1 R}
=3 DR’ [3.22]
and with the help of Eq. [3.8] one obtains
T' = 4nDR.c. [3.23]

Equation [3.23] demonstrates that in the above-mentioned limit the relaxation rate
is proportional to the density ¢ of Kupffer cells in the tissue.

3.5. Application of the Model to Experimental Results

In this section we will apply our model to an experiment carried out by Saini et al.
(2). Saini et al. observed NMR signal intensities as a function of the dose of magnetite
iron. Since our model deals with relaxation rates we transform the observed signal
intensities to relaxation rates.

After application of magnetic particles Saini ef al. (2) observed a dose-dependent
decrease of NMR signal intensity in liver. The signal intensities were produced by the
spin-echo method with the pulse sequence parameters TR = 500 ms (repetition time)
and TE = 32 ms (echo time). Since the spin-lattice relaxation rate was only rarely
affected by the magnetic particles the increment in phase relaxation rate 1/ 7 could
be calculated from (33)

1 In(S/Sy)

T TE [3.24]

where S/.S, denotes the ratio of the signal intensity after and before application of
magnetic particles.

According to our model the increment of phase relaxation rate in the presence of
magnetic particles in Kupffer cells is given by Eq. [3.19]. For the calculation of re-
laxation rates one needs to know the radius R, of the effect volume which itself depends
on the induced magnetic dipole moment g, around Kupffer cells (Eq. [3.7]). This
dipole moment is determined by the amount of intracellular magnetite iron. Since
this parameter was not evaluated by Saini ef al. (2) we assumed that for small con-
centrations of applied magnetic particles the amount of intracellular magnetite iron
d is proportional to the applied concentration C,

d(Cy=K-C, [3.25]
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where K is a constant. The dipole moment y, is proportional to the amount of intra-
cellular magnetite iron d,

u.(d) = const- d. [3.26]

By means of Eqs. [3.7] and [3.26] one obtains for the sizes of the effect volumes for
two different doses of applied magnetite iron C; and C,

1/4
RlG) (9—1) [3.27]

R(C) \G

Once the radius R, for a certain dose C, is known, Eq. [3.27] enables one to determine
R, for any dose C;.

We considered, therefore, the observed increment of the relaxation rate 77! for a
certain dose of magnetite iron (C = 10.9 umol Fe/kg body wt). Using Eq. [3.19] and
mean intercellular distances 2 R, of 40, 60, or 80 um (13), R, was computed for this
concentration. For the determination of the relaxation rate increment as a function
of dose, i.e., T~' = T7!(C), we determined first according to Eq. [3.27] R.(C). The
results are shown in Fig. 8. We evaluated then from [3.19] T7! = T!(R.(C)). This
rate is presented in Fig. 9.
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F1G. 8. Dependence of R, on the dose of magnetite iron. The mean distance of neighboring Kupffer cells
(2R,) was assumed to be 40 um (typical values are actually in the range 50-80 um). R, has been evaluated
according to Eq. [3.7] assuming a linear relationship between u./ G, and the dose of magnetite iron. Since
the proportionality factor between u,/ G, and the dose is unknown, we have fitted R, for a particular iron
concentration, namely for 10.9 umol Fe/kg body wt, for which the relaxation time is known (7! = 28.46
1/s). The latter had been determined from data by Saini ef al. (2) using Eq. [3.24]. The diffusion coefficient
in liver chosen is D = 1 um?/ms.
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FIG. 9. Dependence of the (incremental) phase relaxation rate 7! on the dose of iron (magnetite). The
rate has been evaluated according to Eq. [3.19] using R.(c) as shown in Fig. 8. Three different mean
distances (2R,) of neighboring Kupffer cells are considered: 40 um (—), 60 ym (------- ), and 80 um
(- — — —). The results are compared to relaxation rates (X) obtained from signal intensities of Ref. (2)
using Eq. [3.24]. (D = 1 um?/ms).

As can be seen from Fig. 9 the best fit of observed and calculated relaxation rates
is achieved for an intercellular distance 2R, = 40 um. The observed relaxation rate
for a dose C = 23 umol Fe/kg body wt is smaller than predicted. In judging this
discrepancy one has to keep in mind that the prediction of the relaxation rate has
been based on the assumption that the intracellular magnetite concentration is pro-
portional to the applied dose (Eq. [3.25]). Since this pharmacokinetical assumption
can be expected to hold only for small doses of magnetite, iron saturation effects on
iron uptake by Kupffer cells might explain the above mentioned discrepancy. This
explanation actually is confirmed by an observation of Saini et al. (2) who reported
that for a dose of 50 umol Fe/kg body wt the major part of the intracellular space of
Kupffer cells is filled with magnetic particles. This implies that saturation effects occur
most likely for doses of about 23 umol Fe/kg body wt.

3.6. Discussion

In this chapter we have presented a model describing enhanced phase relaxation
due to magnetic particles in Kupffer cells. An analytical expression for the relationship
between phase relaxation rate enhancement and density of Kupffer cells was obtained
for a model which replaces the gradual effect of dipole fields around magnetic Kupffer
cells by a discontinuous relaxation rate. As NMR signal intensities depend on phase
relaxation rates our result might help to determine, by means of observed contrast
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differences, densities of Kupffer cells in liver and, thereby, to detect pathological states
of liver tissue.

The most prominent member in the group of liver pathologies is carcinoma which
is accompanied by a characteristic reduction in the density of Kupfer cells (37). The
application of magnetic particles in experimental MRI leads to pronounced contrast
enhancement between tumor and normal liver tissue (37). The difficulty in conven-
tional diagnosis of liver carcinoma is that the tumor tissue sometimes is highly dif-
ferentiated, i.e., the tumor tissue exhibits a structure quite similar to that of normal
liver tissue (29). As a consequence there is only little difference in (i) absorption of
X-rays, (ii) reflection of ultrasound waves between tumor and normal liver tissue,
and, hence, because of (i) conventional X-ray tomography, and because of (ii) ultra-
sound reflection may fail in diagnosing liver carcinoma. One successful conventional
method left is scintigraphy of liver. The disadvantage of scintigraphy is that scintigrams
have a poor spatial resolution, i.e., it is difficult to identify small tumors and to dif-
ferentiate tumor tissue from normal tissue at the boundary of the tumor. Due to its
high spatial resolution MRI does not have such disadvantages.
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differences, densities of Kupffer cells in liver and, thereby, to detect pathological states -
of liver tissue.

The most prominent member in the group of liver pathologies is carcinoma which
is accompanied by a characteristic reduction in the density of Kupfer cells (37). The
application of magnetic particles in experimental MRI leads to pronounced contrast
enhancement between tumor and normal liver tissue {37). The difficulty in conven-
tional diagnosis of liver carcinoma is that the tumor tissue sometimes is highly dif-
ferentiated, i.e., the tumor tissue exhibits a structure quite similar to that of normal
liver tissue (29). As a consequence there is only little difference in (i) absorption of
X-rays, (ii) reflection of ultrasound waves between tumor and normal liver tissue,
and, hence, because of (i) conventional X-ray tomography, and because of (ii) ultra-
sound reflection may fail in diagnosing liver carcinoma. One successful conventional
method left is scintigraphy of liver. The disadvantage of scintigraphy is that scintigrams
have a poor spatial resolution, i.e., it is difficult to identify small tumors and to dif-
ferentiate tumor tissue from normal tissue at the boundary of the tumor. Due to its
high spatial resolution MRI does not have such disadvantages.
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