MAGNETIC RESONANCE IN MEDICINE

TheOry of Heterogeneous Relaxation in

Compartmentalized Tissues

Daniel Barsky, Benno Piitz, Klaus Schulten

A new model of compartmentalized relaxation—that which
occurs for spins (protons) exchanging between compart-
ments of different relaxation rates—is presented. This model
generalizes previous ones by allowing spatially dependent
relaxation within compartments. Solutions for the diffusion-
Bloch equations are found via an efficient numerical tech-
nique known as the generalized moment expansion, and they
agree well with the solutions to the standard two-site ex-
change equations (TSEE) for many typical situations. Specific
models are developed for liposomes, red blood cells, capillar-
ies, and arteries with respect to applied contrast agents. A
parameter derived from tissue characteristics is introduced to
predict the nature of the solutions. A new method is proposed
for using contrast agents to detect capillaries, which exploits
their high surface-to-volume ratio relative to the other ele-
ments of the vasculature.
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INTRODUCTION

This paper provides a new model and mathematical tech-
niques to describe the NMR signal under diffusional
exchange between two or more compartments that differ
in their relaxation rates and to delineate the implications
of this model in terms of the discernible signal obtainable
from tissue compartments such as capillaries.
Compartmentalized contrast agents act outside their
compartments by the diffusion of water into or near the
compartments. Indeed, we and others have shown that
longitudinal relaxation rates T, * measured for Gd-DTPA-
filled liposomes and biological cells can be explained by
water proton transport (exchange) across the cell mem-
brane, and a quantitative description of this exchange
mechanism has been worked out elsewhere (1-5). We
and others have additionally addressed the enhancement
of transverse relaxation rates T, by diffusion around
cells or liposomes, which takes place in the presence of
local field inhomogeneities due to susceptibility differ-
ences between cells or liposomes and the surrounding
water (5—9). We consider here, however, only longitudi-
nal relaxation, and at MRI field strengths (>1 T}, there is
no measurable analogue for enhanced longitudinal relax-
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ation outside of large particles such as liposomes (7);
thus it is the exchange mechanism of relaxation that we
investigate here. The exchange mechanism has been ex-
ploited to measure diffusion across membranes accord-
ing to various models (1-5, 10-17).

We have earlier developed a mathematical description
for liposomes distributed in serum or tissue, based on the
diffusion-Bloch (or Bloch-Torrey) equations and derived
simple expressions, as well as spatially dependent ex-
pressions, that relate relaxation rates to lipesome size
and abundance as well as to a diffusion coefficient for
water and liposomal membrane permeability (4). Other
descriptions have included the strength (concentration)
of the entrapped contrast agent by ignoring the spatial
dependence of the relaxation—spins are regarded as either
“in” or “out.” This approach yields two coupled rate equa-
tions, often called the two-site exchange equations (TSEE,
Eg. [6]). Such descriptions have been developed along var-
ious lines in (3, 5, 12) and applied toward permeability
measurements of red blood cells in (13—-17). More recently
Herbst and Goldstein have reviewed the application of the
TSEE in inferring the permeability of red blood cells in
experiments where contrast agents are employed (18).

Here we investigate the limits of the TSEE model by
developing a more general description that includes the
spatial (radial) dependence of exchange, and we make
comparisons for models of liposomes, red blood cells,
and capillaries. We show how to predict the nature of the
relaxation and when biexponential solutions can be sim-
ply related to exchange rates and to the physical volume
fractions of the compartments. Finally, we show how a
contrast agent could be used to detect viable capillary
beds against the background of the rest of the vasculature.

METHODS

We employ a simple geometrical representation of cells,
capillaries, and other tissue “vesicles” that have been
presented with a contrast agent. We regard a tissue as a
collection of biological vesicles embedded in a surround-
ing medium. Assuming a homogeneous distribution of
cells or liposomes in tissue or serum, we model the entire
tissue region by a single sphere of volume V which is
divided into three concentric regions: a spherical interior
radius r, that represents a cell or liposome, a surrounding
shell of outer radius r, representing a membrane, and an
outer region of radius r; representing the surrounding
medium. In this model we make the assumption, as else-
where (4, 19), that the spins diffusing through the outer
region are reflected at half the average distance between
vesicles ry, which is given by

4

total volume s

I3

(1]

number of vesicles 3
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Tubular vesicles such as arteries or capillaries will be
regarded as locally parallel cylinders and thus treated as
two-dimensional analogues of the cell model where
“sphere” becomes “circle,” and the volume V becomes
area A. For simplicity of presentation we will develop the
mathematics for the spherical geometry and explicitly
mention cylindrical geometry only when the analogy
might be lost.

Diffusion-Bloch Equations

We connect this geometrical model with the mathemati-
cal model developed by Bloch, and later modified by
Torrey to describe the magnetization. Torrey suggested
that when NMR is selective to water protons, the local
magnetization is subject to the same diffusion law as the
water molecules (20). Hence, he described each compo-
nent of the local nuclear magnetization r, t) by the
Bloch equations to which he added a diffusion term v
D(r)v,

mtrans(r!t) _ . _ iw0+T;1(r)
"’t(mlmgu,t))'[v po - ("1t ) 2

. (mtrans(r,t)>

mlong(r st)
where D(z) is the local diffusion coefficient of water, o, is
the Larmor frequency, and T *(r), Ty *(z) are the trans-
verse and longitudinal uncompartmentalized relaxation
rates, i.e., for a solution of contrast agent or in plain water
in the absence of proton exchange between environ-
ments. The spatial dependence of these rates will be
simple radial step functions of the short and long relax-
ation times in the presence and absence of a contrast
agent, respectively.

For concreteness we consider mainly a T,-weighted,
inversion-recovery scheme. For this case we solve the
equation which describes the longitudinal magnetiza-
tion, although the transverse magnetization follows a
similar description.’ In an alternative notation, where
@(r)=V + D@V, k(r)=T; *(z) and m(r, f) = Mgl 1), the
longitudinal magnetization from Eq. [2] is written

9 (r,t) = [D(r) — k(D]m(r,2) (3l

The physical observable is the overall magnetization,
obtained by integrating over all space M(t) = [¢ dQ m(r,t)
where dQ is a differential surface or volume element for
two- or three-dimensional geometries, respectively.

In an inversion-recovery sequence, the initial condi-
tions are of a uniform magnetization, inverted relative to
the equilibrium magnetization; i.e., at time t = 0 an
instantaneous, nonselective 180°-pulse is applied. For
convenience we use a transformed, normalized local
magnetization m(r, f) which relaxes from unity to zero, so

1 The transverse magnetization can be described in exactly the same way if
one applies a transformation Myans(; t) = e~!wotmyr, t), which is valid in the
absence of non-discountable (via spin-echo, etc.) field inhomogeneities.
Such non-discountable inhomogeneities will occur in the case of super-
paramagnetic contrast agents and may appear due to susceptibility effects
outside of Gd-filled vesicles, although such effects are normally negligible

5).
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that if m' denotes the actual local magnetization and Mgy

~ denotes the actual (uniform) equilibrium magnetization,

then

m(r,t)E-:-[l _m’(r,t)] [4]

The initial conditions are then
m'(r,t=0)= —m's, and m(r,t=0)=1 [5]

Two-Site Exchange Equations

Rather than solving Eq. [3] directly, one can describe the
magnetization of a two compartment system by two com-
ponents, m; and m,, corresponding, for example, to the
magnetization of spins inside and outside the liposome,
respectively. If 7, and 7,; represent the average time for
water molecules to cross the membrane from the inside
and the outside, respectively, and the local relaxation
times inside and outside are denoted by T, and T, then
this two site description can be formulated in a system of
coupled differential equations, the two site exchange
equations (TSEE, cf. (17, 18))

d (mi(t)> _ ( - (R + 7o) Tio' ) (mi(t))
di \mo()) ! — (R, + 7)) \my()

-_ _ )
R

where R, and R, are the “inside” and “outside” relaxation
rates, respectively. If, for example, the contrast agent is
present only in the inside compartment, then R; = Togont
+ T7* and R, = T;* where T,gp, is the relaxation rate
enhancement due to the same concentration of contrast
agent in an uncompartmentalized system. As an initial
condition we choose, without loss of generality, the total
magnetization m;(0) + m,(0) normalized to unity. It is
useful to define a volume fraction V; as the ratio of the
inside compartment volume V; to the total volume V,

Vi m;(0) (H) ?
=== | — 171
vV  m,(0) + my(0) Iy

Using a modern mathematics software package, is easy to
obtain the solution to Eq. [6]. We have included a short
Mathematica script in Appendix A. The solutions to Eq.
[6] have been published in (17), as well as the less acces-
sible algebraic inverse thereof. In principle, the inverse
solutions transform the measured biexponential rates
and components into physical volume fractions and
membrane transit rates, i.e., membrane permeabilities.

A well-known formula relates the exchange rate ;' to
the permeability P, of the barrier,

V.
=Py : (8
T ds‘ ]

J

where §; is the surface area of compartment j. Equation
[8] has been derived in ref. 4, and it is valid as long as the
diffusion constant of water through the barrier membrane
D,, is much smaller than the diffusion constant of water
D,,. For a membrane of thickness d, D, = P,d. Detailed
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balance demands that a particle exit for every one that
enters, so that 7,;' = V7%

Finite Difference Approximation

It is also desirable to solve Eq. [3] directly. To this end we
make a finite difference approximation to Eq. [3],
whereby the diffusion space of radius R is discretized
and, by the spherical symmetry, mapped onto an N-
dimensional vector r with components (r, = nR/N for
n =1,..., N} that correspond to discrete shells of the
spherical diffusion space. (To avoid confusion R is used
here in place of r; of the last section.) The choice of N
determines the smoothness of the approximation; all cal-
culations presented here have employed N = 1000. The
local magnetization m(r, t) is approximated by an N-
dimensional vector m(f) where the nth component is
defined by

m,(t) = m(r=r,,t)v, {9]
where
am\ ri—-ri_,
vp=|—] — [10]
3 14

For each n € [1, N, v, is proportional to the volume of
the shell between radii r,_, and r,, and we called the
vector v, of which the v,, are components, a volume
distribution vector.

According to Eq. [9], the initial condition for the local
magnetization (Eq. [5], right) is m{t = 0) = v. Thus, the
nth component of m(¢f = 0) is determined by the equilib-
rium distribution of particles

(t_O)_ —M [11]
mp(t = =Vp= Na

The Brownian motion of the water protons is represented
by “jumps” between adjacent shells, e.g., from r,, to .. ;.
The rapidity of these jumps is determined by an N X N,
tridiagonal transition matrix D (defined below) which
replaces the differential diffusion operator %(z) (21, 22).
Similarly, the scalar reaction operator k(r), defined by Eq.
[3], is mapped onto a diagonal matrix K with nonvanish-
ing elements K,,,, = k(r = r,). If k(1) is not constant within
a particular shell, the volume-averaged value in that shell
is taken. With this notation the master equation corre-
sponding to Eq. [3], i.e., the finite difference approxima-
tion to Eq. [3], can be written

am(t) = [D — K]m(z) [12]

The overall magnetization M(f) is the sum over the com-
ponents of m(i),

M(t) = 2 m, (1) [13]

n=1

and the actual magnetization M'(f) can be determined by
analogy to Eq. 4, M'(f) = m,,(1 — 2M(D).
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Transition Matrix

For the discretization scheme described above the tran-
sition matrix D is tridiagonal and is defined by (21-23)

= (Dy-1,k + Dysr 1) j=k
D}‘ = ’T—1 Vj/Vk j= k + I [14]
0 otherwise

where the indices j, k € [1, N], and elements with an
index of zero or N + 1 are taken to be zero. The latter
assumptions are in accordance with the conservation of
particles at the origin and with the reflection of particles
at the outer boundary R (22). For each j, k pair,

7! \v{/vi denotes the jump rate from site ry to r, This rate
is related to the diffusion coefficient D(r) by (1) =
D(1)/(R/N)?, which describes the finite difference ana-
logue to Einstein’s diffusion equation (24). In this repre-
sentation the off-diagonal elements Dy control the diffu-
sion from site r; to r;, and the diagonal elements L;
account for the flow from site r; to sites r;_, and r;, ,. At
the membrane interfaces the diffusion coefficient
abruptly changes. We take the volume-weighted average
of the two rates for those lattice sites which contain both
membrane and surrounding medium.

The existence of an equilibrium distribution, namely
m{t) = v, requires that the condition of detailed balance
be satisfied

Dika= Dk]'Vj [15]

It can easily be verified that the transition matrix (14)
satisfies condition (15).

Solution by Newton’s Method

By an approximation known as Newton’s method, a time-
iterative solution of Eq. [12] can be obtained according to
the scheme

m(t + Af) =m(t) + A{(D — K)m(?) [16]

where At denotes a short time interval. Starting with
m(t = 0) as given by Eq. [11] and taking At sufficiently
small, one can iteratively evaluate m{f) for arbitrarily
long times. To this solution we can fit a mono-, bi-, or
multi-exponential curve and, thereby, find the corre-
sponding rate(s). For example, one can measure the very
early and very late slopes of a semi-log plot to obtain the
rates of a biexponential fit.

Generalized Moment Expansion

When it is known that the solution is a sum of exponen-
tials, then the generalized moment expansion (GME) is
much more efficient than Newton’s method. The GME
has been thoroughly described elsewhere where it has
been applied to Brownian relaxation processes (21), dy-
namic correlation functions (25), and used to develop the
method of continuous microphotolysis (FRAP) (26, 27).

The method is related to the Mori-Zwanzig formalism
(refs. given in (26)). It involves projection of m(t) onto the
subspace of selected low and high frequency modes. In
an appendix we provide the detailed mathematical for-
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mulation of the method, and give explicit expressions for
amplitudes and relaxation times corresponding to mono-
and biexponential descriptions. The method requires a
calculation of the short and long time moments u; which,
respectively, characterize the fast and slow responses of
M(#). The derived moments are used to construct a Padé
approximant which yields a multiexponential (here biex-
ponential) solution. A monoexponential solution re-
quires two moments, e.g., o, 14—, wWhich reproduce M(0)
and [ dt M(t) exactly. A biexponential solution requires
four moments, e.g., i,, Mo, M_q, M_p Which reproduce
M'(0), M(0), [ dt M(t), and [ dtt M(t) exactly. If, how-
ever, the moments are proportional to one another, the
solution will be mono-exponential, and the biexponen-
tial solution will encounter a singularity. The choice of
moments depends on what one intends to describe best:
positive moments provide a description which is more
accurate for short times t = 0, while negative moments
provide a description more accurate for long times, ¢ > 0.
The GME is several orders of magnitude faster than New-
ton’s method where At must be chosen much smaller
than any of the relevant time constants, r,/D,,, 7o, Top
and Togent

Model Applications

We employ the TSEE and the GME algorithms described
above to obtain the longitudinal magnetization as a func-
tion of time for model systems. The monoexponential
descriptions are obtained via Egs. [B12] and [B14], using
the moments yu, and p_,. For the GME biexponential
solutions, the p_g, p_5, m_4, o moments of the GME are
inserted into Egs. [B15-B19].

Liposomes and Cells

We consider two experimentally relevant liposomal sys-
tems whose characteristics are listed in Table 1: a para-
magnetic contrast agent (e.g., Gd-DTPA) entrapped in
liposomes that are suspended in water or serum which is
free of contrast agent (row 1, “ensomes”); and water-
filled, contrast agent-free liposomes suspended in a so-
lution of contrast agent {(row 2, “exsomes”).

We employ the same (0.3%) concentration of lipo-
somes as used experimentally in refs. 28 and 29. The
liposomes are assumed to have a uniform radius of r, =
50 nm, including the membrane, and a membrane thick-
ness of d = 5 nm. The contrast agent is assumed to
provide an enhanced relaxation rate four orders of mag-

Table 1
The Physical Parameters Used in Table 2
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nitude larger than the native relaxation rate T; * which
was taken to be 0.3 s™*. In particular, in 670 mM Gd-
DTPA the relaxation rate has been measured at 1869 s™*
(28).

For the ensomes we used the experimental parameters
published in ref. 28 and reproduce the experimental
value of the measured (slow) relaxation rate, 2.5 s~* (28),
after additionally assuming a value D,, = 8 X 10~ m?/s,
which is reasonable for the egg-PC liposomes at room
temperature (30). For considerably more impermeable
DPPC/DPPG exsomes, we assumed D,,, = 9 X 1077 m?/s
to reproduce the experimentally observed slow relax-
ation component of 1.5 s~ (30). Although the other
parameters were not published for this experiment, this
D, value is entirely consistent with published values for
DPPC/DPPG liposomes (30).

The red blood cells are modelled as spheres for the
purpose of employing the finite difference approxima-
tion, but this should have little effect on the solution
results as long as the cells are randomly oriented. In the
TSEE description shape is not a factor at all. Many in-
vestigators have reported using a contrast agent (usually
Mn?*) to measure red blood cell permeability (13-17),
using TSEE and various approximations thereof. An ex-
cellent review is available {(18). In Table 1, rows 3a and
3b, we have selected parameters to demonstrate the ef-
fects of high and low levels of contrast agent and to
compare the TSEE and GME solutions.

Capillaries and arterioles

The capillary model we present here is a two-dimen-
sional model which describes tissue in terms of capillar-
ies, lumen, and a homogeneous intercapillary medium.
For the moment we ignore the presence of other, differ-
ently-sized blood vessels such as arterioles. The methods
are the same as in the Methods section, except that the
volume V (Eq. [1]) is replaced by an area A = 7 R? and
Egs. [10] and [11] are modified accordingly.

Capillaries come in highly varying types and charac-
teristics, liver capillaries being the most permeable, brain
capillaries the least, and muscle capillaries in between
(31). The permeability P, of a membrane to a substance is
related to an effective diffusion coefficient D,, of that
substance in the membrane by

Dy,
Py= ] [17]

System Vi ry[m] d[nm] Ri[s™"] Ro s D,, [107"* m?/s] D,, [107% m?/s]
1 Ensomes 0.003 45107° 5 1869 0.3 8 2.3
2 Exsomes 0.01 45107° 5 0.3 100 0.009 23
3a  Blood cells 0.1 5107 10 2 20 20 23
3b  Blood cells 0.1 5107¢ 10 2 1000 20 23
4 imperm. capil. 0.04 25107¢ 10 100 1 1 1
5 Semi. capil. 0.04 2.5107° 10 100 1 20 1
6 Perm. capil. 0.04 251078 10 100 1 100 1
7 Arteriols 0.1 251078 - 20 100 1 20 1
8 Arteries 0.1 250 107 100 100 1 20 1
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where d denotes the thickness of the membrane. The
capillary wall can be modeled in two different ways: as
two lipid bilayers each about 5-nm thick, separated by a
1 pm thick layer of cytoplasm or as a single, homoge-
neous layer of low diffusivity. The diffusivity values D,,
are determined by the published values of P,, using Eq.
[17]. For brain capillaries a water-through-membrane
permeability in the range 6 X 1072 to 2 X 10~* cm/s
(D, = 60 to 2 [X107 m?/s]) probably exists as long as
the blood-brain barrier (BBB) remains intact (32-34). A
breakdown of the BBB could either increase permeability
to water or Gd-DTPA or both. If the Gd-DTPA leaks out of
the capillary space, then the decay is expected to become
everywhere enhanced and lose its biexponentiality. This
by itself appears to have diagnostic value, e.g., in the
assessment of insults to the brain, but it makes it impos-
sible to distinguish the intra-capillary signal from the
inter-capillary signal.

Values for average capillary volume are in the range of
4% to 7% of the total brain volume (35, p. 311). The
employed parameters for capillaries and larger blood ves-
sels are listed in rows 4—8 of Table 1. We employ a range
of experimental possibilities for purposes of comparison.

RESULTS AND DISCUSSION

We have solved Eq. [3] (GME) and Eq. [6] (TSEE) for the
previously described models of liposomal systems, red
blood cells, capillaries, arterioles, and arteries under the
initial conditions of an inversion-recovery experiment
(Eq. [5]). Using the parameters listed in Table 1, we
present the solutions in Table 2.

Barsky et al.

TSEE versus Finite Difference Methods

Inspection of Table 2 reveals that the TSEE and the
biexponential GME agree well for all situations consid-
ered here. We conclude that a model with radial depen-
dence is unnecessary for these applications because the
relaxation depends only on exchange. Changing the
membrane thickness, for example, from d = 10 nm to d =
1 pm—and rescaling D, accordingly—produces the
same results in our capillary model. Nevertheless, where
compartmental division is weak or lacking (i.e., D, =
D,), Eq. (8] will not be valid (4), and an exchange model
becomes inappropriate. For uniform initial conditions
the relaxation will be monoexponential, but where the
magnetization is not everywhere the same at time ¢ = o,
the finite difference methods developed here can be used
to describe the behavior of the magnetization.

The Characterization of Relaxation

Intercompartmental exchange can be characterized as
slow, intermediate, and fast. Under fast exchange, the
relaxation will be monoexponential, with the single rate
being the weighted volume-average of the two rates. Un-
der slow exchange the relaxation will be “simple biex-
ponential,” i.e., relative components of the signal will
correspond closely to the volume fractions of the physi-
cal compartments. Under intermediate exchange the re-
laxation will be biexponential, but the relaxation compo-
nents do not directly correspond to the physical volume
fractions; they are related by complicated algebraic ex-
pressions (17).

Mathematically, Eq. [6] yields a biexponential solution
for the magnetization decay

Table 2
Relaxation of Several Physical Systems Involving Compartmentalized Contrast Agents
GME
System Q TSEE
bi mono
1 Ensomes 0.57 0.1%:2940 0.1%:2747 2.47
. 99.9%:2.34 99.9%:2.47
2 Exsomes 0.01 99.0%:100.3 98.7%:99.7 54.5
1.0%:1.50 1.2%:1.50
3a Blood cells 1.7 45.1%:12.2 43.8%:12.1 16.5
54.9%:23.1 56.2%:23.0
3b Blood celis 0.01 89.8%:1001 89.8%:1001 121
10.2%:14.0 10.2%:13.8
4 Imperm. capil. 0.008 3.9%:101.8 3.9%:100.8 1.07
96.1%:1.03 96.1%:1.03
5 Semi. capil. 0.17 3.0%:117 3.0%:114 1.59
97.0%:1.55 97.0%:1.54
6 Perm. capil. 0.84 1.2%:182 1.6%:145 2.59
98.8%:2.83 98.4%:2.55
7 Arteriols 0.009 9.8%:101 9.97%:84.4 1.19
90.2%:1.09 90.0%:1.07
8 Arteries 0.0002 10.0%:100.0 9.99%:97.5 1.11
90.0%:1.00 90.0%:1.00

(1) Liposomes entrapping contrast agent, (2) liposomes excluding contrast agent, (3) blood cells in a bath of
contrast agent (analogous to exsomes), and, all entrapping contrast agent, (4) impermeable, (5) semi-permeable,
and (6) highly permeable caplliaries, (7) arterioles, and (8) arteries. Biexponential descriptions are given in terms
of two amplitudes each followed by a respective rate. Thus the expression 0.001 exp(—3060t) + 0.999
exp(—2.48t) is written 0.1%:3060; 99.9%:2.48. The monoexponential rates (last column) are calculated from
1o/1—y (see Discussion). All rates are in s, The physical parameters are listed in Table 1.
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m(t) = my exp( — Rgowt) + m; exp( — Reat)  [18]

and the eigenvalues of ® constitute the two rates Ry,
and R, while the magnitude of the eigenvectors of &
describe the relative populations m, and m, relaxing at
those rates. If 7;* and 7_;* were zero (i.e., no exchange)
then .the rates R,,,, and Rg, would just be the two
diagonal elements R; and R,, and the components m, and
m, would exactly correspond to m;(0) and m,(0). We call
such behavior simple biexponential. The greater the
amount of exchange, the less these correspondences
hold.

We have developed a simple diagnostic for determin-
ing the exchange condition. We first define the quantity
Q, which relates to the diagonality of R.

Ti—ol/(l - Vf)

<R
B
Q - T;illvf [19]
—_— R, >R,
(Hi - Ro)

If Q is much greater than unity (Q > 10), then the ex-
change is fast and the relaxation is monoexponential. If Q
is much less than unity (Q < 0.1), then the exchange is
slow and the relaxation is simple biexponential. Finally,
if Q is within an order of magnitude or so of unity (0.1 <
Q < 10) then there is intermediate exchange and the
relaxation is biexponential with the relaxation compo-
nents being related to the physical compartments in an
algebraically complicated way.

Monoexponential Relaxation

An exception to this last rule occurs when the compart-
ment with the fast relaxation is very small (<1%), in
which case the slower component of the biexponential
relaxation will dominate, and the relaxation is practi-
cally monoexponential; i.e., the slow rate is equal to the
monoexponential rate as in row 1 in Table 2. In an
experiment the measured data is usually fit to a mono-
exponential or biexponential decay curve by a least
squares fit. Since all of the Q values in Table 2 are much
less than 10, none of the decays are properly described by
a monoexponential function. Nevertheless, the fast com-
ponent is often not measured because the data are col-
lected at times much later than the fast relaxation time;
thus mostly the slow component of the relaxation is
observed. In Table 2 the monoexponential rates demon-
strate the inadequacy of a monoexponential description.
The rates have been determined by the ratio wo/p_,
which provides a compromise between the short-time
and the long-time behavior. What would be observed
experimentally depends on when during the relaxation
the data are collected. A monoexponential fit to highly
relaxed data would be better predicted by the long-time
moments, e.g., the ratio p_,/p_,; such ratios converge to
the slow rate with successively more negative moments.

Biexponential Relaxation

In the case of slow exchange (Q < 0.1), the relaxation is
simple biexponential, which implies that not only are the
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physical volume fractions simply given by the relaxation
components, but the measured relaxation rates are easily
related to the membrane permeability and vesicle size (or
surface-to-volume ratio). Under slow exchange, the
slower of the measured decay rates closely corresponds
to the membrane exchange rate from the slow to the fast
compartment; i.e., it holds that

-1
— Tio » R; <R,
Hslow - Tl T { l—01

Toi » Ri > Ho [20]

Conlon and Outhred employed this approximation (to-
gether with Eq. [8]) in their original study of water dif-
fusion permeability of erythrocytes using NMR (36). In
their review Herbst and Goldstein (18) indicate that Eq.
[20] is made less accurate by finite fast relaxation rates
(i.e., finite Mn2* concentrations) and point out the insuf-
ficiency of patching this approximation with a “backflux
term,” but stop short of presenting a diagnostic such as Q
which determines the validity of Eq. [20]. The results for
model red blood cells (rows 3a and 3b) illustrate the
effect of finite Mn?* concentrations: in row 3a the com-
ponents m, and m, are very different from m; and m,,. In
this case, however, R, — T3 is only 13% less than 7,,,
implying that the membrane permeability would be un-
dervalued by only about 13%.

When the exchange is intermediate (0.1 < Q < 10), one
may resort to solving Eq. [6] for m;(0) and m,(0) in terms
of the the fast and slow rates and amplitudes (17), but the
equations are complex, highly non-linear function of in-
put parameters such as vesicle radius and membrane
permeability. The uncertainties in the biexponential fit
will further diminish the reliability of such an approach
(37). :

3.3 Observing Small Vessels

For many applications it is necessary to be able to dis-
tinguish the intra-capillary signal from extra-capillary
signal. On the one hand, if resolution is great enough,
such as the several micron resolution available in NMR
microscopes (presently in vitro only), one can expect to
visualize capillaries directly. On the other hand, at clin-
ical resolution, which is on the order of millimeters, an
indirect method for visualizing capillary beds can be
employed as will be described.

Signal from Capillaries

When there is slow or intermediate exchange, a monoex-

" ponential description ignores the fast component of the

relaxation. Our capillary model (rows 4-6) shows that
the monoexponential rates are very close to the slow
component rates of the biexponential solutions, which
would seem to imply that the fast component can be
ignored. By an appropriate experimental method, how-
ever, the fast component may be measurable, and this
component is related to the intracapillary signal as de-
scribed above. In Fig. 1 we present the magnetization
recovery in time as a function of distance from the center
of a model capillary, as would occur during an inversion-
recovery experiment. One can observe that signal con-
trast between the signal from the capillaries and the



672

0 | magnetization

magnetization

FIG. 1. Magnetization {normalized) as a function of time and dis-
tance from the center of a model capillary containing Gd-DTPA.
The two figures differ only by the permeability of the capillary
membrane: (a) row 4 and (b) row 6 in Table 1. Even for the highly
permeable capillary (b), there is strong signal contrast between the
intracapillary and the extracapillary signal for 10 to 100 ms.

surrounding tissue is maximal within tens of millisec-
onds after O°-preparation pulse. This assumes that
transport-through capillary walls is the dominant mech-
anism 0f spin-lattice (T,) relaxation enhancement; and
suscgptibility effects can be minimized by keeping the
acquisition time TI, during which spin-spin (T,) relax-
ation occurs, quite short (to less than about 20 ms). In Fig.
la the water permeability of the capillary wall is low
(P4 = 10™* cm/s), and there is a sharp division between
the magnetization inside and outside the capillary that
persists for hundreds of milliseconds. Figure 1b demon-
strates, however, that even for much more permeable
capillaries (P; = 107? cm/s), strong signal contrast is
available from an inversion-recovery imaging sequence if
TI is in the range of 50 to 200 ms.

Inversion-recovery bears the disadvantage that one
must wait for the extracapillary signal to go through a
null before probing the intracapillary signal with a 90°-
" pulse. Another way is to apply a 90°-7-180°--90° pulse
sequence such that 7 is only a few milliseconds, on the
order of the agent relaxation time Togent- It this sequence,
at time 27 most of the spins in the intercapillary region
would be refocused by the 180°-pulse, while most spins
in the intracapillary region would be fully relaxed—
realigned with the external magnetic field. Since the
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second 90°-pulse comes at the echo time of the mostly
unrelaxed spins (intercapillary) spins, they are inverted
at the same time that the intracapillary are excited by the
second 90°-pulse.

Signal from Capillary Beds

Since the relaxation rates are primarily exchange con-
trolled, the measured relaxation rates depend sensitively
on the exchange rates for the spins between the intra- and
inter-capillary spaces. Since the exchange rates depend
linearly on the surface-to-volume ratio of the vesicles, the
much wider (10X) arterioles and (100X) arteries give rise
to a much less enhanced surrounding relaxation rate. In
other words, Rifiuy > Riewio.. This is supported by the
slow rates in rows 5 and 6 versus those in rows 7 and 8
of Table 2. The important implication is that by looking
at the slow component of the relaxation, a region con-
taining capillaries will show markedly faster relaxation
than regions of only arterioles and arteries.

To exploit the difference in the two decay rates be-
tween regions containing viable capillaries and those
that do not, we propose another WEFT-like inversion-
recovery sequence whereby the signal of the more slowly
decaying region is eliminated, revealing the capillary-
bed signal. Where capillaries are present, the slow com-
ponent will be dominated by the capillary-enhanced re-
laxation, and only regions where capillaries are not
present (or are unable to pass contrast agent-containing
lumen) should appear dark. The fraction of signal left
Lygpr in such an experiment is given by

slow

capillary
} [21]

IWEFT =1- zeXPI: - IH(Z) arteriole
Rslow

For example, 25% of the signal from capillary beds such
as in row 5 should be detectable at the moment the signal
is null from regions of only arterioles such as in row 7.
Where possible, it may also be advisable to examine
images obtained with and without contrast agent.

CONCLUSION

We have presented a simple model of compartmentalized
relaxation in a variety of biological contexts. We have
shown that ordinarily, liposomes entrapping a contrast
agent produce monoexponential relaxation, red blood
cells in a medium doped with a contrast agent produce
biexponential relaxation, and capillaries conducting a
contrast agent produce biexponential relaxation.

For simple geometries and uniform initial conditions,
we have found no advantage in employing a spatially
dependent model; both the TSEE and the GME descrip-
tions agree well for the cases examined. For highly con-
volved shapes and/or non-uniform initial conditions,
one can proceed from Eq. [12] to solve m () on a lattice of
two or more dimensions.

When very high resolution NMR is available, an inver-
sion recovery sequence with a very short TI or a modified
inversion-recovery scheme have been proposed here to
capture the fast relaxing component of capillaries. The
fast relaxing component, however, will be due to all
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regions where the contrast agent is present, including the
rest of the vasculature. Because the present model con-
siders only movement perpendicular to each capillary
axis (i.e., not flow), flow isolation techniques could be
used to differentiate capillary and arterial blood in addi-
tion to the method of presented here of using contrast
agents (or other relaxation differential) to distinguish the
intra- and inter-capillary lumen.

Fortunately, although the small size of capillaries
makes it infeasible to image them individually in a clin-
jcal setting, their high surface-to-volume ratio gives rise
to alternate route to their detection: Capillaries conduct-
ing a contrast agent will more greatly enhance the relax-
ation of the surrounding tissue than the much larger parts
of the vasculature. We suggest that by detecting the
slowly relaxing component while suppressing the even
more slowly relaxing signal from the surrounding tissue,
regions of viable capillaries should become pronounced.

APPENDIX A: TSEE BY MATHEMATICA

The following Mathematica commands define a function
TSEE to solve Eq. [6] for two spin populations which
inter-exchange and relax at different rates.

TSEE[Vf_,r1_,d_.Ri_,Ro_,Rn_ JDm_]: =

Module [{Ci,Co,Rio ,Roi},

Rio = (2 Dm)/(r1 d); (*2 for cylinders, 3 for spheres *)

Roi = VfRio;

fullsol = DSolve[{ — (Ri + Rio + Rn)*Ci[t] + Roi*Co[t] == Ci'[t],

Rio*Ci[t] + — (Ro + Roi + Rn)*Co[t] == Co'[t],

Ci[0] == V£, Co[0] == (1 — V£)}, {Ci[t] ,Colt]} I
Return[Simplify[Evaluate[Ci[t] + Co[t)/ .fullsol]l]:]

The parameters used in TSEE are: Vf the volume fraction
of the capillaries, r1 the radius of the capillaries, d the
thickness of the capillary membrane, Ri the relaxation
rate inside the capillary, Ro the relaxation rate outside
the capillary, Rn the native relaxation rate, and Dm the
diffusion constant in the capillary membrane. The inter-
nal variables Ci and Co denote the magnetization signal
from inside and outside the capillary, respectively, and
Rio and Roi are the exchange rates across the wall, from
inside to outside and vice versa, respectively.

As an example, we apply the TSEE program to capil-
laries, by issuing the command “TSEE[0.04, 2.5 1078,
10 10A—9, 100, 0, 1, 20 10A—14]". This produces the

_[0.0208492  0.970151]
output, {W + W}

APPENDIX B GENERALIZED MOMENT EXPANSION
(GME)

This is a brief summary of the algorithm presented in
refs. 21, 25, 26, applied here to the diffusion-Bloch Eq. [3]
and to the observable M(#) (Eq. [13]).
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Determination of the Moments

A Laplace transform of Eq. [12] produces the following
expression for the magnetization in frequency space

M(w) = f dt exp( — wt) M(1) [B1]
0
= qgle1 — (D ~ K)]7! m(0) [B2]
where we have introduced a row vector n-= (1,1,1,...).

We apply the GME to M (), expanding it about = 0 and

@ =

M(w) = D, poyr( — @) as

v=0

w — 0, [B3]

. 1¢ -1\’
M(w) =—2 ;L,,(———> as w — © [B4]
w w
v=0
The expansion coefficients ., are called generalized mo-
ments. The moments p,, v = 0, 1,. .. are related to the
short time behavior of M(#) as described by the time
derivatives at time t = 0

9 ,
(=1, = @\ oM(D) (B5]
L 1P (B6]
a (v+ 1)! do™ oR@
= n(D - K)'m(0) [B7]

where o = 1/o. The moments u, for v < 0 are related to
the long time behavior through the following expressions

v!p_y_,=f dt t'M(t) [B8]
0
| .
=(—1)" —| M(w) [B9]
Jw

= (-1)""win(D - K)7"'m(0) [B10]

By combining Egs. [B7] and [B10], one can express the
moments in powers of the matrix D — K,

= (- 1)in(D = K)y'm(0) (B11]

where i may be positive or negative.

Evaluation of Observables

The GME approximates M(w) by a Padé approximant
which is designed to reproduce L; terms in the low fre-
quency expansion and L; terms in the high frequency
expansion. In the time domain, the Padé approximant
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corresponds to a sum of exponentials

L
M)~ D ae ™t

n=1

[B12]

where L, + L; = 2L. The connection between the 2L
unknowns a, and A, and the moments is given by the 2L
relations

L
> @A =, [B13]
n=1

wherev=—-L, -L;+1,...,L, — 2,L, — 1. One has then
to solve the system of Eq. [B13] to obtain the a, and A,
that define the multiexponential approximation of M(1).
For example, a monoexponential (L = 1) description of
M(#) could be given by L, = 1, L, = 1 which corresponds
to the mean-relaxation time approximation.? According
to Eq. [B13] the parameters a, and A, are

A = o

Ky

a; = Mo, [B14]

For a biexponential (L = 2) approximation of M(#), Eq.
[B13] has been solved (25), and the parameters a,, a,, A,,

A, can be determined as follows (here m = —L))
X = o1~ Hmezbm [B15]
V= Umszhm+r — Bm+afm [B16]
X= ez = Bmisbma [B17]
A=y * (3 - 4x2)V?]/(2x) [B18]
a3 2 = Az abmsz — M)/ [AT 2002 F Ay)] [B19]

where first subscripts and upper signs coincide. The
quantities x, y, and z measure the deviation from mono-
exponential behavior; if the decay of M(t) is purely mono-
exponential, then the moments p; will be proportional,
i.e., u; = (const.)u;,, and x, y, and z will all vanish. For
L > 2 there is a more practical way to solve Eq. [B13] as
presented in ref. 26.
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