The dispersal of circumstellar discs: the role of the ultraviolet switch

C. J. Clarke, A. Gendrin† and M. Sotomayor‡

Institute of Astronomy, Madingley Road, Cambridge CB3 0HA

Accepted 2001 August 2. Received 2001 July 24; in original form 2001 March 2

ABSTRACT

We explore ultraviolet switch models for the dispersal of circumstellar discs in T Tauri stars that involve both photoevaporation by the central star and viscous evolution. We show that in combination these processes generate the observed ‘two-time-scale’ behaviour for the dispersal of such discs, whereby the disc is rapidly dispersed at the end of its life on a time-scale that is a small fraction of the disc lifetime. This switch is activated when the accretion rate through the disc declines to a low level (a few times $10^{-10} M_\odot \text{yr}^{-1}$) such that it roughly matches the rate of photoevaporative mass loss from the disc outside 5–10 au. At this point, the inner disc is deprived of further replenishment from larger radii and empties on to the central star on its own short viscous time-scale. This causes the rapid (~10^5 yr) decline in accretion rate on to the central star and in all disc-related emission shortward of 10 μm. We discuss the implications of this model for the detection of millimetre emission around weak-line T Tauri stars, and also point out the consequences of such a sudden draining for planet formation in the inner regions of circumstellar discs.

Key words: accretion, accretion discs – circumstellar matter – planetary systems: formation – stars: pre-main-sequence.

1 INTRODUCTION

The processes responsible for dispersing the discs around young stars are not well understood at present. This issue is important inasmuch as it impacts on the time available for planet formation in circumstellar discs. Possible mechanisms that have been discussed include viscous draining on to the central star (Hartmann et al. 1998; henceforth HCGA), interaction with a stellar magnetosphere (Armitage, Clarke & Tout 1999), the effect of a stellar wind (Elmegreen 1979), the role of encounters in a cluster environment (Clarke & Pringle 1991; Armitage & Clarke 1997; Scally & Clarke 2001), photoevaporation by the ultraviolet radiation field of the central star (Hollenbach et al. 1994; Yorke & Welz 1996; Richtling & Yorke 1997) or neighbouring stars (Johnstone, Hollenbach & Bally 1998; Storzer & Hollenbach 1999) and the consumption of gas and solid material in planet formation (e.g. Brandner et al. 2000; see also the review by Hollenbach, Yorke & Johnstone 2000).

Empirical studies of disc dispersal are hampered by difficulties in calibrating the ages of young stars observationally, particularly below ages of $\sim 10^6$ yr (see, for example, Tout, Livio & Bonnell 1999; Siess, Dufour & Forestini 2000). Nevertheless, a secure conclusion from such studies is that there appear to be two timescales associated with disc dispersal. The first, the mean disc lifetime, appears to lie in the range 5×10^6–10^7 yr (Strom et al. 1989). However, the time-scale for the transition between disc possessing and discless status is apparently substantially smaller than this (with typical estimates of a few times 10^5 yr; Skrutskie et al. 1990; Hartigan et al. 1990). Note that the ratio of these timescales is independent of any absolute age calibration and simply reflects the fraction of T Tauri stars observed as transition objects.

Most of the mechanisms listed above do not at first glance appear promising candidates for generating this ‘dual time-scale’ behaviour. The best studied of these, viscous draining on to the central star, gives a roughly power-law decline of disc quantities with time (HCGA) – in other words, the time-scale for decline by the order of unity from any given state is in this case of the order of the lifetime of the system to date. Magnetoospheric models appeared more promising for promoting a swift demise of the disc since they involve a feedback whereby the stellar field can clear out the inner disc more effectively once it is weakened by viscous draining. However, it turns out that although this process indeed produces the desired decline in the near-infrared emission associated with the inner disc (<0.1 au) intercepted by the putative magnetosphere, it only has a minor effect on disc emission at 10 μm and longer (Armitage et al. 1999). This behaviour is at odds with the distribution of T Tauri stars in the $K - L$, $K - N$ two-colour plane, which indicates a nearly simultaneous decline in disc emission in the 2–10 μm range (Kenyon & Hartmann 1995); ISOCAM observations in Chamaeleon I also

© 2001 RAS
indicate that this simultaneous decline extends at least out to 14 μm (Persi et al. 2000). Likewise, although close stellar encounters can weaken the inner disc so that, in magnetospheric models, the 2-μm flux declines dramatically, the shaved remnant disc then viscously re-expands so that longer-wavelength emission then declines on the, substantially longer, viscous time-scale at larger radii (Armitage & Clarke 1997). This viscous re-expansion following one-off encounters implies that even very close encounters (e.g. at a few au) cannot promote the rapid decline of emission at 5 μm and longer unless the mass of the remnant disc is very low. Finally, planet formation has been invoked as a means of promoting the swift decline of disc emission, since the time-scale on which grains can agglomerate, and hence remove opacity in the corresponding wavelength range, is indeed short (e.g. Weidenschilling & Cuzzi 1993). The rarity of millimetre emission in systems lacking disc emission in the infrared (Duvert et al. 2000), however, requires a process that acts simultaneously on spatial scales of 0.1–100 au, involving the removal of dust grains the sizes of which span three orders of magnitude. It remains questionable whether planet formation can achieve such global changes in the disc properties.

In this paper we investigate the dispersal of circumstellar discs in T Tauri stars owing to photoionization by the ultraviolet radiation from the central star. We rely heavily on parametrizations of photoevaporative mass loss derived from the models of Hollenbach et al. (1994) and incorporate this mass loss as sink terms in standard viscous evolution models. The integrated mass-loss rate for typical T Tauri stars (a few ×10^{-10} M_⊙ yr^{-1}) implies that this process can only by itself disperse a rather low mass disc (comparable to the minimum mass solar nebula) within ~10^3 yr. We show, however, that in conjunction with viscous draining, this mechanism provides the desired ‘switch’ whereby the inner disc and its associated diagnostics fade on a 10^2-yr time-scale.

In Section 2 we describe the time-dependent disc model and its parameters. Section 3 describes our results and provides a comparison with observations. In Section 4 we discuss the level and origin of the photoionizing radiation in T Tauri stars and how uncertainties in this regard affect the viability of the model. We conclude in Section 5 by summarizing the virtues and potential problems of the model.

2 PHOTOEVAPORATIVE VISCOUS MODEL

2.1 Viscous model

In order to be able to isolate the effect of photoevaporative mass loss on the viscous evolution of the disc, we employ parameters for the viscous evolution that are identical to the similarity solutions explored by HCGA (see also Lynden-Bell & Pringle 1974). These authors focus on the case that the kinematic viscosity in the disc is a linear function of the radius, R, at all times. Thus our initial surface density profile is of the form

\[\Sigma = \frac{M_d(0)}{2\pi R_1^2} \exp(-r), \tag{1} \]

where \(r = R/R_1 \), \(R_1 \) is a radial scalefactor and \(M_d(0) \) is the initial disc mass. (Note that the significance of \(R_1 \) is that the fraction of the disc mass initially outside this radius is \(\epsilon^{-1} \).) If the value of the viscosity is parametrized by \(\nu_1 \) at radius \(R_1 \), the initial value of the accretion rate at the origin is given by

\[M_\dot{(}0) = \frac{3M_d(0)\nu_1}{2R_1^2}. \tag{2} \]

Thus the viscous evolution of each model is completely specified by the three parameters, \(M_d(0) \), \(R_1 \) and \(M_\dot{(}0) \). Note that in such models the viscous scaling time is given by

\[t_v = \frac{M_d(0)}{2M_\dot{(}0)} \tag{3} \]

and that for times much larger than \(t_v \), the accretion rate at the origin and the disc mass both show an approximately power-law dependence on time:

\[M_\dot{(}t) \propto t^{-3/2} \tag{4} \]

\[M_\dot{(}t) \propto t^{-1/2}. \tag{5} \]

2.2 Photoevaporation model

Our parametrization of the photoevaporative mass loss follows closely that set out (the ‘weak stellar wind’ case) by Hollenbach et al. (1994). These authors assume that material is lost from the disc surface at radii beyond \(R_g = \frac{GM_\star}{a^2} \sim 10^{14} M \sim \text{cm}, \)

\[\tag{6} \]

where \(M_\star \) is the stellar mass, \(a \) is the speed of sound of photoionized gas and \(M \) is the stellar mass in units of solar mass. This radius represents the maximum extent of the region within which photoionized gas (temperature \(\sim 10^4 K \)) can remain bound to the central star. Beyond this radius the rate of mass loss per unit area is given by

\[\Sigma_w = 2a\nu_0(R)\nu_0, \tag{7} \]

where \(\nu_0(R) \) is the number density at the base of the photoevaporating flow, \(\nu_0 \) is the mass of a hydrogen atom and the factor of 2 takes account of mass loss from both sides of the disc.

The base density \(\nu_0(R) \) is determined by detailed photoionization calculations and for \(R > R_g \) is parametrized by

\[n_0(R) = n_0(R_g) \left(\frac{R}{R_g} \right)^{-3/2}, \tag{8} \]

where

\[n_0(R_g) = 5.7 \times 10^4 \Phi_{41}^{1/2} \rho_{g14}^{-3/2} \text{ cm}^{-3}. \tag{9} \]

Here \(R_{g14} \) is the gravitational radius in units of 10^{14} cm and \(\Phi_{41} \) is the ionizing photon luminosity of the central star in units of 10^{41} s^{-1}. The above prescription corresponds to a total wind mass-loss rate of

\[M_w = 4.1 \times 10^{-10} \Phi_{41}^{1/2} M^{1/2} \text{ M}_\odot \text{ yr}^{-1}. \tag{10} \]

2.3 Model evolution

The viscous evolution of the disc subject to photoevaporative mass loss is computed using a standard first-order explicit scheme, equispaced in \(R^{1/2} \) over the dynamic range \(9 \times 10^{-3} - 250 R_1 \). Zero-torque boundary conditions are applied at the inner and outer boundaries. For ease of comparison with HCGA, the spectral energy distribution is generated by assuming that the disc temperature is a fixed power-law function of radius, subject to a minimum temperature \(T_{\text{min}} \). (This fixed-temperature distribution was justified as approximately representing a disc in which the main heating agent is reprocessing of stellar radiation, though even
in this case this condition would be modified once the disc became optically thin to the incident radiation, and by the luminosity evolution of the central star.) In order to reproduce the observed spectral index in T Tauri stars, the form

$$T_d \propto R^{-1/2}$$

(11)
is adopted. The spectral energy distribution is then generated by assuming that at every radius the disc radiates as an isothermal slab at temperature $T_d(R)$ (equation 44 of HCGA), with a dust opacity described by

$$\kappa_d = 0.1(\nu/10^{12} \text{ Hz}) \text{ g cm}^{-2}.$$

(12)

2.4 Summary of parameters

The model is uniquely described by the following parameters.

(i) Stellar parameters: (a) mass of star (M); (b) ionizing photon flux (Φ_{UV}).

(ii) Disc parameters: (a) initial disc mass [$M_d(0)$]; (b) initial accretion rate in inner disc [$\dot{M}_d(0)$]; (c) initial scaling radius (R_1); (d) dust temperature at R_1 (T_1); (e) and minimum dust temperature (T_{min}).

From the above parameters, the initial viscous time, t_v, the gravitational radius R_g, the wind mass-loss rate M_{dw} and run of temperature in the disc can be calculated using equations (3), (6), (10) and (11).

3 RESULTS

3.1 Standard model

We start by describing the main features of a ‘standard’ photoionization model with parameters: $M = 1$, $\Phi_{\text{UV}} = 1$, $R_1 = 10$ au, $M_d(0) = 0.1 M_\odot$, $M_d(0) = 4.2 \times 10^{-7} M_\odot$ yr$^{-1}$. In this model the initial viscous evolution time-scale is 1.1×10^5 yr, the gravitational radius (beyond which wind loss occurs) is 10^{14} cm and the total wind mass-loss rate is $4 \times 10^{-10} M_\odot$ yr$^{-1}$.

Fig. 1(a) illustrates snapshots of the surface density profile, while Fig. 1(b) provides, for comparison, an equivalent model with no photoevaporative mass loss. At early times, the evolution of the two models is similar, though with a somewhat more rapid decline in Σ inward of around 30 au for the wind case. At time $t = 1.41 \times 10^7$ yr (which we denote by t_o in the discussion below), the wind model develops a pronounced dip in the surface density profile in the vicinity of R_g. The following snapshots illustrate the very rapid subsequent decline of Σ inward of R_g on a time-scale t_{inner} of $\sim 10^6$ yr. At radii slightly beyond R_g the disc profile is scarcely modified on this time-scale. Following the viscous emptying of the inner disc, the remaining disc is then progressively dispersed from the inside out. The time-scale for this dispersal (t_{outer}) is much greater than t_{inner} and is within a factor of a few of t_o; in other words, the outer disc is dispersed on a time-scale that is comparable to, though somewhat less than, the age of the system when rapid draining of the inner disc set in.

This behaviour is readily understood since at early times the accretion rate through the disc is much larger than M_{dw}, and hence the effect of photoevaporative mass loss is small. As M in the disc declines owing to viscous draining on to the central star, it eventually attains a level comparable with M_{dw} (see Fig. 2). At this point, a substantial fraction of the accretion flow in the outer disc is blown away in the vicinity of R_g. (Note that the mass-loss rate per unit area scales as $R^{-5/2}$ so that mass loss is concentrated in a region rather close to R_g.) Consequently, the fraction of the accretion flow that is available to resupply the inner disc ($R < R_g$) falls precipitously. The inner disc is then effectively starved and empties on to the central star on a time-scale that is the viscous time-scale at R_g.

Fig. 3 shows snapshots of the resulting spectral energy distribution for the case that the disc temperature at 100 au is 10 K and where the temperature minimum is set at 7 K. This clearly illustrates that the rapid ($\sim 10^5$ yr) emptying of the inner disc...
produces a corresponding fall in the radiative output of the disc at those (short) wavelengths predominantly produced within \(\sim 10\) au. In the current crude spectral model, the spectral region strongly affected extends out to \(\sim 100\) \(\mu\)m; we, however, note that in more realistic models (see, for example, Chiang & Goldreich 1997) much of the emission longward of 20 \(\mu\)m originates beyond a radius of 10 au and would thus be expected to be more mildly affected by the demise of the inner disc. In any case, the millimetre flux is expected to remain strong at this stage.

3.2 Dependence on model parameters: analytic estimates

All of the photoevaporative models that we have explored are typified by the same qualitative behaviour: a decline of disc diagnostics over a period \(t_w\), at which point the inner disc is decoupled from further supply and rapidly empties on a time-scale \(t_{\text{inner}}\). These models are thus the first models for disc clearing that demonstrate the ‘two-time-scale’ behaviour that seems to typify the evolution of T Tauri stars, and it is thus worth considering what properties control each of these time-scales.

The time-scale, \(t_w\), on which the disc viscously declines to the point that the accretion rate is \(M_{\text{dw}}\) readily obtained from the similarity solution (equation 4) as

\[
t_w = t_s \left[\frac{M_0(0)}{M_w} \right]^{2/3},
\]

whereas the draining time-scale of the inner disc \(t_{\text{inner}}\) is just the viscous time-scale at \(R_g\) [i.e. \(R_g^2 / \nu(R_g)\)], which for this viscosity prescription is simply given by

\[
t_{\text{inner}} = \left(\frac{R_g}{R_1} \right) t_s.
\]

Hence the ratio of the two time-scales is simply

\[
\frac{t_w}{t_{\text{inner}}} = \left[\frac{M_0(0)}{M_w} \right]^{2/3} \left(\frac{R_g}{R_1} \right).
\]

Substitution of the parameters of the standard model (where \(R_1 \sim R_g\) and the initial accretion rate exceeds the wind loss rate by around three orders of magnitude) readily verifies that the two time-scales are separated by two orders of magnitude as found above. Since the parameters used in this model are rather typical for characteristic disc sizes and initial accretion rates, one would thus expect that the ratio of transition objects (i.e. those in the process of dissipating their inner discs) to classical T Tauri should be very small.

We may also estimate the time-scale on which the outer disc is dissipated, \(t_{\text{outer}}\). Once the inner and outer discs become decoupled (at time \(t_w\)), the residual outer disc, mass \(M_{\text{outer}}\), is then removed by wind loss at the constant rate \(M_{\text{dw}}\). For the similarity solution considered here (as indeed in most disc models supported by observational constraints) the majority of the mass resides in the outer parts of the disc, and therefore one does not make a gross error by setting the mass of the outer disc to be blown away as just the disc mass at time \(t_w\). If we estimate this latter quantity by simply ignoring the effect of wind mass loss on a time-scale \(t_w\), and hence use the similarity solution (equation 4 and 5) (which will also cause the mass to be somewhat overestimated), we obtain

\[
M_{\text{outer}} = M_0(0) \left[\frac{M_{\text{dw}}}{M_0(0)} \right]^{1/3}
\]

and hence

\[
t_{\text{outer}} = \frac{M_{\text{outer}}}{M_{\text{dw}}} = t_s \left[\frac{M_0(0)}{M_w} \right]^{2/3},
\]

where in the latter step we have used the identity for \(t_s\) (equation 3). Comparing equations (17) and (13) we obtain the simple result that \(t_{\text{outer}}\) is always of the order of \(t_w\), a result we see verified in the simulations (see Fig. 1). This result can be understood more generally inasmuch as the time taken for the disc to decline to the point at which the inner and outer discs become decoupled is

dominated by the ratio of disc mass to accretion rate at that time; since the wind mass loss proceeds thereafter at this constant rate, it follows that the additional time taken for the residual disc to be blown away is always comparable with the time spent reaching the point of decoupling. Below we consider possible observational problems associated with this result.

3.3 Observational constraints

As noted above, the model yields a rapid transition between objects with inner discs (out to \(\sim 7 \) au) and those that do not. Diagnostics that would fade on this time-scale include the accretion rate on to the central object and all disc emission shortward of around 10 \(\mu \)m. Thus unlike models considered to date (i.e. viscous clearing with or without the aid of magnetostric properties) this model does not lead to an excessive number of objects being placed in ‘forbidden’ (i.e. transitional) areas of the infrared two-colour plane. In this model, in contrast, all near-infrared wavelengths decline simultaneously and rapidly, producing the observed bimodal distribution of infrared colours in T Tauri stars. The onset of this rapid transition is set purely by the accretion rate in the disc falling to the low level set by photoevaporative mass loss \(\sim 4 \times 10^{-10} \text{M}_\odot \text{yr}^{-1} \) for the parameters invoked by Hollenbach et al. (1994). Accretion rates in stars possessing infrared signatures of inner discs have been measured down to values marginally above this (Gullbring et al. 1998) whilst Muzerolle et al. (2000) have recently modelled an accretion rate of \(5 \times 10^{-11} \text{M}_\odot \text{yr}^{-1} \) in a T Tauri star lacking such inner disc emission. It is thus encouraging that the available data on accretion rates in T Tauri stars supports the notion that the disc emission disappears at an accretion rate of a few times \(10^{-10} \text{M}_\odot \text{yr}^{-1} \). Although the similarity of this threshold value to that provided by photoionization models could of course be merely coincidental, it is at least reassuring that the latter was not derived with this observed threshold in mind.

However, we have shown above that the time-scale on which the outer disc \((>7 \text{ au})\) is blown away is always considerably longer than the time for the inner disc to empty, and that this time-scale is, moreover, always comparable with the period over which the star possesses an inner disc. There is a concern here, therefore, that we are predicting a large numbers of objects that are weak on small scales but strong on large scales – in other words, that we have reproduced problems with previous models but now shifted the problem out to larger radii (and hence longer-wavelength emission). At first sight, the rather clear association of millimetre emission with classical T Tauri stars, and a corresponding lack of such emission in weak-line T Tauri stars (e.g. Andre & Montmerle 1994; Osterloh & Beckwith 1995) would appear to argue against this model. To make further progress on this issue, however, we have to make quantitative predictions and compare with available upper limits on submillimetre emission in weak-line T Tauri stars.

Fig. 4 depicts the evolution of various photoevaporation models in the plane of flux at 1.3 mm versus accretion rate on to the central star, assuming sources located at a distance of 140 pc. When interpreting this figure, it is worthwhile recalling the spectral model, following HCGA, that we have used: that is, that the disc has a time-independent temperature distribution, so that the evolution of the millimetre flux depends only on the disc optical depth and emitting area. Each model proceeds monotonically downwards in this diagram as the accretion rate on to the central star declines (at early times, the millimetre flux increases briefly, as viscous spreading of the initial distribution results in an increase in the emitting area of the disc that is optically thick at 1.3 mm). At the point of decoupling of the inner disc, the accretion rate on to the central star declines precipitously, but with no corresponding decline in the millimetre flux on this time-scale. The model trajectories thus become vertical at this stage. Eventually, the millimetre flux also declines and the models proceed to the left in this plane, though at accretion rates on to the central star that are so vanishingly small that this behaviour is not manifest in the diagram. Superimposed on this plot are objects for which both accretion rates and millimetre fluxes (or upper limits) have been determined. These objects are all classical T Tauri stars, and occupy a broad region of the diagram through which all the models pass. The typical limiting sensitivity for these millimetre observations dating from the mid-1990s is around 20–30 mJy. One thus sees that by the stage that the accretion rates in the models fall to ‘weak-line’ values, the anticipated millimetre flux is somewhat lower than these upper limits, so that one would not have expected such observations to be able to detect millimetre emission around weak-line T Tauri stars.

A more serious challenge may, however, be provided by the much lower upper limits (2.5 mJy) recently obtained by Duvert et al. (2000) for a sample of weak-line T Tauri stars. This limit is depicted as the hatched region in Fig. 3. As may be seen, several of the models turn vertical in a region of the diagram to the right of this. We have calculated in these cases the time spent in the ‘transition’ region of the diagram (specifically, objects in which the inner disc has declined but which have millimetre fluxes greater than 2.5 mJy). We find that in these models the ratio, \(f_{\text{res}} \), of the

![Figure 4. Evolution of various models in the plane of flux at 1.3 mm (in mJy) versus accretion rate (in M_\odot \text{yr}^{-1}). The bold dots represent the standard model, whereas the other two full curves represent models that differ only in the initial disc mass (0.01 and 0.03 M_\odot for the left- and right-hand curves, respectively). The broken curves represent models that differ from the standard models only in terms of the minimum temperature imposed (3 and 10 K for left and right, respectively). The short-dashed curve is a more extended model with \(R_1 = 30 \text{ au} \), whereas the line marked by crosses is a low photoionizing flux model with \(F_1 = 0.1 \). Data points represent detections and 3σ upper limits at 1.3 mm from Beckwith et al. (1990) and Osterloh & Beckwith (1995). The hatched region represents the 3σ upper limit for non-detections of weak-line T Tauri stars by Duvert et al. (2000).](image-url)
time spent in this region to that spent in the ‘classical T Tauri’ phase (i.e. prior to the decline of the inner disc) lies in the range 0.4–1.7. (This result is just a re-statement of the fact that, in the case of sensitive observations, one is recovering the fact that $t_w \sim t_{outer}$, see Section 3.2 above.)

If the ratio of weak-line T Tauri stars to classical T Tauri stars is $f_{W/C}$, one then derives the fraction of weak-line stars with millimetre flux detectable at the 2.5-mJy level as

$$f_{TW} = \frac{f_{WC}}{f_{W/C}}.$$ \hspace{1cm} (18)

Since estimates of $f_{W/C}$ vary in the range 1–10 (Stahler & Walter 1993; Kenyon & Hartmann 1995), whereas the values of f_{WC} predicted by the models in Fig. 3 lie in the range 0–1.7, it would be premature to decide whether the low number of transition objects detected by Duvert et al. (one detection of 1.3-mm flux at the 2.5-mJy level out of 11 weak-line T Tauri studied) represents a serious challenge to the model. We note that when we experimented with models where the steady-state surface density declined more steeply with radius (and hence where the viscosity increased more steeply with radius), we found that the millimetre flux lingered at lower levels. For example, for models in which $\Sigma \propto r^{-3.2}$, most had a residual millimetre flux that was below the 2.5-mJy level; we note, however, that Hartmann et al. (1998) have advanced arguments against the steady-state surface density power law being much steeper than the r^{-1} law used here. What is clear, is that all ultraviolet switch models predict a lingering of the millimetre flux at its value just after the inner disc is emptied, but whether this value is greater or less than 2.5 mJy depends on the details of the spectral and viscous model, in particular the initial disc mass and radius and the minimum temperature to which the disc is allowed to cool.

4 DISCUSSION

All photoevaporative models share a common feature that makes this mechanism a highly promising one for the dispersal of discs around T Tauri stars; namely, they reproduce the observed ‘two-time-scale’ behaviour of T Tauri stars, whereby the time-scale for the sudden transition between classical and weak-line T Tauri status is one to two orders of magnitude less than the lifetime of the disc in the classical T Tauri state. Quantities that are switched off on this $\sim 10^3$-yr time-scale are all those associated with the inner disc (within 5–10 au), i.e. disc emission shortward of 10 μm and spectral diagnostics of accretion on to the central star. As discussed above, the outer disc is dispersed on a longer time-scale in these models, and further sensitive searches for cool dust emission around weak-line T Tauri stars are required before deciding whether this is a serious objection to the model.

So far, we have assumed an ionizing luminosity of the central star that remains invariant throughout the star’s pre-main-sequence lifetime. Following Hollenbach et al. (2000; see also Shu, Johnstone & Hollenbach 1993) we have adopted an ionizing luminosity of 10^{34} s^{-1} for a solar mass central star. The assignment of an ionizing luminosity that is considerably greater than that produced by the Sun (10^{30} s^{-1}) is motivated by the fact that IUE showed at least some T Tauri stars to exhibit highly super-solar activity in the ultraviolet (e.g. Gahm et al. 1979; Imhoff & Appenzeller 1987); the grounds for the quantitative estimate of 10^{41} s^{-1} are not, however, clear. Fortunately, the results reported above are rather insensitive to the value of the ionizing flux. The associated mass-loss rates scale as $\Phi_i^{1/2}$, so that if Φ_i was an order of magnitude lower, for example, one would recover qualitatively identical behaviour, but with the classical T Tauri state persisting down to accretion rates a factor of ~ 3 lower, and with a longer time required to decline to this accretion rate. Once switch-off occurred, it would share the same features as for higher-Φ_i models, since the time-scale for emptying the inner disc, and the spectral diagnostics affected, are set purely by the gravitational radius R_c, which depends only on the stellar mass.

A much more important issue than the overall level of the photoionizing flux, however, is the question of the origin of this emission. It is essential for this model that it has a component that is not powered by accretion, because otherwise the photoionizing flux would itself be turned off as the disc declined and would thus be ineffective at late times. Two recent studies (Costa et al. 2000; Johns-Krull, Valenti & Linsky 2000) of archival IUE data for T Tauri stars examined the relative roles of accretion and magnetic activity as the heating source for ultraviolet emission in these objects and came to slightly different conclusions. At a purely empirical level, it is notable that in early type T Tauri stars the continuum level at 1958 \AA is of comparable strength in classical and weak-line T Tauri stars, and that these levels overlap measurements of main-sequence stars of the same spectral type. In this case, it would appear clear that there is an important energy source of magnetic origin; an even stronger conclusion can be drawn in the case of X-ray emission in T Tauri stars, where weak-line systems show if anything higher levels of activity than classical T Tauri stars (Damiani et al. 1995; Stelzer 2001). Unfortunately, this conclusion cannot be tested in the ultraviolet regime for later type stars (where classical T Tauri stars show a clear excess of emission compared with main-sequence stars), owing to the rather small numbers of weak-line systems observed by IUE.

5 CONCLUSIONS

We have shown that a low level of photoevaporative mass loss from the disc in the region 5–10 au can promote the eventual rapid ‘switch off’ of the disc inward of this radius, and an associated rapid decline of diagnostics associated with this region (i.e. spectroscopic accretion indicators, infrared emission at 10 μm and shortwards). This switch off simply coincides with the epoch at which the accretion rate through the disc falls as a consequence of viscous draining, to a level comparable with the photoevaporative mass-loss rate. At this point, the inner disc becomes detached from the reservoir of material at larger radius that had hitherto replenished it (in other words, material flowing in from large radius is photoevaporated once it reaches the 5–10 au region, and none of it can now flow into the inner disc). Thus starved of its exterior supply, the inner disc rapidly empties on the viscous time-scale at ~ 5 yr. Thus photoevaporative mass loss provides the desired switch off of inner disc accretion indicators.

There are several attractive features of this model. First, the switch affects a larger region of the disc than that affected by magnetospheric clearing and thus promotes the simultaneous demise of infrared emission out to wavelengths of 10 μm, as required by the distribution of T Tauri stars in the infrared two-colour plane. Secondly, unlike the case of one-off dynamical encounters at a similar radius, a disc that is subject to continuous photoevaporative mass loss beyond a certain radius is unable to expand outwards beyond this point. Consequently, the time-scale

on which the entirety of the inner disc drains away is short. It is also notable that the model predicts that the sudden switch off occurs once the accretion rate falls to several $10^{-10} M_\odot$ yr$^{-1}$, so that classical T Tauri stars should extend in accretion rate down to such values: this is compatible with the lowest accretion rates inferred by Gullbring et al. (1998) for a sample of classical T Tauri stars, but is comfortably larger than the upper limit recently derived for a weak-line star (Muzerolle et al. 2000).

We have also pointed out two potential problems for the model. First, although it predicts the rapid dispersal of the inner disc, emission from larger radii (≫5–10 au) should decline over a considerably longer time-scale. The level at which the millimetre flux is expected to linger depends on details of the disc model (especially the initial matter distribution in the disc and the minimum disc temperature imposed). Recently, Duvert et al. (2000) found that only one out of 11 weak-line T Tauri stars was detectable at 1.3 mm at the very low flux limit of 2.5 mJy; some of our models predict lingering millimetre flux that is above this level and some below. It would therefore be premature to reject the model on these grounds. We merely note that the model does predict a lingering millimetre flux that is plausibly in the 1–10 mJy range and that we would ultimately expect sensitive observations to reveal this emission in a reasonable fraction of weak-line T Tauri stars (see the discussion in Section 3.2).

The second potential problem concerns what is the magnitude and the origin of the ionizing radiation in T Tauri stars. As we argue in Section 4, it is essential that this emission has an important component that is not accretion powered, and which therefore will not decline to insignificant levels as the disc accretion fades. Since we have shown that in other respects the photoevaporation model appears highly promising as a mechanism for disc dispersal, it is becoming increasingly desirable to have better estimates of the magnitude and origin of the ionizing luminosity in these systems. We therefore urge that future analyses of the ultraviolet spectra of T Tauri stars should be used to constrain the photoionizing emission rates in these systems.

Finally, we note that our time-dependent calculations have revealed a rather different evolutionary sequence for the surface density profile of the disc than that envisaged by Shu et al. (1993; see also Hollenbach et al. 2000) in their discussion of the impact of photoevaporation on planet formation. These authors envisaged that the primary depletion of the surface density of the disc would occur outside the critical radius for photoevaporative mass loss, which they identified in the solar system as being the radius of the intermediate gas giant, Saturn. When photoevaporative models are combined with viscous evolution, however, we see that the most dramatic effects on the disc density profiles at late times are at all radii inside this radius, radii from which direct photoevaporative mass loss is not possible owing to the larger depth of the gravitational potential close to the star. These inner radii experience a more radical depletion, however, because, unlike the region from which photoevaporative mass loss occurs, they are detached from the reservoir of material at larger radius. This type of behaviour should be borne in mind in future analyses of planet formation in photoevaporating discs.

ACKNOWLEDGMENTS

We gratefully acknowledge useful conversations with Jerome Bouvier, Francesco Palla and Jim Pringle, and thank the referee, Phil Armitage, for insightful comments. AG and MS thank the International Undergraduate Summer School (University of Cambridge and PPARC) for financial support. CJC is indebted to the Osservatorio di Arcetri for hospitality during the completion of this work.

REFERENCES

Hartmann L., Calvet N., Gullbring E., D’Alessio P., 1998, 495, 385 (HCGA)

This paper has been typeset from a TEX file prepared by the author.