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Abstract. Parallel molecular dynamics programs employing shared memory or
replicated data architectures encounter problems scaling to large numbers of pro-
cessors. Spatial decomposition schemes offer better performance in theory, but of-
ten suffer from complexity of implementation and difficulty in load balancing. In
the program NAMD 2, we have addressed these issues with a hybrid decomposi-
tion scheme in which atoms are distributed among processors in regularly sized
patches while the work involved in computing interactions between patches is de-
composed into independently assignable compute objects. When needed, patches
are represented on remote processors by proxies. The execution of compute objects
takes place in a prioritized message-driven manner, allowing maximum overlap of
work and communication without significant programmer effort. In order to avoid
obfuscation of the simulation algorithm by the parallel framework, the algorithm
associated with a patch is encapsulated by a single function executing in a separate
thread. Output and calculations requiring globally reduced quantities are similarly
isolated in a single thread executing on the master node. This combination of fea-
tures allows us to make efficient use of large parallel machines and clusters of mul-
tiprocessor workstations while presenting minimal barriers to method development
and implementation.

Introduction

This paper describes the design history of the program NAMD, developed
by members of the Theoretical Biophysics Group at the University of Illinois
starting in 1994. The intent is to give the reader a better understanding of
the conflicting forces which shape the design of a parallel molecular dynamics
code and to demonstrate the need for advanced features such as multiple
threads and message-driven execution.

From a software design perspective, a molecular dynamics program carries
out a very simple algorithm. The gradient of a potential energy function
is calculated for all atoms in a system, yielding a force; this force is then
employed by an integration algorithm to update the positions of the atoms
for the next force evaluation. Aside from issues of reading data, generating
output, and the actual integration algorithm there is only this basic cycle of
force evaluation and integration which is carried out every timestep.



Molecular dynamics simulations run for millions of timesteps consuming
months of computer time. It is the length of simulations which has led to the
use of parallel computing in this field. It is the iterative nature of the molecu-
lar dynamics algorithm which produces the challenge, for although efficiently
parallelizing independent force evaluations is trivial, the force evaluations for
a sequence of timesteps must be individually parallel to realize a speedup.
Also, even if force evaluation consumes the vast majority of computer time, it
may be advantageous to perform the integration in parallel as well, increasing
scalability according to Amdahl’s law [1].

Parallelism increases programming complexity and with it the need for
sound software engineering practices. This is especially true for programs
designed for public use in an academic environment since the primary devel-
opers of such codes are often graduate students who tend to move on after
obtaining their degrees. In addition, molecular dynamics is not a static field
and the users of such software often propose new algorithms and techniques
to be added to a working code. Thus, a complex program such as a parallel
molecular dynamics code must be sufficiently well designed and documented
that it can be maintained and enhanced by future generations of program-
mers. Those portions of the code which are most likely to be modified, such as
the integration algorithm, must therefore be especially clear and modularly
separated from the remaining code with well-documented interfaces.

The following sections cover the design goals, decisions, and outcomes
of the first two major versions of NAMD and present directions for future
development. It is assumed that the reader has been exposed to the basics of
molecular dynamics [2–4] and parallel computing [5]. Additional information
on NAMD is available electronically [6].

NAMD 1

NAMD [7] was born of frustration with the maintainability of previous locally
developed parallel molecular dynamics codes. The primary goal of being able
to hand the program down to the next generation of developers is reflected
in the acronym NAMD: Not (just) Another Molecular Dynamics code. Spe-
cific design requirements for NAMD were to run in parallel on the group’s
then recently purchased workstation cluster [8] and to use the fast multi-
pole algorithm [9] for efficient full electrostatics evaluation as implemented
in DPMTA [10].

Two implementation decisions could be made immediately. First, DPMTA
is based on the PVM message-passing library [11] and therefore it was nec-
essary to base NAMD on PVM as well. All communication done by NAMD,
however, would use an intermediate interface to allow communications to be
easily retargeted to MPI [12] or other standards, and to simplify later im-
plementation of communication optimizations such as combining messages
destined for the same processor. Second, after much debate C++ was selected
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Fig. 1. Nonbonded force evaluation may be distributed among processors according
to atomic coordinates, as in spatial decomposition (left), or according to the indices
of the interacting atoms, as in force-matrix decomposition (right). Shades of gray
indicate processors to which interactions are assigned.

as the development language. This was based on the desire to use an object-
oriented design and on prior good experiences in developing the visualization
program VMD [13]. There was concern that existing C++ compilers were not
uniformly mature and hence to ensure portability across platforms exotic fea-
tures (at the time) such as templates would be avoided in NAMD. In order
to avoid possible performance problems [14] time-critical sections of code like
force evaluation were reduced to plain C, many functions were inlined, and
virtual functions were avoided.

Parallel molecular dynamics codes are distinguished by their methods of
dividing the force evaluation workload among the processors (or nodes). The
force evaluation is naturally divided into bonded terms, approximating the
effects of covalent bonds and involving up to four nearby atoms, and pairwise
nonbonded terms, which account for the electrostatic, dispersive, and elec-
tronic repulsion interactions between atoms that are not covalently bonded.
The nonbonded forces involve interactions between all pairs of particles in
the system and hence require time proportional to the square of the number
of atoms. Even when neglected outside of a cutoff, nonbonded force evalua-
tions represent the vast majority of work involved in a molecular dynamics
simulation.

Methods of decomposing the nonbonded force evaluation fall into two
classes, spatial decomposition [15] in which atoms and their interactions are
divided among processors based on their coordinates, and force-matrix de-
composition [16] in which the calculation of the interaction between a pair
of atoms is assigned to a processor without considering the location of ei-
ther atom (Fig. 1). Spatial decomposition scales better to large numbers of
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Fig. 2. Patches divide the simulation space into a regular grid of cubes, each larger
than the nonbonded cutoff. Interactions between atoms belonging to neighboring
patches are calculated by one of the patches which receives a positions message (p)
and returns a force message (f). Shades of gray indicate processors to which patches
are assigned.

processors because it takes locality of communication into account, while
force-matrix decomposition is easier to implement and load-balance.

NAMD implemented spatial decomposition and addressed the load bal-
ancing issue by dividing the simulation space into a large number of cubes
called patches (Fig. 2). A patch serves three purposes. First, it is a region of
space larger than the cutoff distance for nonbonded force evaluation, and can
therefore function in a cell list or linked-list method [17] to accelerate distance
checking for nonbonded interactions. Second, a patch is a unit of parallelizable
work which can be reassigned to balance load among processors—each node
possessing several patches. Finally, a patch is a message-driven object that
receives atomic coordinates from some of its neighboring patches, calculates
interactions, and returns forces while sending coordinates to and receiving
forces from its other neighbors.

Message-driven execution [18] is a parallel processing technique in which
communication latency is hidden by overlapping computation and communi-
cation. This is achieved by executing computations specified by the messages
as they arrive instead of in a fixed serial order. Every coordinate message
that arrives contains data that allows some subset of the force evaluation to
be carried out, primarily nonbonded interactions between atoms of the patch
which sent the message and those of the patch which receives it. Messages are
prioritized such that those which generate off-node communication (such as
position messages from off-node patches) are processed before messages be-
tween patches on the same node. (Actually, the main message loop in NAMD
attempted to receive each of the several types of messages in order of priority,
providing only roughly prioritized message execution.)

NAMD was implemented in an object-oriented fashion (Fig. 3). Patches,
the encapsulated communication subsystem, the molecular structure, and
various output methods were objects. Every patch owned specialized objects
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Fig. 3. NAMD 1 employs a modular, object-oriented design in which patches com-
municate via an encapsulated communication subsystem. Every patch owns an
integrator and a complete set of force objects for bonded (BondForce), nonbonded
(ElectForce), and full electrostatic (DPMTA) calculations.

responsible for integration, the several types of force calculations, and the
interface to the DPMTA full electrostatics package. This made the system
modular in that new forces or integration methods could be added with min-
imal modification of existing code.

Once it entered production mode, the strengths and weaknesses of the
NAMD design could be determined. C++, message-driven execution, and the
concept of patches had each proven their utility and the program performed
well on small numbers of processors. There were also some problems. Load
balancing was hampered because most of the work was concentrated in a few
patches near the center of the system (simulations lacked periodic boundary
conditions). A patch with multiple neighbors on the same node would send
several identical messages to that node; the workaround for this unnecessarily
complicated the communication system. Finally, it was found that a patch-
centric flow of control created a mixing of the essentially serial simulation
algorithm with the parallel logic for responding to incoming messages, obfus-
cating both and requiring an understanding of the message structure in order
to make trivial modifications to the iterative loop. For these reasons, it was
decided that a major redesign was necessary and work began on NAMD 2.

NAMD 2

NAMD 2 added several new design goals. First, parallel performance needed
to be increased through more parallelism and better load balancing. Second,
communication efficiency needed to be improved without adding application-
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Fig. 4. In NAMD 2 forces are calculated not by force objects owned by individ-
ual patches, but rather by independent compute objects which depend on one or
more patches for atomic coordinates. As suggested by shading in this illustration,
a compute object need not reside on the same node as the patches upon which it
depends.

specific code to the communication subsystem. Third, the simulation algo-
rithm’s outer loop should be made explicit and parallel logic in this section
of code eliminated. Finally, the design needed to be able to take advantage of
the eventual availability of kernel-level threads on a newly-acquired cluster
of symmetric multiprocessor shared-memory workstations; a node would be
able to control several processors in a common memory space.

NAMD 2 did not use PVM as its parallel communication protocol, switch-
ing instead to the Charm++/Converse system developed locally by the group
of L. V. Kalé. While NAMD 1 simulated message-driven execution in PVM,
Charm++ [19] provides direct support for NAMD’s message-driven object
paradigm and provides tools for analyzing the performance of parallel pro-
grams. (A Charm++ version of NAMD 1 was also implemented but main-
taining both versions required too much manpower.) Converse [20] is an un-
derlying communications layer which is portable to most parallel machines
and features the ability to let multiple parallel languages coexist in a single
code. This later feature allowed us to continue using the PVM-based DPTMA
package [21]. Converse also incorporates multiple threads into its messaging
system, the utility of which is described below. NAMD 2 also made aggres-
sive use of C++ templates in order to provide efficient yet safe and convenient
container classes and employed a more thoroughly object-oriented design.

In order to improve parallelism and load balancing, a hybrid force-spatial
decomposition scheme was adopted in NAMD 2. Rather than decomposing
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Fig. 5. Compute objects requiring off-node patches do not engage in off-node com-
munication but rather interact with local proxy patches. When force evaluations
are required the home patch sends positions messages (p) to its proxies and receives
force messages (f) containing the results of off-node calculations. The proxy patch
in this illustration exists on the same node as the compute object but represents
the off-node home patch with which it communicates.

the nonbonded computation into regions of space or pairwise atomic inter-
actions, the basic unit of work was chosen to be interactions between atoms
in regions of space. This was represented in the object-oriented design of
NAMD 2 by moving responsibility for calculating forces from objects owned
by a patch to more general compute objects that were responsible only for
nonbonded interactions between atoms in a pair of patches, or within a single
patch (Fig. 4).

Moving responsibility for the force computation away from the patches re-
quired a move away from pure message-driven execution to dependency-driven
execution in which patches control the data (atomic coordinates) needed for
compute objects to execute. A compute object, upon creation, registers this
dependency with those patches from which it needs data. The patch then
triggers force calculation by notifying its dependent compute objects when
the next timestep’s data is available. Once a compute object has received
notification from all of the patches it depends on, it is placed in a prioritized
queue for eventual execution.

Load balancing can then be achieved in NAMD 2 by moving compute ob-
jects and patches between nodes. But what if a compute object and a patch
it depends on are on different nodes? Compute objects individually commu-
nicating with off-node patches would generate a huge amount of redundant
communication. Therefore, patches are represented on other nodes by proxy



void Sequencer::algorithm(void)
{
    int &step = patch->flags.seq;
    step = simParams->firstTimestep;

    const int numberOfSteps = simParams->N;
    const int stepsPerCycle = simParams->stepsPerCycle;
    const BigReal timestep = simParams->dt;

    // Do we do full electrostatics?
    const int dofull = ( simParams->fullDirectOn || simParams->FMAOn );
    const BigReal slowstep = timestep * stepsPerCycle;
    int &doFullElectrostatics = patch->flags.doFullElectrostatics;
    doFullElectrostatics = (dofull && !(step%stepsPerCycle));

    const int nonbondedFrequency = simParams->nonbondedFrequency;
    const BigReal nbondstep = timestep * nonbondedFrequency;
    int &doNonbonded = patch->flags.doNonbonded;
    doNonbonded = !(step%nonbondedFrequency);

    runComputeObjects();
    submitReductions(step);
    submitCollections(step);
    rescaleVelocities(step);
    berendsenPressure(step);
    langevinVelocities(step);

    for ( ++step; step <= numberOfSteps; ++step )
    {
        addForceToMomentum(0.5*timestep);
        if (doNonbonded)
            addForceToMomentum(0.5*nbondstep,Results::nbond);
        if (doFullElectrostatics)
            addForceToMomentum(0.5*slowstep,Results::slow);

        addVelocityToPosition(timestep);

        doNonbonded = !(step%nonbondedFrequency);
        doFullElectrostatics = (dofull && !(step%stepsPerCycle));

        // Migrate Atoms on stepsPerCycle
        runComputeObjects(!(step%stepsPerCycle));

        addForceToMomentum(0.5*timestep);
        if (doNonbonded)
            addForceToMomentum(0.5*nbondstep,Results::nbond);
        if (doFullElectrostatics)
            addForceToMomentum(0.5*slowstep,Results::slow);

        submitReductions(step);
        submitCollections(step);
        rescaleVelocities(step);
        berendsenPressure(step);
        langevinVelocities(step);
        //
        // Trigger load balance stats collection
        //
        rebalanceLoad(step);
    }

    terminate();
}
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Fig. 6. Multiple threads in NAMD 2 allow the integration algorithm to be expressed
sequentially as a single function. This function, shown illegibly at left, runs in
sequencer threads associated with home patches. A similar function running in a
controller thread on the master node communicates with the sequencers to deal
with output and global calculations. Compute objects execute in the larger stack
space of each node’s main thread.

patches, which implement the same interface as home patches for dealing with
compute objects and handling dependencies but receive coordinates from and
send forces to their respective home patches rather than performing integra-
tion themselves (Fig. 5). Thus data is replicated on those nodes where it is
needed with a minimum of communication while no off-node communication
is done by compute objects.

The logic associated with the patch has been greatly simplified by sepa-
rating compute objects and limiting communication to patches and proxies,
but one additional step is needed to fully separate sequential molecular dy-
namics algorithm from the complex logic of a message-driven parallel code.
A sequencer thread is associated with every patch. This thread runs a single
function which contains an explicit loop over all of the timesteps in the sim-
ulation (Fig. 6). In this way, the integration algorithm can be inspected in a
single section of code closely resembling the outer loop of a serial molecular
dynamics program. All of the parallel logic is hidden inside of a force eval-
uation function called by the sequencer that simply propagates coordinates
to proxies and notifies all registered dependent compute objects that coor-
dinates are available for calculating forces before suspending the sequencer



thread. The thread is later awakened when all dependent compute objects
and proxies have deposited their forces. A similar controller thread on the
master node coordinates energy output and global aspects of the integration
algorithm such as calculating velocity rescaling factors. Thread suspension is
also used to wait for unavailable data such as energies needed for output in
the case of the controller or forces needed for integration in the case of the
sequencer.

Future Plans

As noted above, one of the goals of NAMD 2 is to take advantage of clusters
of symmetric multiprocessor workstations and other non-uniform memory
access platforms. This can be achieved in the current design by allowing mul-
tiple compute objects to run concurrently on different processors via kernel-
level threads. Because compute objects interact in a controlled manner with
patches, access controls need only be applied to a small number of structures
such as force and energy accumulators. A shared memory environment will
therefore contribute almost no parallel overhead and generate communication
equal to that of a single-processor node.

Although the current multithreaded implementation of sequencers works
well and provides a clearly visible algorithm, threads have several drawbacks.
Extra memory is required for multiple stacks, there is overhead from context-
switching between threads, and a running sequencer cannot migrate between
processors along with its patch. These problems will be addressed by using the
Structured Dagger coordination language [22], which enables programmers to
specify partial order between entry methods of an object. Using constructs
such as overlap, forall, and when-blocks, one can easily express dependencies
between entry methods of an object while letting the system do the buffering,
bookkeeping, etc. required for the specified flow of control.

Finally, the ultimate in algorithmic flexibility can be achieved by the ad-
dition of a scripting language interface to NAMD. Such an interface, most
likely based on Tcl [23], will allow the end user to modify the simulation
algorithm without recompiling and to implement multi-stage simulation pro-
tocols in a single script. By adopting an existing scripting and extension
language such as Tcl, Perl or Python [24], the end user will avoid learning a
special-purpose language and enjoy the benefits of a well-designed and fully
featured programming environment. The success of the Tcl interface in VMD
[13], the Theoretical Biophysics Group’s biomolecular visualization package,
makes this line of development almost inevitable.
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of principal investigators L.V. Kalé, R. Skeel, and K. Schulten. This work was
supported by the National Institutes of Health (NIH PHS 5 P41 RR05969-04
and NIH HL 16059) and the National Science Foundation (NSF/GCAG BIR
93-18159 and NSF BIR 94-23827 EQ). JCP was supported by a Computa-
tional Science Graduate Fellowship from the United States Department of
Energy.

References

1. Amdahl, G. M.: Validity of the single processor approach to achieve large scale
computing capabilities. In Proc. AFIPS spring computer conf. vol. 30. AFIPS
Press, Reston, Virginia, 1967.

2. Allen, M. P., Tildesley, D. J.: Computer Simulation of Liquids. Oxford Univer-
sity Press, New York, 1987.

3. Brooks III, C. L., Karplus, M., Pettitt, B. M.: Proteins: A Theoretical Per-
spective of Dynamics, Structure and Thermodynamics. Advances in Chemical
Physics, vol. LXXI. John Wiley & Sons, New York, 1988.

4. McCammon, J. A., Harvey, S. C.: Dynamics of Proteins and Nucleic Acids.
Cambridge University Press, Cambridge, 1987.

5. Almasi, G. S., Gottlieb, A.: Highly Parallel Computing. 2nd edn. Ben-
jamin/Cummings, Redwood City, California, 1994.

6. Theoretical Biophysics Group. http://www.ks.uiuc.edu/.
7. Nelson, M., Humphrey, W., Gursoy, A., Dalke, A., Kalé, L., Skeel, R. D., Schul-
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