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Abstract of the Dissertation

Universality in Random Matrix Models of
Quantum Chromodynamics

by

Melih Kemal S�ener

Doctor of Philosophy

in

Physics

State University of New York at Stony Brook

����

In this thesis we investigate various spectral properties of ran�

dom matrix models of quantum chromodynamics �QCD� and �nd

that some of them are universal in the sense that their functional

form is invariant under various deformations of the random ma�

trix ensemble in question� In particular the microscopic part of

the spectral density is such a universal distribution� which was

shown to coincide with lattice QCD data� This is of physical im�

portance because the microscopic part of the Dirac spectrum car�

ries information about the chiral symmetry breaking in QCD� We

also develop analytical tools for similar studies� including Harish�
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Chandra�Itzykson�Zuber type integrals relevant for calculating en�

semble averages in chiral random matrix ensembles and a method

to connect the spectral information of a chiral unitary ensemble to

the corresponding orthogonal and symplectic ensembles�
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Chapter �

Introduction

Except for textbook examples� problems in physics rarely lend themselves
for exact solution� Therefore a physicist is often led to work with approxima�
tion schemes or models� A model may disregard certain details of the system
in question and therefore may work � if at all � in one domain� but remain a
bad approximation in another� Furthermore� it is usually the case that� given
the circumstances� one property of a physical system is more important than
others and a full description of the system is not needed for answering the ques�
tions about that property� Hence one desires to have some means of deducing
the consequences and the relevance of each individual bit of information that
goes into the de�nition of a given physical system� In certain circumstances
random matrix models provide partial solutions to these problems�

In the construction of a random matrix model for a given physical system
one starts with identifying a linear operator which carries information about
the dynamics of the system� For example this would usually be the hamiltonian
for a quantum mechanical system� Typically one desires to learn about its
spectrum which may defy an analytical description�

Random matrix theory proceeds by identifying fundamental symmetries
and constraints about the structure of this linear operator� For example� it
may be complex hermitian or real symmetric or it might posses a certain
block structure� it might have commutativity properties with other operators�
et cetera � Once important symmetries and constraints are identi�ed� all other
system speci�c information is �erased� from the model� Discarding of informa�
tion essentially corresponds to taking irrelevant details to be random� Thus the
actual linear operator which contains full dynamical information is replaced by
an ensemble of operators �matrices� which are random except for the decided
constraints and symmetries imposed on them� In most cases an average over
such an ensemble is much easier to evaluate than computing the spectrum for
the full problem�
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�Conservation of di�culty� would lead one to expect that this kind of an
approach is bound to fail for all but a few questions asked about the physical
system in question� As most system speci�c information is discarded in the
construction of the random matrix model� any properties dependent on them
can no longer be recovered� The only things that can be recovered are the
universal properties� By a universal property we mean those properties that
are shared by almost all systems belonging to the ensemble� as de�ned by the
given symmetry and constraints� �Probably a better way to de�ne universality
is as �invariance under deformations� of the original problem as we will see later
on�� In other words� computation of universal properties usually do not require
an analytical solution of the full physical problem� The corresponding random
matrix model might provide the same answer more easily�

Historically� random matrix theory was invented by Wigner in the �����s
�		�� 		� in an attempt to gain a statistical understanding of nuclear spectra�
Wigner observed that it was practically impossible to compute analytically
the positions of the thousands of energy levels observed for a given atomic
nucleus� The hamiltonian� which carries all dynamical information about the
nucleus� was too complicated for an exact study� and Wigner was therefore led
to a statistical study of the energy levels�

Wigner decided to examine the spectrum of a random hamiltonian� de�
scribed by independently drawn gaussian random numbers as matrix elements
except for the constraint of being real symmetric� The overall average spec�
tral density of such a model is a semicircular distribution centered around
zero� however� the spectral density for most physical systems is a monoton�
ically increasing function� Thus it was clear that such an approach cannot
tell much about the overall shape of the spectrum� Wigner realized� however�
that a random matrix model does a good job predicting local spectral statis�
tics� whereby local we mean at the scale of the mean energy level spacing� In
fact the distribution of the distance between neighboring energy levels �after
some �unfolding� procedure as explained in chapter 	� is precisely the same as
that given by the random matrix model� This agreement provided the initial
impetus for the development of random matrix theory� More details will be
discussed later in chapter 	�

An interesting perspective on random matrix theories is to consider them
as �minimal information models�� This view was established by Balian ����
in the ��
��s� He realized that some canonical random matrix ensembles can
be reconstructed by a procedure where one treats the probability distribution
de�ning the ensemble as a variable and minimizes the information content
of the probability distribution for the ensemble� modulo the constraints and

	



symmetries imposed on the ensemble� Minimizing the amount of informa�
tion is formally the same as maximizing the entropy� or the randomness� of
the remaining �unconstrained� properties of the system� As such� Balian�s
framework provides a means to study the consequences of individual pieces
of information separated from other system speci�c details� We will discuss
Balian�s method in more detail in chapter 	�

The reason why random matrix theory works at all is because of uni�
versality encountered in certain classes of dynamical systems� As universality
�at least in the present context� is not an entirely well de�ned concept� it
is better to proceed by example� namely� by the most well known case of
universality in quantum mechanical spectra of classically chaotic dynamical
systems� Bohigas� Giannoni and Schmidt ��
� conjectured in ��� that local
spectral properties of quantum mechanical systems whose classical analogs are
chaotic �and are time�reversal invariant�� are identical to those given by the so
called gaussian orthogonal random matrix ensemble� They have reached their
statement via a number of numerical studies concerning such spectra� Their
conjecture has been extensively tested on many examples to this day�

The Bohigas�Giannoni�Schmidt conjecture essentially states that the afore�
mentioned spectral properties are system independent� up to the point of
changing the fundamental symmetries of the system� �For example turning on
a magnetic �eld which might break the time�reversal symmetry� will change
the �universality class� in question�� As these properties are shared by almost
all systems obeying the same constraints they can therefore be computed in
any one of them� preferably a simpler one�

Within the context of random matrix theory� the phrase �universality�
takes a more formal meaning� The de�nition of a random matrix ensemble
not only requires the choice of a subset among matrices but also to assign
a weight function with respect to which all averages should be performed�
One typically works with gaussian distributions as they are easier to handle�
however for the outcomes of the model to have any signi�cance the arbitrary
choice of a weight function should not have any role� In fact� as we will discuss
in chapter � almost all signi�cant properties of gaussian ensembles �by which
we mean those properties that tend to agree with those of corresponding real
physical systems� are invariant under various deformations of the de�ning
weight function�

This form of �universality� is reminiscent of the central limit theorem� The
central limit theorem establishes a mathematical ground for the ubiquity of the
appearance of the bell curve� Many complex interacting systems �may they be
of social� biological or physical origin� show the same behavior regarding the
distribution of certain magnitudes �test scores� heights of people� deviations
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in a measurement etc��� Although a detailed understanding of most of these
systems is out of reach� the ubiquity of the gaussian distribution is easier
to understand� If one starts with a probability distribution and de�nes a
new distribution by the sum of two random numbers drawn from the initial
probability distribution� repeating this procedure will eventually converge on
the gaussian distribution for most starting distributions� In other words� the
gaussian distribution is an attracting �xed point of a renormalization group
�ow� �In chapter 	 we will outline a proof of a similar statement as given by
Feinberg and Zee��

Like the central limit theorem� universality studies in the context of ran�
dom matrix theory establish certain spectral distributions to be invariant un�
der changes of the de�ning probability distribution for the ensemble in ques�
tion� However� unlike in the case of the central limit theorem� general proofs
are harder to come by and usually each variation of a model requires sepa�
rate study� The work to be outlined below has consisted of contributions in
this direction� It is mostly analytical in nature� where numerical studies were
usually used only at the experimenting stage for testing new ideas�

We study a rather speci�c class of random matrix theories below� namely
those inspired by quantum chromodynamics� Quantum chromodynamics �QCD�
is believed to be a viable microscopic theory describing nuclear interactions�
Although it can be described rather easily in terms of a local lagrangian� a di�
rect deduction of many of its consequences have remained elusive so far� This
has led to many QCD inspired models as well as various numerical studies�
As will be discussed in detail below� certain physical questions regarding QCD
can be formulated in terms of the spectrum of the Dirac operator� which is
the linear operator carrying the relevant information in this case� The scope
of the studies of QCD inspired random matrix models is to establish certain
characteristics of the Dirac spectra as universal and so derive them from a cor�
responding random matrix model� It is important to emphasize at this point
that a direct computation of such spectral data from fundamentals of QCD
is generally out of reach and the alternative typically is the numerical studies
done on a discretized lattice of space�time� Random matrix theories naturally
complement such numerical studies�

Today random matrix theory enjoys a renewed interest after a certain
period of being dormant before mid �����s� It is probably fair to say that
universality studies to this day provide some form of a �tool box� which must
be re�ned for each individual problem encountered� rather than an all en�
compassing general theory� Random matrix theories have been applied to
many branches in and out of physics including quantum mechanical spectra�
the spectrum of the Dirac operator in quantum chromodynamics� 	D gravity�





condensed matter physics� resonance spectra in microwave cavities� elastome�
chanics� neural networks and the spectrum of the zeroes of the Riemann zeta
function� to name a few� Various references can be found throughout the
following chapters and the bibliography of this thesis�

The outline of this thesis is as follows� In chapter 	 we will introduce
random matrix theories on a more formal basis from a partially historical per�
spective and establish some of the basic relations used throughout this work�
Then in chapter � we will brie�y summarize some of the relevant properties
of quantum chromodynamics with an emphasis on chiral symmetry breaking�
Chapter  is the core of this text and will mainly consist of published work
��	�� �	� �	
� ���� along the lines outlined before� Various computational
conventions as well as brief introductory treatments of some of the analytical
techniques used throughout are relegated to the appendices�
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Chapter �

Random matrix theories� An Introduction

In this chapter we give a brief introduction on general concepts of random
matrix theory� As a complete treatment of this subject is beyond the scope
of this manuscript we will naturally be biased in the selection of the topics�
Priority will be given to those that are most relevant for this work� For a
more complete treatment of random matrix theory the reader is referred to
some standard references� Especially the treatise by Mehta ���� and the early
preprint collection by Porter ��
�� serve this purpose more than adequately�
Furthermore a relatively recent review of common concepts in random matrix
theory has been published by Guhr� M�uller�Groeling and Weidenm�uller ������
which has a more modern perspective than the former two references�

We will start with a historical survey of random matrix theory in sec�
tion 	��� where some points already mentioned in the introduction will be
discussed in more detail� We will try to maintain the continuity at the cost
of some redundancy� Then we will establish some useful concepts regarding
the statistics of the eigenvalues of a random matrix in section 	�	� Sections
	�� and 	� introduce two of the commonly used techniques in random matrix
theory� namely the orthogonal polynomial and the supersymmetry methods�
In section 	�� we will introduce the information theoretical approach of Balian
to random matrix theory� This will be followed by a discussion of universality
in the context of random matrix theory and a �rather informal� analogy to the
central limit theorem in section 	�
�

��� A historical perspective on Random Ma�

trix Theory

Random matrix theory was introduced in physics by Wigner in ���� �		��
		� in an attempt to formulate a statistical understanding of the resonances






observed in the scattering of slow neutrons across nuclei� This was motivated
by the measurement of su�ciently long level sequences with enough resolution
to make statistical studies of the spectrum feasible�

The aforementioned resonances correspond to long lived compound states
formed by the incoming neutron and the target nucleus ����� ���� At that
time no generally accepted dynamical theory for their study was available�
Furthermore� for a system with many degrees of freedom and strong interac�
tions� a detailed study of the resonances was elusive� Since there was no means
of computing the energy levels of a system as complex as a nucleus far away
from the ground state� Wigner considered the possibility of investigating these
levels statistically�

A statistical study of energy levels is a rather unorthodox approach � es�
pecially for the time frame mentioned above� A hamiltonian� though it may be
unknown or complicated� deterministically speci�es the energy levels of a sys�
tem� There is no uncertainty involved� However� if one is not concerned with
the exact positions of energy levels one might hope to understand the relations
between levels within a certain interval such as correlations or even perhaps
to gain an understanding of the average spectral density� Thus Wigner con�
sidered the spectrum of a random matrix which shares the symmetries of the
given Hamiltonian� �For example a real symmetric matrix for a hamiltonian
invariant under time reversal symmetry as we will see below��

For a real symmetric matrix with entries drawn independently from a
gaussian distribution the spectral properties are well known ����� The average
spectral density is a semi�circle centered around zero� However� for many
physical systems the average spectral density is a monotonically increasing
function of the energy� Therefore it is clear that such an approach cannot say
much about the overall shape of the spectral density � the details of the system
ignored by the random matrix model are important for the determination
of the average spectral density� Fortunately more can be said about local
properties of such spectra�

By local properties of the spectrum� we mean those properties that are
relevant at the scale of the mean eigenvalue spacing� The nearest neighbor
spacing distribution is one such property� It is the distribution of the spac�
ings between neighboring eigenvalues in an �unfolded� spectrum� �Unfolding
is a procedure which maps the spectrum under study to another one with a
�xed mean local eigenvalue spacing while respecting relative positions of the
eigenvalues � i�e� global information is sacri�ced for a more convenient study
of the local characteristics� We will see details of this procedure below� �

For the nearest neighbor spacing distribution of nuclear levels Wigner
proposed two rules� ���� 		
� �� Levels with di�erent spin and parity are un�
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correlated� 	� For levels with the same spin and parity the spacing distribution
is given by the now so called Wigner surmise�

p�s� �
�s

	
e�

�
�
s� � �	���

where s denotes the spacing between two neighboring levels as measured in
terms of the local mean level spacing� �The scale is chosen such that the
average value of s in �	��� is unity��

The Wigner surmise follows from two relatively simple assumptions �����
namely� that for small s the probability of �nding a level at E�s is proportional
to s given that there is a level at E and that the probabilities in various
subintervals of �E�E � s� are mutually independent� As Mehta points out
this corresponds to the assumption of vanishing higher correlation functions�
Hence we get

p�s�ds � b lim
m��

m��Y
r��

�
�� sr

m

s

m
a
�
asds

� abse�as
���ds� �	�	�

where a and b are �xed by the average value of s and the normalization�
Amazingly �	��� coincides with the distribution of the spacing between

the two eigenvalues of a 	�	 random matrix and is remarkably close �but not
identical� to the spacing distribution for an arbitrarily large random matrix�
As it will be discussed below� this distribution �that of a large matrix� precisely
agrees with the spacing distribution of certain complex quantum mechanical
systems� The asymptotic form of the spacing distribution for large matrices
can be computed analytically� but the computation is rather involved� We
refer the reader to ���� instead�

As the example above illustrates� random matrix models are successful
usually at the scales of the mean eigenvalue spacing and global characteristics
of the spectrum are beyond their prediction range� �However using Balian�s
method ���� introduced below� one can �tune� a random matrix model to have
a given average spectral density��

Dyson� called random matrix theory as �a new kind of statistical mechan�
ics�� In statistical mechanics one typically considers a collection of identi�
cal dynamical systems realized at di�erent instances in the phase space� the
averages therefore are over those instances �with respect to the Boltzmann
distribution�� Another kind of averaging comes up in number theory� where
for a �xed distribution of prime numbers one works with a running average
over the �spectrum�� Contrasting the former two examples� in random matrix

�



theory the averaging is done over an ensemble of di�erent dynamical systems
�as represented by di�erent linear operators� sharing similar symmetry and
constraints� Ensemble averages are performed as a weighted sum over this set
of dynamical systems� This kind of averaging wipes out any system speci�c
information� Only those properties that are shared by almost all dynamical
systems in the ensemble survive the averaging procedure� We refer to these
properties as universal properties� There is no generally accepted formal de�ni�
tion of universality in random matrix theory as of now� However it is generally
agreed that� to call a property universal it should not depend on the details
of the choice of the weight function imposed on the ensemble� This will be
illustrated by many examples in chapter �

Wigner�s early work was followed by Dyson� Mehta� Porter� Thomas�
Kahn and others ��	� ���� 
�� 
�� 
�� ��� ��� ��� ���� ��� �
� �
��� In particu�
lar� Dyson came up with a classi�cation of generic ensembles in the framework
of nonrelativistic quantum mechanics� which is now called the three�fold way
�
��� According to this classi�cation� time reversal invariant systems with ro�
tational symmetry �and time reversal invariant systems with integer spin and
broken rotational symmetry� are described by a real symmetric hamiltonian�

H � HT � H�� �	���

Systems that are not invariant under time reversal symmetry �such as a charged
particle in an external magnetic �eld� are described by a complex hermitian
hamiltonian�

H � Hy �	��

Finally� systems with half integer spin and time reversal invariance are de�
scribed by self�dual quaternion matrices�

H � e�H
Te�� �	���

where H consists of 	� 	 blocks representing quaternions in the form

q � q��� � q�e� � q�e� � q�e�� �	�
�

Here the generators of the quaternion algebra are represented in the matrix
form

e� �

�
i �
� �i

�
� e� �

�
� �
�� �

�
� e� �

�
� i
i �

�
� �	���
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�N is the N �N identity matrix and e� in �	��� is meant as e�� �� The proof
of this classi�cation statement can be found in �����

The standard random matrix ensembles corresponding to those three con�
ditions �sometimes called Dyson ensembles or canonical ensembles� are de�
scribed by partition functions de�ned over all matrices satisfying one of three
conditions mentioned above with gaussian weight functions for the distribution
of the matrix elements�

ZRMT �
Z
d�H� exp

�
��TrH�

�
� �	���

where
R
d�H� is an integration over all independent degrees of freedom of H�

These random matrix models are called the gaussian orthogonal ensemble�
the gaussian unitary ensemble and the gaussian symplectic ensemble� respec�
tively� and are identi�ed by the Dyson index� � � �� 	 or � measuring the
number of degrees of freedom per matrix element� Hence� there is one canon�
ical ensemble corresponding to each of the three division algebras� the real
numbers� the complex numbers and the quaternions� �One naturally wonders
about a generalization to octonions for � � �� the only remaining division
algebra in mathematics� however� it appears that the cost of sacri�cing asso�
ciativity that comes with the introduction of octonions is too great� and such
e�orts have been unsuccessful� Even some basic de�nitions and theorems in
linear algebra are elusive in an octonionic generalization��

Remarkably� all three ensembles show very distinct spectral characteris�
tics� As we will see below the gaussian assumption for the weight functions is
not a strong requirement for the preservation of these characteristics�

As will become clear� it is very useful to express the partition function
�	��� in terms of the eigenvalues� Ek� of H� Since the partition function is
invariant under unitary transformations and the jacobian depends only on the
eigenvalues this is possible� For N�N matrices the partition function is given
by

ZRMT �
Z
d�E����E� exp

�
��

	
N�

NX
k��

E�
k

�
� �	���

We adopt normalization conditions standard in the literature and the Vander�
monde determinant� ��E�� is given by

��E� � det�El��
k �k�l�����N

�
Y
k�l

�Ek � El�� �	����

��



The Vandermonde determinant� ���E�� in �	��� is the jacobian from the
change of variables from Hjk to radial coordinates �i�e� eigenvalues and the
diagonalizing unitary matrix�� For the computation of this jacobian see ������

Later� around ��
�� Dyson introduced another set of ensembles� called
circular ensembles� The circular ensemble corresponding to any of the three
canonical ensembles consists of unitary matrices obtained by exponentiating
the matrices in �	���� �	�� or �	��� and assigning the standard �Haar� measure
to the ensembles� This way one works with eigenvalues de�ned on the unit
circle� which is compact� instead of working with eigenvalues de�ned on the
real axis� which is noncompact� This reduces some of the arbitrariness in the
choice of the weight functions� In particular� the eigenvalue density is constant
for circular ensembles� making the unfolding procedure redundant� The ma�
trices which are elements of circular ensembles can no longer be regarded as
�hamiltonians�� instead they should be viewed as unitary S�matrices� probably
describing a scattering process�

Another contribution by Dyson was the Coulomb gas picture of the eigen�
values� The weight function in �	��� can be written as

exp

�
��N�

NX
k��

E�
k �

�

	

X
k�l

log�Ek � El�
�

�
A � �	����

Thermodynamically this is the free energy of a static one dimensional Coulomb
gas of N particles� with positions� Ek� con�ned by a harmonic oscillator po�
tential held at a temperature T � ���� This perspective allows one to more
easily understand the overall shape of the spectral density and the local re�
pulsion between eigenvalues characteristic of random matrix theory as seen in
the Wigner surmise� �	����

In ������ Guhr et al� divide the history of random matrix theory into three
epochs�

�i� The early period starting with Wigner�s early work in the �����s to mid
��
��s� where basic classi�cation results and a number of quantitative probes
of spectra are established�

�ii� The middle period from mid ��
��s to about ����� where more data
were gathered in various �elds of physics and the range of applicability of
random matrix theory was better established� Fundamental breakthroughs
were not as common in this epoch and the analytical questions arising from
the data coming from nuclear theory brought the need for new mathematical
tools� One notable idea in this period� which we will discuss in more detail� is
Balian�s information theoretical approach to random matrix theory�

��



�iii� The period from ���� to present� where random matrix theory enjoys
a renewed interest� a �ood of data and an increasing arsenal of analytical tools�
More speci�cally random matrix models of quantum chromodynamics are a
product of the last decade entirely�

The beginning of this last epoch is marked by two almost simultaneous
events� the introduction of the supersymmetric method by Efetov ��
� in ����
and the Bohigas�Giannoni�Schmidt conjecture ��
� mentioned in the introduc�
tion� stating the universality of randommatrix spectra among chaotic quantum
systems� in ����

Bohigas� Giannoni and Schmidt published a numerical study of the spec�
trum of the Schrodinger equation inside a �box� of the shape of the reduced
Sinai billiard� This quantum billiard problem is a generic example of a quan�
tum mechanical system whose classical dynamics is chaotic� Bohigas et al�
presented numerical evidence that the nearest neighbor spacing distribution
of this system is identical to that of the gaussian orthogonal ensemble� Because
of these numerical results they conjectured that local spectral characteristics
of a quantum mechanical system whose classical dynamics is chaotic are given
by a corresponding random matrix theory� �They speci�cally considered K�
systems which are the most strongly mixing classical systems��

The content of the Bohigas�Giannoni�Schmidt conjecture has some con�
trast with the early empirical agreement between random matrix theory and
nuclear spectra� In the case of nuclear spectra the system under study is a
many�body system whereas in the case of quantum billiards there are only
	 degrees of freedom� As seen from many other examples� including the hy�
drogen atom in a magnetic �eld ����� what really determines the validity of
random matrix theory is the classical chaoticity of the problem� rather than
the number of degrees of freedom of the system�

Although veri�ed by various studies the Bohigas�Giannoni�Schmidt con�
jecture still remains unproven� For a further discussion of the status of this
conjecture we refer the reader to ������ Most of the attempts to link random
matrix theory with quantum chaos rely on the semi�classical approximation�
For a more detailed discussion of quantum chaos we refer the reader to ������

Another important development at almost the same time was the intro�
duction of the supersymmetry method in random matrix theory by Efetov in
���� ��
�� This has provided additional analytical tools to study theoretical
problems associated with random matrix theory� We will further discuss this
method in section 	� below�

Random matrix theory currently enjoys a renewed interest and it has been
applied to many systems outside the scope of the nonrelativistic Schrodinger

�	



equation as mentioned in the introduction� We will especially be interested in
random matrix models relating to quantum chromodynamics as discussed in
chapter �

��� Statistics of the eigenvalues

In this section we brie�y outline some of the statistical measures used in
probing the spectra of random matrix ensembles� Below we will start with
a given probability density of the eigenvalues� PN�x�� � � � � xN �� For canonical
ensembles it was given by �	����

PN�canonical�x�� � � � � xN � � ���x� exp

�
�N�

NX
k��

x�k

�
� �	��	�

Given a probability density� PN �x�� � � � � xN �� of the eigenvalues� xl� of a
matrix� H� perhaps the most important corresponding spectral measure is
the spectral density� which can be obtained by successive integrations of the
eigenvalues

��x� � hTr ��x�H�i
�

	X
k

��x� xk�




� N
Z
dx� � � � dxNPN�x�� � � � � xN �� �	����

where the brackets denote an ensemble average�

More generally� one may study the higher correlation functions of the
eigenvalues

Rk�x�� � � � � xk� �
N �

�N � k��

Z
dxk�� � � � dxNPN�x�� � � � � xN�� �	���

which is the probability density of �nding one eigenvalue in the vicinity of each
xl� for l � �� � � � � k�

An alternative form of �	���� which will be used in chapter  is obtained
by realizing that a delta function may be represented as

��x� �
�

�
Im

�

x� i�
� �	����

��



Using this identity and the representation of Rk�x�� � � � � xk� in a similar form
as in �	����� we arrive at the following representation

Rk�x�� � � � � xk� �
�

�k

Z
d�H�PN�H�

kY
l��

ImTr
�

xl � i��H
� �	��
�

As we will see below� this representation will be especially important in the
supersymmetric formulation of random matrix theory� Sometimes it is more
convenient to work with pseudo�correlators�

�Rk�x�� � � � � xk� �
�

�k

Z
d�H�PN�H�

kY
l��

Tr
�

xl � i��H
� �	����

from which the correlation functions� Rk� can be constructed by taking the
imaginary part of each trace�

In a number of situations one has to work with a portion of the spectrum
in which the mean eigenvalue spacing is not constant� As many local spectral
characteristics scale with the mean eigenvalue spacing one wishes to eliminate
this dependence in those cases by a procedure called the unfolding procedure
�	����

In order to do this one �rst obtains a smoothened spectral density�  �� from
the original one� �� The unfolded spectrum is then given by

xunfl �
Z xl

�
dx ��x�� �	����

The statistical measures of the spectrum are de�ned in terms of the unfolded
eigenvalues ���� 	��� ����� One such measure is the previously mentioned
nearest neighbor spacing distribution�

Two other commonly used statistics are the number variance� !�� and the
�� statistic� They are de�ned in terms of the moments� Mk� of the number of
levels in a �xed length of the spectrum while one moves this interval along the
spectrum� Dividing the spectrum in to N intervals with an average number of
n levels in each� the moments of the spectrum are de�ned by�

Mk�n� �
�

N

NX
l��

nkl � �	����

where nl denotes the number of levels in the lth interval� Naturally M��n�
approaches n for a large sample�

The number variance is given by the second moment

!��n� � M��n�� n� �	�	��

�



and the �� statistic is de�ned by an integral of the number variance

���L� �
	

L�

Z L

�
dr!��r��L

� � 	L� � r��� �	�	��

��� Orthogonal polynomial method

For random matrix models whose partition functions are invariant under
unitary transformations� a powerful method can be employed to compute the
eigenvalue correlators and other local variables� This technique� known as
the orthogonal polynomial method� expresses the Vandermonde determinant
in �	��� in terms of the orthogonal polynomials corresponding to the weight
function of the ensemble� The partition function of eigenvalues in �	��� can
then be recursively integrated using orthogonality relations�

Some basic properties of and some useful identities for orthogonal poly�
nomials are summarized in the appendix�

In this section we will only consider invariant unitary ensembles� Or�
thogonal and symplectic ensembles do not permit a direct application of the
orthogonal polynomial for reasons that will become clear� However� they can
be studied by so�called skew�orthogonal polynomials� This process� pioneered
by Dyson �
�� and Mahoux and Mehta ����� is much more involved and is
discussed in more detail in chapter � where we introduce a method to relate
results about unitary ensembles to corresponding orthogonal and symplectic
ensembles�

We start by re�writing the equation �	���� for the Vandermonde deter�
minant in terms of the orthogonal polynomials� pl�x�� corresponding to the
weight function� e�V �x�� of the random matrix ensemble given in ����� For
the gaussian unitary ensemble V �x� � x� and one gets Hermite polynomials
as discussed in the appendix� For chiral gaussian unitary ensemble it is cus�
tomary to work with the squares of eigenvalues� xk � 	�k� therefore x is in the
interval ����� and the weight function is given by e�V �x� � xae�x and the
corresponding orthogonal polynomials are Laguerre polynomials� The orthog�
onal polynomial method can be introduced for an arbitrary weight function
even though the corresponding polynomials might be unfamiliar�

By adding columns of lower order polynomials� the Vandermonde deter�
minant in �	���� can be written as

��x� �

p��x�� � � � p��xN �
���

���
pN���x�� � � � pN���xN �

� �	�		�

��



where we have assumed that the polynomials� pk�x�� are chosen to be monic�
Introducing the �unnormalized� �wave functions�


k�x� � pk�x�e
� �

�
V �x� �	�	��

one can write the probability density for the eigenvalues in �	��� as

PN�x�� � � � � xN� � ���x� exp ��NV �x�� �

�


��x�� � � � 
N���x��
���

���

��xN� � � � 
N���xN �

�

��x�� � � � 
��xN �

���
���


N���x�� � � � 
N���xN �

�

�	�	�

which can then be expressed in terms of the kernel of the correlation functions

KN�x� y� �
N��X
k��

�

hk

k�x�
k�y�� �	�	��

where the hk are the normalization coe�cients de�ned in the appendix� Sub�
stituting the de�nition of the kernel in �	�	��� the probability density function
for the eigenvalues can be written in the form of a determinant

PN�x�� � � � � xN � �

�
N��Y
k��

hk

�
det �KN�xk� xl��k�l�������N � �	�	
�

Using the orthogonality relations among pk�x� it is easy to prove the
following identities Z

dx KN �x� x� � N� �	�	��Z
dz KN �x� z�KN �z� y� � KN�x� y�� �	�	��

This identities can be used to recursively integrate the eigenvalues in �	����
and �	���� Finally we arrive at the following expressions for the spectral
density and the eigenvalue correlation functions

��x� � KN�x� x�� �	�	��

Rk�x�� � � � � xk� � det �KN�xi� xj��i�j�������k � �	����

These relations can be simpli�ed further by realizing that the right hand
side of �	�	�� is the left hand side of the Christo�el�Darboux identity given in

�




the appendix �up to an overall exponential factor�� This allows one to express
the kernel in terms of high order polynomials which can then be studied using
asymptotic relations�

As discussed in the appendix� in the case of the chiral gaussian unitary
ensemble the relevant orthogonal polynomials are the Laguerre polynomials�
whose asymptotic forms are given by �A����� This allows one to express the
spectral properties of chiral gaussian unitary ensemble in the large N limit
and in the microscopic region �discussed below� in terms of the Bessel kernel

K�x� y� �

p
xy

x� � y�
�xJa�	y�Ja���	x�� yJa�	x�Ja���	y�� � �	����

Remarkably analytical results of this type have been shown to agree with
numerical studies from lattice QCD computations as we will discuss in more
detail in chapter �

��� Supersymmetry method in random ma�

trix theory

In this section we introduce another method used in randommatrix theory
studies� The supersymmetric formulation introduced below is used extensively
in chapter  and unlike the orthogonal polynomial method it can be utilized in
cases where the unitary invariance of the partition function is broken� Some of
the necessary background for superanalysis is given in the appendix� Further
information can be found in ��	� 	�
� ���� In this section we adopt the notation
from �����

Our aim will again be the computation of the higher correlation functions
and we will start from the expression given in �	��
��

We will �rst obtain some simple identities for the trace of the inverse of
an N �N matrix A�

Tr
�

A
�

�

	

�

�j

�����
j��

det�A� j�

det�A� j�
�

�
�

	

�

�j

�����
j��

Z
d���d�� exp

�
i�y�A� j��� iy�A� j�

�
� �	��	�

where � and  are bosonic and fermionic vectors of length N � respectively and
the integration measure is given by d��� �

Q
d��kd�k and d�� �

Q
d�kdk�

The reader is referred to the appendix for our integration conventions for
superintegrals�

��



Using �	��	� one can write �	���� as a superintegral� More speci�cally� for
the gaussian unitary ensemble where

PN�gue�H� �
	N�N�����

�	����N���
exp

�
� �

	��
TrH�

�
� �	����

with variance� �� one arrives at the identity

�Rk�x�� � � � � xk� �
�

�	��k
�kQk

i�� �ji
Zk�j�� � � � � jk�

�����
ji��

� �	���

where the generating function� Zk� is given by

Zk�j�� � � � � jk� �
Z
d�H�PN�H�

Z
d�"� exp

�
	i"y�x� i�H� j�"

�
� �	����

where " is a �kN � kN� supervector and we have introduced the following
�kN � kN� block�diagonal supermatrices

x � diag � �x�� � � � � xk�� �N � �x�� � � � � xk�� �N � �

H � diag � �k �H � �k �H � �	��
�

j � diag � �j�� � � � � jk�� ���N� � �j�� � � � � jk�� �N � �

Here a semicolon separates bosonic blocks from fermionic ones�
The advantage of this formulation is that theH�integrals are now gaussian

integrals which can be carried out analytically for arbitraryN � This introduces
some fourth order terms in " which can then be decoupled by introducing a
�k � k� supermatrix� �� Eventually the remaining "�integrals �which are now
gaussian� can be done analytically and we are left with an expression for the
generating function� Zk� in �	����� which involves only the newly introduced
supermatrix� ��

Zk�j�� � � � � jk� � 	k�k���
Z
d���e�str�

�

sdet�N �x� i�� � � j� � �	����

Here we have introduced the following �k � k� supermatrices�

x � diag� x�� � � � � xk � x�� � � � � xk ��

j � diag� �j�� � � � ��jk � j�� � � � � jk �� �	����

The dimension� N � of the original matrices have now completely disap�
peared from the integrations except for being a parameter� This procedure�
which resembles a Fourier transform� is known as the Hubbard�Stratonovitch

��



transformation� Despite small changes it can be adopted even in a case where
the unitary invariance of the ensemble is broken� One notable restriction is the
use of gaussian weight functions� For a discussion in the case of non�gaussian
weight functions we refer the reader to ���
��

The expressions �	��� and �	���� can be treated either in the saddle�point
approximation or exactly for any N � which for the gaussian unitary ensemble
leads to the well known correlator kernel in terms of Hermite polynomials� The
details of this procedure are involved� They can be found in ���� and are also
illustrated in chapter  for the case of the chiral gaussian unitary ensemble�
where one instead recovers the Laguerre kernel�

��� Balian�s information theoretical approach

to random matrix theory

In ��
� Balian ���� has shown that the canonical random matrix ensem�
bles of Wigner and Dyson can be realized as �minimal information models�
de�ned in an appropriate sense within the context of Shannon�s information
theory ����� ����� �A little earlier� Bronk ��� also referred to canonical en�
sembles as �most random ensembles� in an information theoretical sense�� This
perspective� outlined below� is not of major practical computational value in
random matrix theory� However it is important for putting universality studies
in the proper context�

The amount of information contained in a probability density� fpkg� for
discrete events� k � �� � � � � N � is given by

I�p� �X
k

pk ln pk� �	����

This equation resembles the de�nition of entropy in statistical mechanics ex�
cept for a minus sign� Furthermore� it is easy to see that the minimum of
I�p� is obtained for pk � �

N
� for all k� which is naturally recognized as the

case where least is known about which outcome will happen� The maximum
information is attained when pk � �kn� for some n� which is the case where
we know the outcome with absolute certainty� Hence� the formal de�nition for
information given in �	���� also makes intuitive sense�

A natural generalization of �	���� to continuous probability distributions
is given by

I�p� �
Z
dxp�x� ln p�x�� �	���

��



which can naturally be used with probability distributions over spaces of ma�
trices� P �H�� as discussed in previous sections�

As Balian noticed� the probability distribution in �	��� for any of the three
canonical ensembles can be obtained by minimizing the information content
of P �H� under the constraint of a �xed expectation value for hTrH�i� �An
implicit constraint is the Dyson index� �� of the ensemble��

In general� for an ensemble satisfying constraints of the type

hfk�H�i �
Z
d�H�P �H�fk�H� � ci� �	���

the constrained minimization of the information content gives the probability
density

P �H� � � exp

�X
k

	kfk�H�

�
� �	�	�

where 	k are Lagrange multipliers chosen to satisfy �	���� Hence the random
matrix ensemble can be �dialed� to satisfy any constraints of type �	���� Such
an example is an ensemble having a �xed level density �����

hTr ��H � x�i � ���x�� �	���

In this case

P �H� � � exp
�Z

dx	�x�Tr ��H � x�
�
�

� � exp �Tr	�H�� � �	��

where 	�x� are determined in such a way as to satisfy �	����

Following these examples a picture emerges� where random matrix ensem�
bles are viewed as models with the least amount of detail �or with the greatest
simplicity� after a given number of constraints are satis�ed� This allows one
to study the consequences of individual constraints without interference from
other artifacts which may belong to some speci�c model satisfying the con�
straint� but not the other�

It shall also be noted that not all constraints carry important spectral
information� As an example� we shall see in chapter  that the local spectral
properties are highly independent of the exact form of P �H��

	�



��	 Universality in randommatrix theories and

an analogy to central limit theorem

Central to all random matrix studies lies the fact that they reproduce
certain features of real physical spectra� This is in spite of the fact that
random matrix models are extremely simple ��maximally simple� in the sense
discussed in the previous section�� constructions� The reason behind this is
universality�

As outlined by the Bohigas�Giannoni�Schmidt conjecture not all details
of a �quantum� system play a role in the determination of �local� spectral
properties� Hence many systems sharing similar symmetry properties enjoy
the same local spectral statistics �up to an unfolding process��

This is highly reminiscent of the central limit theorem which establishes
the ubiquity of the gaussian distribution� Although no such formal analogy
can be established there are some parallels� Most importantly� the central limit
theorem provides an example where the �nal distribution of certain quantities
are independent of the initial selection of some probability distributions� More
precisely� the central limit theorem states that the distribution of the sum of
random numbers drawn from a �xed probability distribution approaches a
gaussian under a variety of conditions� i�e� the gaussian is invariant under
deformations of the initial distribution�

Although they share many similarities in their perspective� �as we will
see in chapter � universality theorems in random matrix theory are generally
narrower in scope� where each generalization might require a special study�
Therefore we think it useful to outline a proof of the central limit theorem to
provide an example�

To illustrate the point we follow a proof given by Feinberg and Zee ����
using a renormalization group idea� For details we refer the reader to the
original reference� For the use of renormalization group techniques in random
matrix theory studies see ��� ��� ���� �����

Consider N random numbers� fx�� � � � � xNg drawn independently from the
same distribution Q�x�� which is normalized such that

hxi � �
D
x�
E
�

��

N
� �	���

This normalization guarantees that for large N the sum�
P
xk� has a �nite

variance independent of N �

	�



We wish to study the distribution of the sum of these numbers� namely

PN�s� �� �

	
��s�

NX
k��

xk�



N

� �	�
�

We will proceed by comparing PN���s� �� with PN�s� �� and thereby obtaining
a di�erential equation for it�

PN���s� �� �

	
��s�

NX
k��

xk � xN���



N��

�

�

	
��s�

NX
k��

xk�



N��

�
�

	

�

N � �

��

�s�

	
��s�

NX
k��

xk�



N��

� � � � � �	���

Higher order terms are suppressed in the large N limit� Note that the variance
changes with the increment in N according to

�� �
�

N

N � �

� �
�

�� �	���

Combining the last two equations we arrive at

N
�PN
�N

�
�

	
��
��PN
�s�

� �

	
�
�PN
��

� �	���

For PN�s� �� to have a large N limit the left hand side of �	��� should vanish
which leaves us with �

�
��

�s�
� �

��

�
PN�s� �� � �� �	����

We need to relate � and s to proceed further which is done by a scaling
argument

P �s� �� �
�

�
P �

s

�
� ��� �	����

which leads to the following di�erential equation for P �s� ����
��

��

�s�
� s

�

�s
� �

�
P �s� �� � �� �	��	�

The normalized solution to �	��	� is the gaussian

P �s� �� �
�p
	��

exp

�
� s�

	��

�
� �	����

which is the statement of the central limit theorem�

		



Chapter �

The Dirac operator in quantum

chromodynamics

Quantum chromodynamics �QCD� is believed to be a viable microscopic
theory describing strong interactions� The Dirac operator carries important
information about quantum chromodynamics� and the random matrix models
introduced in the next chapter are modeled after it� In this chapter we will
introduce some properties of the Dirac operator of quantum chromodynamics
with an emphasis on the concepts used in chiral random matrix theory� Since
quantum chromodynamics is too large in scope for a comprehensive review�
we refer the reader to ��	� for a more complete discussion�

The outline of this chapter is as follows� In the next section we will intro�
duce quantum chromodynamics and some of its essential properties� In section
��	 we will discuss the chiral symmetry of the Dirac operator� In section ���
we will derive the Banks�Casher relation� which provides the link between the
eigenvalues of the Dirac operator and the chiral condensate� Finally in section
�� we will introduce the Leutwyler�Smilga sum rules� which are identities sat�
is�ed by the Dirac eigenvalues reproduced in chiral random matrix theories�
Throughout this chapter we will work with Euclidean space�time�

��� Introduction to quantum chromodynam�

ics

It was realized in the early sixties that the observed hadron spectrum
obeys an approximate symmetry given by the group SU���� This was an ex�
tension of the already known isospin symmetry of SU�	�� In ��
� Gell�Mann
���� and Ne�eman ����� proposed the eightfold way theory of strong interactions
named after the octet representation of the SU��� group which was identi�ed

	�



in the hadron spectrum� One notable feature of this theory is that fundamen�
tal �triplet� representation of SU��� could not be identi�ed with any observed
particles� Hence it was postulated that all hadrons consist of fermions called
quarks� which realize the fundamental representation of SU���� The three
quark �avors are named up� down and strange� However the simple quark
model has paradoxes� First of all� in order to explain the observed hadron
spectrum quarks have to be fractionally charged� Therefore� due to charge
conservation� the lowest quark state must be absolutely stable� Such a par�
ticle has never been observed directly� Furthermore the quark decomposition
of certain hadrons seem to violate the spin�statistics theorem without the
assumption of a further quantum number� It was therefore postulated that
quarks posses a hidden degree of freedom� called color� which corresponds to
another SU��� group�

It should be emphasized that the �avor SU��� group of the eightfold way
has nothing to do with the color SU���� They correspond to totally di�erent
quantum numbers� First of all� the color SU��� is assumed to be exact while
the �avor symmetry is approximate� Another di�erence is that the �avor
symmetry is global while the color symmetry is local as we will discuss below�
Furthermore� more quarks have since been found to increase the number of
quark �avors to six� down� up � strange� charmed� bottom and top� The latter
three are too heavy to play an important role in typical hadronic scales� A
postulate of this theory is that only color singlet states are observed in nature�
Hence free quarks are never observed� This is known as color con�nement�

Quantum chromodynamics is a gauge theory �		��� It is obtained by
making the global color SU��� symmetry local� Hence it has the general
structure of a non�abelian Yang�Mills theory given by a local lagrangian

LQCD �
�


F �
A �

NfX
f��

 �f � #D �mf��f � �����

Here Nf is the number of quark �avors and the covariant derivative operator
is de�ned by

D� � �� � i	aAa
�� ���	�

where 	a are the generators of the Lie algebra of SU��� and A� is the gauge
potential� FA is the �eld strength given in terms of the gauge potential� FA �
DA� In component form we have

F a
�� � ��A

a
� � ��A

a
� � fabcA

b
�A

c
�� �����

	



where fabc are the structure constants of SU����
The Dirac operator� #D� acts on the spinor �fermion� �elds� �� and is given

in terms of the covariant derivative operator

#D � �� ��
� � i	aAa�� � ����

It is easily seen that Dirac operator is anti�hermitian� The Euclidean ��
matrices introduced in ���� satisfy the following anti�commutation relation

f��� ��g � 	��� � �����

In principle� it should be possible to derive all properties of hadrons from
the lagrangian in ����� �except for the electroweak contributions and for gravity
which is irrelevant at the energy scales in question�� However this has proved
to be an immensely di�cult task due to the nonlinear nature of the theory�
Therefore it is sometimes more bene�cial to work with an e�ective theory of
quantum chromodynamics� For example� in the low energy limit of QCD and
for light quarks this would be the Weinberg lagrangian �	����

Le	 �
F �
�


Tr ���U�

�U�� !

	
Tr

�
MU �MU y

�
� ���
�

Here U�x� are SU�Nf � valued �elds� F� is the pion decay constant and ! is
the chiral condensate to be introduced below� In ���
� U�x� is given in terms
of the pion �elds� $a�x��

U�x� � exp

�
i
p
	

F�
$a�x�	

a

�
� �����

Expanding ���
� in terms of the pion �elds one obtains in the lowest order
�and for equal quark masses�

Le	 �
�

	
��$

a��$a �
!m

F �
�

$a$a� �����

Reading the pion mass from this e�ective lagrangian we arrive at the Gell�
Mann � Oakes � Renner relation ��	� between the pion and quark masses

m�
� �

	!m

F �
�

� �����

A possible addition to the QCD lagrangian in ����� is a topological term�

LQCD �
�


F �
A �

NfX
f��

 �f � #D �mf ��f �
i�

�	��
F %F � ������

	�



Here %F denotes the Hodge dual of F given by

F �� �
�

	
�	���F

	�� ������

where �	��� is the totally antisymmetric tensor of rank � A notable feature
of this additional term is that it is a total derivative� Hence it does not e�ect
the classical equations of motion� The integral of the factor multiplying � can
be identi�ed as the winding number� �� of the underlying gauge �eld� It is a
topological invariant� The ��term in ������ violates P and CP invariance ��	��
however the actual value of � is not known�

The Euclidean partition function of quantum chromodynamics is given
by a path integral of the QCD action de�ned in �����

ZQCD �
Z
DA

Z
D� exp

�
� Z d�x

�
�X

f

 �f � #D �mf ��f �
�


F �
A

�
A
�
� � ����	�

The fermion �elds can be integrated out analytically� This results in the
following average over gauge �eld con�gurations�

ZQCD �
Z
DAe�

R
d�x �

�
F �
A

Y
f

det� #D �mf �� ������

��� Chiral symmetry of the Dirac operator

The Dirac operator de�ned in ���� carries information between the gauge
�elds and the fermion �elds� Therefore its study is essential for a proper
understanding of quantum chromodynamics� In the following sections and in
chapter  we will be especially interested in the spectrum of the Dirac operator�
Since #D is an anti�hermitian operator� its eigenvalues are purely imaginary�

#D�k � i	k�k� �����

The axial symmetry of the Dirac operator is expressed by

f�
� #Dg � �� ������

where �
 � ��������� As we will see shortly� this relation has important
consequences on the Dirac spectrum� Most notably it can be easily seen that
all nonzero eigenvalues come in pairs �	k� If �k is an eigenvector as de�ned
by ����
�� then �
�k is also an eigenvector with an opposite eigenvalue�

#D��
�k� � ��
 #D�k � �i	k�
�k� ����
�

	




If 	k � � then �k and �
�k need not be linearly independent�

The chiral structure of the Dirac operator is more easily seen in the chiral
representation of ��matrices� �Chirality is a term of Greek origin representing
handedness�

�k �

�
� i�k

�i�k �

�
� �� �

�
� �
� �

�
� ������

In this basis we have

�
 �

�
� �
� ��

�
� ������

The block structure above can be identi�ed with fermion modes of oppo�
site handedness� More precisely� we will introduce the left�handed and right�
handed modes as eigenvectors of the �
 operator�

�
�R � ��R�

�
�L � ��L� ������

The QCD partition function� introduced in ����	� is invariant under chiral
rotations for vanishing quark masses� Therefore one expects that the hadron
spectrum shows this symmetry approximately� �Real quark masses are nonzero
but small compared to the typical hadronic scale�� However this is not the
case� we do not observe opposite parity partners of the hadrons that are known
to exist� Thus the chiral symmetry is spontaneously broken�

It is expected phenomenologically that the chiral symmetry is restored at
su�ciently high temperature or baryon density ������ The order parameter of
the chiral phase transition is the chiral condensate�

! � lim
m��

lim
V���

�

NfV�

�

�m
lnZQCD�m�� ���	��

Here V� is the �volume of space�time� It is easily seen that it can be written
in the form of an amplitude for the creation of left�handed modes and the
destruction of right�handed ones and vice versa�

! �
���D ""

E��� � D
 "L"R �  "R"L

E
� ���	��

The value of ! in vacuum is expected from phenomenological arguments to be
around �	�MeV���
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��� The Banks�Casher relation

In this section we will derive a relation between the chiral condensate and
the spectrum of the Dirac operator� known as the Banks�Casher relation �		��

We start by rewriting the QCD partition in terms of Dirac eigenvalues�
The fermion determinant in ������ can be expressed �for vanishing topological
charge� as

det� #D �m� �
�Y
k

�	�k �m��� ���		�

where the product is over positive eigenvalues only� �We have used the fact
that nonzero eigenvalues come in opposite pairs�� Combining this with ���	��
results in the following expression for the chiral condensate

! � lim
m��

lim
V���

�

V�

	
�X
k

	m

	�k �m�



� ���	��

The sum is over the nonzero eigenvalues and the brackets denote an average
over all gauge �eld con�gurations�

The order of limits in ���	�� is important� It is essential that the ther�
modynamic limit is taken before the chiral limit� In the thermodynamic limit
the Dirac eigenvalues �ll the region near zero virtuality� �Virtuality is a term
referring to Dirac eigenvalues�� Hence a continuous spectral density can be
de�ned in the continuum limit� However if the order of the limits were to be
interchanged ���	�� would become identically zero�

In order to proceed we observe that the argument of the sum in ���	��
is the representation of a delta function in the limit m � �� Hence we can
rewrite ���	�� as

! �
�

V�
����� ���	�

where the spectral density� ��	�� is de�ned by

��	� � h��	� 	k�i � ���	��

The brackets once again denote the gauge �eld average�
The relation ���	� is known as the Banks�Casher formula� It states that

for small quark masses the order parameter of the chiral phase transition is
given by the microscopic part of the spectral density of the Dirac operator�
This is of essential importance to chiral random matrix theory because the
microscopic properties of the Dirac eigenvalues are universal as we shall inves�
tigate below�
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��� Leutwyler�Smilga sum rules

Leutwyler�Smilga sum rules are closed expressions for V ��nP�
k 	

��n
k for

integer values n whenever the sum converges� �Similar sum rules involving
multiple eigenvalues are also possible but not discussed here�� One remarkable
property of this in�nite set of relations among Dirac eigenvalues is the fact
that they can be derived from chiral random matrix theories ������

Leutwyler and Smilga ���� have studied the the chiral lagrangian in ���
�
in the limit when the pion Compton wavelength is larger than the typical
dimensions of the box�

m� ��
�

L
���	
�

In this limit the e�ective partition function for QCD with nonzero quark
masses and an arbitrary ��angle is given by

Ze	�M� �� �
Z
d�U � exp

�
V�!ReTrMUei
Nf

�
� ���	��

Here the integral is over SU�Nf � with respect to its Haar measure�
The e�ective partition function for a given topological sector is obtained

by a Fourier transform

Ze	���M� �
�

	�

Z ��

�
e�i�
Ze	�M� ��

�
Z
U�U�Nf �

d�U �det��U� exp �V�!ReTrMU� � ���	��

Before proceeding further we would like to point out that the last integral
can be recognized as a �chiral� version of an Itzykson�Zuber�Harish�Chandra
integral� It has been part of this thesis work ��	� to develop the techniques
for the analytical computation of these integrals� We will discuss this in detail
in chapter �

The simplest Leutwyler�Smilga sum rule is obtained by expanding Z� to
leading order in m� �	����

Ze	�����m� � � �m�!
�V �


� ���	��

The expansion of ������ gives another such relation

ZQCD�����m�

ZQCD�������
� � �m�Nf

	
�X �

	�k



� ������

	�



Comparing the coe�cients of m� we arrive at

�

V �

	
�X �

	�k



�

!�

Nf

� ������

This is the �rst Leutwyler�Smilga sum rule� Others are obtained by ex�
panding to higher orders in m� �or for di�erent quark masses�� Remarkably
this set of relations are also satis�ed by the eigenvalues of the random ma�
trix Dirac operator as mentioned above� It shall be noted that they do not
determine the Dirac spectrum uniquely�
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Chapter �

Universality in random matrix theories of

QCD

This chapter will consist mostly of the work we have published during
the course of this thesis study� We will �rst begin with an introduction to
chiral random matrix ensembles� Then we will list some of the important
characteristics of these ensembles� In section �� we will present an early
study of the universality of the microscopic part of the spectral density� In
section � we will introduce a class of group integrals� called Harish�Chandra�
Itzykson�Zuber integrals� They will be important in the next two sections
where we �rst develop chiral generalizations of these integrals and then apply
them to the computation of higher correlation functions� In section �� we
will review a universality proof for invariant unitary ensembles� which we will
refer to in the last section� In section �� we will develop a framework to relate
spectral information about unitary ensembles to corresponding orthogonal and
symplectic ensembles� which are harder to treat analytically�

��� Introducing chiral random matrix theories

We have seen in the previous chapter that the Euclidean partition function
for QCD is given by

ZQCD �
Z
DAe�

R
d�x �

�
F �
A

Y
f

det� #D �mf �� ����

where #D is the Dirac operator�

The chiral structure of the Dirac operator� discussed in section ��	� can be
made more transparent in a chiral basis� In such a basis #D has the following

��



block structure�

#D � #� � i #A � i

�
� Cy

C �

�
��	�

where C is �for SU��� gauge �elds� a complex matrix whose exact form de�
pends on the gauge �eld con�guration in the background�

Ordinarily the gauge �eld averages in ���� cannot be carried out analyt�
ically� This has led to the study of e�ective �eld theories of QCD as discussed
above� A random matrix model of QCD may be viewed as one such model
where the precise gauge �eld average in ���� is replaced by a random non�local
interaction

ZRMT �
Z
D�C�e�trV �C

yC�
Y
f

det� #D �mf � ����

where the Dirac operator� #D� is still given by ��	� and the measure D�C� �Q
dCijdC

�
ij is over all independent degrees of freedom of C� However in this

context the matrix entries of C are understood to be random numbers weighed
with respect to exp��trV �CyC�� and their connection to an external gauge
�eld is given up entirely�

Because of the block structure of #D in ��	� these ensembles are known
as the chiral ensembles� We have seen in chapter � that this block structure
implies that all nonzero Dirac eigenvalues come in pairs� �	k� We will see later
that this additional constraint �which is not present� for example� in standard
Dyson ensembles� dictates some profound properties for the spectrum of the
Dirac operator� including the universality of the distribution of the microscopic
Dirac eigenvalues�

The case V �x� � x in ���� corresponds to the chiral gaussian ensembles
which are easier to handle computationally� However as we will see below many
interesting results valid for gaussian ensembles carry over to non�gaussian or
even non��unitary��invariant ensembles� This kind of �universality� parallels
the central limit theorem in its content as discussed in chapter 	� however
it has no direct bearing on the validity of random matrix theory results for
any ensemble to the actual spectrum of QCD� Such a connection as well as
the domain of validity of random matrix theory in QCD has been studied
recently ��
��� where a Thouless energy was identi�ed below which random
matrix theory results agree with quantum chromodynamics�

Following the de�nitions for original Dyson ensembles� chiral ensembles
have been named according to the degrees of freedom per matrix element� ��
Above example� namely QCD with three colors and fundamental fermions�

�	



corresponds to � � 	 and is known as the chiral gaussian unitary ensemble�
QCD with two colors and fundamental fermions admits an additional anti�
unitary symmetry which lets one to express the entries of the Dirac operator
by real numbers �up to an overall factor i�� and this case of � � � is known
as the chiral gaussian orthogonal ensemble� Finally� for adjoint fermions or for
two colors and staggered fermions the QCD Dirac operator can be described
by a quaternion real matrix �again up to a factor i�� which has the Dyson
index � � � corresponding to the chiral gaussian symplectic ensemble�

The description of the chiral ensemble in ���� with random non�local in�
teractions suggest it to be similar to mean �eld theory� Chiral random matrix
theory does not carry any local information about QCD� Even the dimension�
ality of space�time or Lorenz invariance only enters through the existence and
symmetries of ��matrices� which dictate the subsequent symmetry structure
of the Dirac operator� #D� It turns out� however� that the additional informa�
tion in chiral random matrix theory �the corresponding chiral and anti�unitary
symmetries� has implications that go far beyond mean �eld theory�

More speci�cally we will see below that chiral random matrix theory spec�
trum in the microscopic limit coincides with the corresponding spectrum in
QCD� The Banks�Casher relation� which relates these spectral data to the or�
der parameter of the chiral phase transition � establishes a connection between
chiral random matrix theory and �at least potentially� observable properties
of QCD� The reader is cautioned however that� as we will see below� the exact
form of the phase diagram of QCD cannot be obtained via random matrix
theory studies� Such studies at most grant a qualitative picture of the phase
diagram� It may be argued that the real power of chiral random matrix theory
comes from the exact predictions about the microscopic Dirac spectrum which
can be directly computed on lattice QCD simulations� In that context random
matrix theory studies are complimentary to numerical studies�

A possible explanation for the aforementioned exact agreement for mi�
croscopic spectrum comes from the Bohigas�Giannoni�Schmidt conjecture dis�
cussed in chapter 	� It is known that strongly interacting gauge �elds show
classically chaotic behaviour�

One can consider many variations on the random matrix model de�ned
in ����� We have already mentioned the possibility of varying the potential
V �x�� which generally does not change the universality class of the spectrum
�see section ��� and changing the Dyson index� �� which signi�cantly e�ects
the spectral properties� However� more profound variations are possible�

One such variation is to include information about the �topological sector�
of the Dirac operator �or rather its de�ning gauge �eld� in the corresponding

��



random matrix model� The Atiyah�Singer index theorem states that in the
background of a gauge �eld with topological charge� �� The Dirac operator
has an excess of left handed zero modes over right handed ones �or vice versa�
by an amount �� This can be transferred to the random matrix model by
choosing the random matrix

#D � i

�
� Cy

C �

�
���

to have rectangular blocks� C� with dimension N � �N � ��� It is easily seen
that such a matrix has � �kinematical� zeroes�

A more interesting variation to ���� is to include a schematic temperature
dependence in the partition function� This is done by using a lattice regular�
ization of ���� with anti�periodic boundary conditions in the time direction to
expand the fermion �elds as a sum over Matsubara frequencies� Using this ba�
sis the Dirac operator can be written in such a way to include the temperature
dependence� This is explained in detail in section ��� The model including
only the lowest Matsubara frequency �T is given by

#D � i

�
� Cy � �T

C� �T �

�
����

where the partition function still retains the general form ����� An interesting
feature of this model is that the weight function is no longer invariant under
unitary transformations�

C� U yCV�

U� V �U�N�� ��
�

This results in various computational di�culties� the group integrals in the
partition function no longer factor out and the orthogonal polynomial method
no longer works� Nevertheless this model will be examined in detail below
as it provides a schematic tool to investigate the phase diagram of the chiral
phase transition in QCD� The most important result about this model is that
its local spectral distribution functions have the same functional form as the
standard gaussian model except for a trivial temperature dependent scaling of
the eigenvalues� This statement is valid under a certain critical temperature
above which the microscopic part of the spectral density vanishes identically�
Sections �� and �
 will include detailed investigations of these properties�

In some of the studies below certain simpli�cations are made to ����� like
taking the quark mass terms� mf � to be identical or zero� Another simpli�ca�
tion is to entirely ignore the fermion determinant

Q
det� #D�m� in the partition

�



function� This is called the �quenched� approximation and a similar step is
taken in lattice QCD studies as the computational cost increases dramatically
when this determinant is taken into account in Monte�Carlo computations�

Now it is time for a further description of some of the properties of the
spectra of chiral ensembles�

��� Some general properties of the spectra of

chiral ensembles

We have already mentioned the most important property of the Dirac
spectrum� namely that the spectrum is symmetric about the zero of the eigen�
value axis�

#D�k � �i	k�k� ����

Hence one can give a complete description by working only with positive eigen�
values�

The spectrum of any of the chiral ensembles contains three regions with
distinct behaviours� �the hard edge�� �the bulk� and �the soft edge�� The hard
edge is the region containing microscopic eigenvalues or� using a more local
term� the region near zero virtuality� Quantitatively� the hard edge covers
the region � � 	 � ��

p
N � where N is the dimension of the blocks of the

Dirac operator and the eigenvalues are scaled in such a way that the largest is
about one� The soft edge corresponds to the largest eigenvalues and the upper
end of the spectrum� The bulk� on the other hand� covers everything that is
su�ciently far away from both ends�

The overall shape o� the spectrum for all three Gaussian ensembles �namely
orthogonal� unitary and symplectic� is a semi�circle� the same as the original
Dyson ensembles� This is an artifact of the Gaussian ensembles and the overall
shape of the spectrum is not universal� However local spectral properties� such
as the nearest neighbor spacing distribution� spectral correlation functions or
�for the hard edge� the microscopic spectral density appear to be universal
under very general conditions as long as one stays in the same spectral region
and the same Dyson index� ��

In other words� for a given value of � and for a given eigenvalue domain
�e�g� the hard edge� the functional form of the unfolded local spectral func�
tions obtained for the Gaussian ensembles remains the same even if one were to
replace the quadratic interaction V �x� � x in ���� with an arbitrary polyno�
mial� Even replacing the unitary invariant V �CyC� with certain non�invariant
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interactions may leave the aforementioned functional forms unchanged� The
exact statements regarding these universal properties and their domain of va�
lidity is the topic of following sections as well as an integral part of this thesis
work� Below we will summarize the results for Gaussian ensembles�

The bulk and the soft edge of chiral ensembles are precisely the same
as the original Dyson ensembles introduced in chapter 	� The only domain
indigenous to chiral ensembles is the hard edge� Fortunately� this is the most
relevant domain for physical applications� thanks to the Banks�Casher relation�

Many of the local properties of the spectrum of ���� in the hard edge can
be expressed in terms of the Bessel Kernel� which for vanishing quark mass
terms can be written as

KS�x� y� � lim
N��

�

	N
KN �

x

N
�
y

N
�

�

p
xy

x� � y�

�
xJNf

�	y�JNf���	x�� yJNf
�	x�JNf���	y�

�
� ����

Here KN is the kernel of the correlation functions as introduced in chapter ��
where N denotes the size of the blocks of the Dirac operator� KS denotes the
microscopic limit of this kernel as de�ned by the limiting procedure and Jk
are the Bessel functions�

In terms of this kernel the k�point correlation function of the eigenvalues�
introduced in chapter 	� can be expressed as

Rk�x�� � � � � xk� � det�!KS�xp!� xq!�� ����

where ! denotes the chiral condensate and the microscopic spectral density
can be expressed as

�s�x� � limy�xKS�x� y�

� x
�
J�
Nf

�	x�� JNf���	x�JNf���	x�
�
�

�����

In the presence of a nonzero topological charge� �� these equations still remain
valid if one replaces Nf by Nf � j�j�

��� Universality of the spectral density near

zero virtuality

This section contains a study of the microscopic part of the spectral den�
sity for a non�invariant deformation of the chiral gaussian unitary ensemble
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as given by a temperature dependence in terms of the lowest Matsubara fre�
quency�

The microscopic spectral density for the chiral gaussian unitary ensem�
ble was known before the present work� but its behaviour under non�invariant
deformations was not� The motivation for this temperature dependent model
comes from the chiral phase transition� whose order parameter is given by the
microscopic part of the spectral density as discussed in the previous chapter�
The model predicts a second order phase transition in the temperature axis
with mean �eld critical exponents� Above the critical temperature the micro�
scopic spectral density vanishes identically and the overall shape of the spectral
density separates in to two distinct bulges at high enough temperatures� These
predictions about the phase structure of QCD can only be considered as qual�
itative� More interestingly� we will see that below the critical temperature the
functional shape of the microscopic spectral density remains invariant except
for a trivial temperature dependent overall scaling of the function�

As with any other random matrix model� the partition function of this
model involves an integral over an ensemble of large matrices� As explained
in chapter � this integral can be separated into a Haar integral over the diag�
onalizing group and another integral over the eigenvalues of the matrix �with
the introduction of a jacobian given by the Vandermonde determinant of the
eigenvalues�� If the partition function is invariant under unitary transforma�
tions the group integrals factor out trivially and the orthogonal polynomial
method discussed earlier can be used to analyze the remaining eigenvalue in�
tegrals� However the introduction of the temperature dependence ruins the
unitary invariance of the random matrix model partition function� and the
group integrals are not trivial� Therefore the orthogonal polynomial method
is unavailable anymore� Instead we use the supersymmetry method introduced
in chapter 	� Using a Hubbard�Stratonovitch transformation we rewrite the
partition function in terms of small sized supermatrices� The size of the cor�
responding supermatrix is �xed and independent of N � the original block size�
Therefore the remaining integrals leading to the spectral density for arbitrary
temperature can be performed analytically by integrating out the Grassmann
variables by brute force� As it will be seen below this method is too cum�
bersome for the computation of the higher correlation functions� This will
require the development of integration techniques over superunitary groups as
discussed in sections � through �
�

This material has been published in Nucl� Phys� B�	�� �����	
� ����
��
which except for minor changes is reproduced below�

In this paper we study a model which was introduced in ��	�� 		��� This
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model is a randommatrix model which possesses the chiral and �avor structure
of the QCD Dirac operator and a schematic temperature dependence corre�
sponding to the lowest Matsubara frequency� Otherwise� all matrix elements
of the Dirac operator are completely random� The temperature dependence
is such that this model has a second�order phase transition with mean �eld
critical exponents� Below the critical temperature� chiral symmetry is broken
spontaneously� above the critical temperature� it is restored� According to
the Banks�Casher formula �		�� the order parameter is the spectral density at
eigenvalue zero� Physical motivation for this model comes from two rather dif�
ferent directions� First� at zero temperature� it satis�es all Leutwyler�Smilga
sum�rules ����� which are identities for chiral QCD in a �nite volume� Second�
Koci&c and Kogut have recently suggested ����� that the chiral phase transition
in fermionic systems is driven towards a mean �eld description because of the
fact that the lowest Matsubara frequency is non�zero�

The chiral structure of the Dirac operator forces all eigenvalues to appear
in pairs �	� The spectrum is symmetric about zero� As we shall soon see� it is
useful to introduce the microscopic limit of the spectral density which probes
the spectrum around zero on a scale set by the distance between adjacent
eigenvalues�

�S�u� � lim
N��

�

N'
��

u

N'
� � �����

Here� ' is the temperature�dependent chiral condensate which� according to
the Banks�Casher formula �		�� is given by

' �
�����

N
� ���	�

and N is the total number of eigenvalues�
The zero�temperature version of this model has been studied extensively

in the literature ��
� �� ��
� ��	� ���� ��� 	�� It is known as the Laguerre
ensemble or the chiral Gaussian Unitary Ensemble �chGUE�� Two types of uni�
versal behaviour are known to exist in chiral random matrix theories� Spec�
tral correlations in the bulk of the spectrum are universal� the microscopic
limit of the spectral density� just introduced� is universal� It has been shown
�� ��
� 	�� ���� ��� that the chiral structure of the random matrix ensemble
does not a�ect eigenvalue correlations in the bulk of the spectrum� Such level
correlations have been observed both experimentally and numerically in many
systems ��
�� ��� 
�� ��� ��� �
� ��
� ���� ����� Further� analytic arguments
have been presented ���� �
� in favor of the universality of correlations in the
bulk of the spectrum of classically chaotic systems�

��



In ����� 	��� we conjectured that the microscopic limit of the spectral
density is universal as well� The �rst argument in support of this conjecture
came from instanton liquid calculations �	���� where we were able to generate
ensembles large enough to permit the calculation of the spectral density in
the microscopic limit� A slightly less direct argument came from lattice QCD
calculations of the dependence of the chiral condensate on the valence quark
mass ���� ����� Another hint came from the work of the MIT group �����
who studied the chGUE using the supersymmetric method� They found that
the microscopic limit of the spectral density is determined by a saddle�point
manifold associated with the spontaneous breaking of a symmetry� The �rst
convincing analytical arguments in favor of this conjecture came from recent
work by Br&ezin� Hikami and Zee �	�� They considered families of random
matrix models all possessing the chiral structure of the Dirac operator� They
discovered the same microscopic limit in all the models they investigated�

In this paper� we o�er further evidence in support of the universality of the
microscopic limit of the spectral density� Speci�cally� we investigate the e�ect
of temperature in the chiral random matrix model introduced in ��	�� 		���
This model di�ers structurally from the models in �	�� In the random matrix
models considered in �	�� the unitary symmetry of the probability distribution
leaves the spectrum of each element of the ensemble invariant� This invariance
is not realized for temperatures T �� �� and analytic proofs are consequently
somewhat more di�cult� Using the supersymmetric method of random matrix
theory� we obtain an exact expression for the spectral density which is valid
for any dimension� n� of the matrices� This enables us to take the microscopic
limit� This limit also requires the large�n limit of the spectral density �see
���	��� which can be evaluated conveniently by means of a saddle�point ap�
proximation� In ��	��� this spectral density was evaluated numerically� It was
found to have the well�known semi�circular shape at zero temperature� At
high temperature� the shape is given by two disjoint semi�circles with centers
located at ��T � In that paper� we also announced the analytic result for the
shape of the average spectral density� The result merely requires the solution
of a cubic equation� This result has also been obtained by Stephanov ������
who applied an extension of this model to the problem of the relation between
the ZN phase of the theory and the restoration of chiral symmetry�

The organization of this paper is a follows� In the next section we give a
de�nition of the random matrix model and the supersymmetric partition func�
tion� In section ���	 the partition function is reduced to a �nite�dimensional
integral� Symmetries and convergence questions of the partition function are
analyzed in section ����� The exact two�dimensional integral for the resolvent
is obtained in section ���� In section ���� we derive the large�n limit of

��



the spectral density and discuss its properties� The microscopic limit of the
partition function is evaluated in section ���
� and concluding remarks are
made in section ����� Some notation and conventions as well as a perturba�
tive calculation of the large�n limit of the spectral density are to be found in
the appendices presented at the end of this section�

����� De�nition of the random matrix model

In this paper we study the spectrum of the ensemble of matrices

H �

�
� W � �T

W y � �T �

�
� �����

Here� T is the temperature dependence as given by the lowest Matsubara
frequency� and W is a complex n� n matrix distributed according to

exp��n!� TrWW y� � ����

The average spectral density can be expressed as

��	� � � lim
���

	n

�
Im G�	� i�� � �����

where the average resolvent G�z��

G�z� �
�

	n
Tr

�

z � i��H
� � �

	n

� logZ�J�

�J

�����
J��

� ���
�

can be obtained from the partition function

Z�J� �
Z
DW det�z �H�

det�z � J �H�
exp��n!� TrWW y��

�����

The integration measure� DW � is the Haar measure normalized so that Z��� �
�� For a Hermitean matrix� H� the resolvent is analytic in z in the upper com�
plex half�plane� This allows us to calculate the resolvent for purely imaginary
z and to perform the analytic continuation to real z at the end of the calcu�
lation� As will be seen below� this improves the convergence properties of the
integrals in the partition function�

Some properties of this model all already known� At T � �� this model
reduces to the well�known Laguerre ensemble� The joint probability distribu�
tion of the eigenvalues is known explicitly� as are all correlation functions� In

�



particular� the average spectral density is a semicircle�

��	� �
n!�

�

s


!�
� 	� � �����

We wish to stress that the largest eigenvalue is larger than a typical matrix
element by a factor on the order of

p
n�

The temperature dependence of this model was analyzed in ��	��� It was
shown that� in the thermodynamic limit� this model shows a chiral phase
transition at a critical temperature of

Tc �
�

�!
� �����

The order parameter is the chiral condensate ' with ' �� below Tc and ' � �
above Tc� This chiral symmetry is broken spontaneously� For each �nite value
of n� ' � �� A non�zero value of ' is obtained only in the thermodynamic
limit� Below Tc it was found that in this limit

' � ! ��� ��T �!����� � ��	��

The Banks�Casher formula ���	� allows us to convert this value of ' into the
spectral density ����� In ��	��� the complete spectral density of this model was
determined numerically� At T � � the result ����� was reproduced� at T � Tc
we found that ��	� 	 	���� For T 
 Tc� the spectral density reduced to two
semi�circles centered at ��T with a radius independent of T � We will present
an analytic derivation of these results�

����� Ensemble average of the partition function

In order to perform the Gaussian integrals� we write the determinant as
an integral over the fermionic variables  and ��

det�z �H� � �	���n
R Qn

i�� d��
�
i �d��i�

Qn
i�� d��

�
i �d��i�

� exp i

�
��
��

��
z �W � �T

�W y � �T z

��
�

�

�
�

Similarly� the inverse determinant can be written as an integral over the
bosonic variables � and ���

det���z �H� � �
�����n

R Qn
i�� d���i�d���

�
i �
Qn
i�� d���i�d���

�
i �

� exp i

�
���
���

��
z � J �W � �T

�W y � �T z � J

��
��
��

�
�

�



The conventions for the Gaussian integrals are de�ned in Appendix A� The
factor i in the exponent in ��	�� is chosen so that the integral is convergent
for z in the upper complex half�plane� This choice is consistent with the i�
prescription in ���
�� The integral in ��	�� converges independent of the
overall phase of the exponent� The present choice of phase ensures that the
product of the fermionic and bosonic integrals is one�

The Gaussian integral overW can be performed by completing the squares�
The result is a term of fourth order in the integration variables�

exp� �

n!�
���j�i � ���j��i��

�
�i�j � ���i��j� � ��	��

We apply the Hubbard�Stratonovitch transformation to each of the terms of
fourth order in the bosonic and fermionic variables� Two of the four factors
can be decoupled with the help of real integration variables�

exp� �

n!�
��� � �� ��� � �� �

Z d��d��
Ib

exp��n!����� � ����

���� � i����
�
� � �� � ��� � i����

�
� � ��� �

exp�
�

n!�
�� � � 

�
� � � �

Z d��d��
Ib

exp��n!����� � ����

���� � i���
�
� � � � ��� � i���

�
� � �� �

��		�

The terms which involve mixed bilinears can be decoupled with the help of
Grassmann integrations� We do not encounter convergence problems in the
process�

exp� �
n��

�
� � �� � � ��� � If

R d��d�
�i���

exp��n!���� � ���� � �� � ���� � �� �

exp �
n��� � ��� �� � �� � If

R d��d�
�i���

exp��n!����� �� � ��� � ���� � ��� �

The constants Ib and If are de�ned such that If�Ib � �� �See Appendix A��
Thus� we obtain the partition function as

Z�J� �
R Qn

i�� d��i� d�i� d��� exp ��n!����� � ��� � ��� � ��� � ��� � �����
� exp i ����� �

�
�� 

�
�� 

�
��

�

�
BBB�

z � J � i�� � �� ��T i� �
��T z � J � i�� � �� � i�
i�� � z � i�� � �� ��T
� i�� ��T z � i�� � ��

�
CCCA

� ���� ��� �� ��
T �

	



where

d��� � d�� d�� d�� d��
d� d�� d� d��

�i�	��
� ��	��

If i��� ��� z� and J are all real� the matrix A appearing in the exponent of
��	�� is a graded Hermitean matrix� Then the Gaussian integrals can be
performed according to ���
�� This results in

Z�J� �
Z
d��� exp

h
�n!����� � ��� � ��� � ��� � ��� � ����

i
detg�nA ���	�

where detgA is the graded determinant of A� For a matrix with Grassmann
blocks � and � and commuting blocks a and b� it can be shown that

detg

�
a �
� b

�
� det��b det�a� �b���� � ��	��

In our case� all blocks a and b are 	� 	 matrices� which permits us to evaluate
all expressions directly�

We note� however� that the result ��	� was obtained by interchanging
the �i and �i integrations in ��	��� This is allowed only if the � integral is
uniformly convergent in �� Unfortunately� this is not the case when the �� and
�� integration paths are along the real axis� This problem can be circumvented
by a suitable deformation of the integration paths� Previous studies of random
matrix theories within the framework of the sigma model formulation of the
Anderson model ����� ���� �
�� have stressed the importance of deforming the
integration contours in a manner which is consistent with the symmetries of
the problem� The same is true for the present problem� In order to interchange
the � and � integrals in ��	��� we must deform the integration contour so that
the � integration is uniformly convergent in �� In order to motivate our choice
of contour� we must �rst consider the symmetries of the partition function�

����� Symmetries

We wish to study the partition function in the microscopic limit� i�e�� the
limit n � � with zn held constant� For z � � �and J � ��� the partition
function has an additional symmetry� For all temperatures� the bosonic part of
the partition function is invariant under the non�compact symmetry operation

�� � e�t�� � ��� � e�t��� �

�� � e�t�� � ��� � e�t��� � ��	
�

�



This induces a hyperbolic rotation of the variables �� and �� of the preceding
section� �

��
��

�
�
�

cosh t i sinh t
�i sinh t cosh t

��
��
��

�
� ��	��

which clearly reveals the O��� �� nature of the transformation�
The fermionic part of the partition function is invariant under

� � e�iu� � �� � e�iu�� �

� � e�iu� � �� � e�iu�� � ��	��

where� a priori� u can be either real or complex� In terms of the � variables of
��		�� this induces the transformation

�
��
��

�
�
�

cos u sinu
� sin u cos u

��
��
��

�
� ��	��

Because the integration over the Grassmann variables is �nite� the volume of
the symmetry group must be �nite as well� Therefore� u must be real with
u � ��� 	��� In other words� the symmetry group is O�	��

The terms of a mixed fermionic�bosonic nature are also a�ected by the
transformations ��	
� and ��	��� This induces a transformation of Grass�
mann variables introduced through the Hubbard�Stratonovitch transforma�
tion�

As is known from studies of random matrix theories� the parametrization
of the variables ���� ��� and ���� ��� is dictated by the above symmetries� It
is natural and convenient to choose integration variables which lie along and
perpendicular to the invariant manifold� In the microscopic limit� integrations
along this manifold must be performed exactly� whereas the perpendicular
integrations can be performed by saddle�point methods in the limit n � ��
For the � variables� we thus choose the parametrization

�� � �i�� � i�� sinh s�! �
�� � �z � i�� � J � �� � i�� cosh s�! �

where � � ���� ��� and s � ���� ���� After the �i integration� the i�
appears only in the combination � � i�� Below� we will not write the i� term
explicitly� but it is always understood that it is included in the variable ��
This parametrization renders the �� and �� integrations uniformly convergent
in �� without jeopardizing the convergence of the � and s integrations� This
allows us to interchange the �i and �i integrations leading to the �nal result





��	� of the last section� The term ��� � ��� appearing in the �rst exponent in
��	� becomes �� � �z � J�� � 	�z � J�� cosh s in the parametrization ������
It is clear that the integral over s can be convergent only when z�J is purely
imaginary� �Recall that � contains the term �i��� The transformation ��	
�
for z � J � � reduces to a translation of s and leaves � invariant�

The � variables are also parametrized along and perpendicular to the
saddle�point manifold according to

�� � iz � � cos
�! �
�� � � sin
�! �

The rotation ��	�� leads to a translation of the angle 
 and leaves � invariant�

Our strategy in dealing with ��	� is to perform the Grassmann inte�
grations �rst� i�e�� to collect the coe�cient of ������� This leaves us with a
four�dimensional integral which is the exact analytical result for the partition
function for any �nite n� In the thermodynamic limit and for z 	 O���� the
remaining integrations can be performed with a saddle�point approximation�
This result is obtained in section 
� In the microscopic limit� z will be O���n��
and the integration over the invariant manifold must be performed exactly�
The radial integrals can be approximated to leading order in ��n� �See section
���

The T � � problem has been investigated previously using the supersym�
metric method ���� 	�� In ����� the saddle�point manifold was constructed
in a manner similar to that used for the problem of invariant random matrix
ensembles� �In this regard� see ��
� 	�
��� In �	�� the convergence di�culties
were circumvented in an elegant fashion by the use of spherical coordinates for
the variables �� and ��� Unfortunately� a direct generalization of this approach
is not possible for the present case of non�zero temperatures� When T �� ��
the angles between the complex vectors �� and �� also enter in the integration
variables�

����� Exact result for the spectral density at �nite n

Because the fermionic blocks of the matrix A are nilpotent� the right side
of ��	�� can be expanded in a �nite number of terms� The n�th power of the
inverse of the graded determinant can be written as

detg�n
�
a �
� b

�
�

�
det b

det a

�n
�

�



�
�
� � nTra���b����

n

	
Tr�a���b����� �

n�

	
Tr�a���b���

�
�

�����

Terms in the partition function which are of fourth order in the Grassmann
variables can be obtained by supplementing the above terms with factors ���
and ��� from the exponent in ��	�� The result is

Z�J� � n���

��

R
d��d��d��d��

h
��� ��T �

D��� �
� � �D���T �������T �����T ����D��n

D�����

i
�

�
�
D

�n
exp��n!����� � ��� � ��� � ����� �

where D is the determinant of the boson�boson block�

D � �z � J � i�� � ����z � J � i�� � ���� ��T � � �����

and � is the determinant of the fermion�fermion block�

� � �z � i�� � ����z � i�� � ���� ��T � � ���	�

In ����� the variables �i and �i are parametrized according to ����� and
������ temperature by

t � �T! �����

the resulting form of Z�J� simpli�es to

Z�J� �
�in�
��

Z �

��
�d�

Z �

��
ds
Z �

�
�d�

Z ��

�
d


�
�
��� t�

�t� � ������ � t��
�� �

���� � t���� � ����n

��� � t������ � t���

�

�
�
�� � t�

t� � ��

�n
e�n��

��	����z�J��� cosh s��iz�	 cos�����z�J���z��� �����

The integrations over s and 
 can be expressed in terms of Bessel functions�
Di�erentiation of the partition function with respect to J at J � � gives us
the resolvent which we desire� Thus� the �nal result of this section is

G�z� �
	in

�

Z
�d��d�

�
�
��� t�

�t� � ������ � t��
�� �

���� � t���� � ����n

��� � t������ � t���

�

�
�
�� � t�

t� � ��

�n
�	z!�K��	n!z�� � 	n!�K��	n!z���

� J��	n!z�� exp��n��� � �����

�����






Again� we remind the reader that � contains a term �i�� The integral over �
can thus be performed by successive partial integrations� Details regarding the
calculation of this kind of integral can be found in ����� This result has been
obtained for z purely imaginary� Since the modi�ed Bessel functions have a
cut for z� � �� we can analytically continue this expression anywhere in the
upper half�plane�

����� The large�n limit of the average spectral density

For n � � and z 	 O���� all integrals in ���� can be performed by
a saddle�point approximation� Because we started with a supersymmetric
partition function� the Gaussian �uctuations about the saddle point give an
overall constant of unity� i�e�� Z��� � � in ����� Using the relation ���
� to
determine the resolvent from the partition function ����� we �nd that

G�z� � !�!z �  � cosh  s� � ���
�

where  � and  s are the saddle�point values of these variables� The saddle�point
equation for s is trivial with solution  s � �� The equation for  � is more
complicated

 �

 �� � t�
� � � � !z� � � � �����

This equation can be rewritten as an equation for the ensemble averaged re�
solvent

G��!� � 	zG��!� �G�z� � ��T � � ��!��� z � � � �����

At T � �� this equation reduces to

�G� z��G��!� � zG � �� � � �����

with a non�trivial solution

G�z� � !� z � i��!� � z�����

	
� ����

As indicated in ����� above� the associated spectral density is simply the
imaginary part of the branch of G�z� with the negative sign�

��	� �
n!�

�
��!� � 	����� � ����

�



which is the familiar semicircle normalized to the total number of eigenvalues�
For z � �� the saddle�point equation ����� simpli�es to

G� � !�G���!� � ��T �� � � ��	�

with the solution

G��� � �i!
p
�� ��T �!� � ����

This corresponds to the spectral density

���� �
	n!

�

p
�� ��T �!� � ���

Using the Banks�Casher formula ���	�� we immediately obtain the chiral con�
densate ��	�� in agreement with ��	���

In order to determine the high�temperature limit of the spectral density�
it is most convenient to return to the saddle�point equation ������ It is clear
that� for z � �T � this equation can only be satis�ed for  � � �t� In the
partition function ���� we can approximate the logarithmic term

log�t� � ��� � log�	t� � log�t� �� � ����

This leads us to the high�temperature limit of the saddle�point equation

� �

 � � t
� � � � !z� � � � ��
�

The solution for the resolvent is

G�z� �
!

	
�!z � t� i

q
	� �!z � t��� � ����

This results in a semicircular spectral density of radius
p
	 located at z �

�T � An identical argument leads to another semicircular contribution to the
spectral density of radius

p
	 centered at z � ��T � Of course� we can arrive at

the same conclusion working directly from ������ For z � �T � the resolvent
G�z� 	 O���� and the �rst term in ����� will be sub�leading in the high�
temperature limit� This leads immediately to �����

Finally� we consider the case at the critical temperature� T � !��� with
z in the neighborhood of �� Then� the saddle�point equation for G reduces to

G� � z ����

�



with solutions �z!������ �z!����� exp��i��� and �z!����� exp�	�i���� Only the
last of these gives rise to a positive de�nite spectral density with

��	� �
n!
p
�

�
�	!���� ����

in agreement with the mean �eld critical exponent of � � � for this model�
The equation for the resolvent ����� also enables us to obtain a simple

recursion relation for the moments of the spectral density� Expanding G�z� in
terms of these moments�

G�z� �
X
n

M�n

z�n��
� �����

we obtain

M�n�� � �T � � �

!�
�M�n �

	

!�

X
k�l�n

M�kM�l � �

!�

X
k�l�m�n��

M�kM�lM�m ������

The evident initial condition� M� � �� immediately leads us to

M� � T � � y�� M� � T � � y�T � � 	y��

et cetera� Without too much e�ort� it is possible to use standard combinatoric
methods to �nd the general result for the �	n��th moment�

M�n �
nX

k��

y�kT ��n�k� �

k � �

�
n
k

��
	n
k

�
� ���	�

����� The microscopic limit of the partition function

The �microscopic limit� denotes the investigation of the spectral density
in the vicinity of z � � on a scale set by the average level spacing� More
precisely� we take the limit n � � while keeping nz �xed� as indicated in
������ We start from the expression ��	� for the partition function� In
the thermodynamic limit� the � and � integrations can be performed by a
saddle�point method� The saddle�point equations read

�

�� � t�
� � � � �

�

t� � ��
� � � � � �����

�



with solutions

 �� � �� t� �

 �� � t� � � � ����

For temperatures less than the critical temperature�  � is real and  � is purely
imaginary� The integration range of � is the positive real axis� Therefore� the
sign of  � is positive� The � integration ranges from �� to ��� In order the
reach the � saddle point� we must deform the integration contour� Because
of the modi�ed Bessel functions which appear in our expression ����� for the
resolvent� there is a cut in the complex ��plane for �z on the negative real
axis� The cut of the modi�ed Bessel function is then i� above the positive real
axis for negative z and i� above the negative real axis for positive z� Therefore�
independent of the sign of z� only the saddle point with a negative imaginary
part can be reached by a deformation of the contour� Thus�

 � � �i
�
�� t�

����
� �����

for t � ��

At the saddle point� the pre�exponential factor vanishes�

�
�� t�

�t� �  ���� �� � t��

��

�
 �� �� � t�� �� �  ����n

�t� �  ����� �� � t���
� � � ���
�

Given ����� it is trivial that this equation is satis�ed when t � �� However�
the vanishing of this pre�exponential factor for arbitrary t is remarkable and
unexpected� This fact is responsible for the �universal� behaviour of the mi�
croscopic limit of the spectral density� As a consequence� the O���n� term in
this factor does not contribute to the resolvent to leading order in ��n� The
zK� term in the pre�exponent is also of subleading order �z 	 O���n��� This
leads to the following result for the resolvent in the microscopic limit�

G�z� � �n�i!

�

Z
�d��d�

�
�
��� t�

�t� � ������ � t��

��

�
����

��� � t������ � t���

�
�

� �K��	n!z�� J��	n!z��

� exp��n��� � �� � log�t� � ���� log��� � t���� �

�����

��



In order to proceed� we make the substitution

� �  � � �� �

� �  �� �� �����

in ����� and keep only those terms which contribute to leading order in ��n�
i�e�� terms through second order in �� and ��� The exponent in ����� then
becomes

exp�	n ����� � 	n ������ � �����

The product of the terms in square brackets in ����� and ��� can be expanded
as

 �� ��	 ����� 	 ���� �  ����� � �t�����

� ����� � �t����� �  � ��	 � �t������� � ��
��

It is clear already at this point that all temperature dependence enters through
the scale factors  � and  �� The terms of O������ vanish upon integration with
the exponential factor ������ Since h���i � h���i and  �� � � ��� the other
terms involving �t� cancel as well� To complete the calculation� we need only
expand the Bessel functions to �rst order

K��	n!z�� J��	n!z�� � K�J� � 	n!z�� K �
� J� � 	n!z��K� J

�
�� ��
��

where the Bessel functions K� and J� and their derivatives appearing on the
right of this equation are to be evaluated at their saddle points which are
	n!z � and 	n!z �� respectively� In order to arrive at the �nal result� we form
the product of this expression and ��
��� collect the coe�cients of ��� and
���� and perform the Gaussian integrations over �� and �� according to

h���i �
�

	

p
�

�	n ������

p
�

��	n ������ �

h���i �
�

	

p
�

�	n ������

p
�

��	n ������ � ��
	�

The result is

G�z� � � i!
	

 ��

 ��

h
K�J�� �

� �  ��� � nz ��!K�J
�
� � nz ��!K �

�J�
i

� ��
��

If we make use of the identities

J �� � �J� �
K �

��z� � �K��z�� �

z
K��z� � ��
�

��



we discover that the terms proportional to K�J� cancel� This leaves us with

G�z� � i	nz!���� t���K�J� � iK�J�� � ��
��

Finally� we can explicitly separate the resolvent into its real and imaginary
parts by using two more elementary identities�

K���iz� � ��
	
�J��z� � iN��z�� �

K���iz� �
�

	
i�J��z� � iN��z�� � ��

�

The �nal result for the microscopic spectral density is thus

��	� � 	n�	!���� t���J�
� �	n	!

p
�� t�� � J�

� �	n	!
p
�� t���� ��
��

As noted above� the microscopic limit of this model has previously been
considered for the special case t � � ����� 	��� 	��� ��� 	�� Our result is
in agreement with this earlier work� Now� however� we can also consider the
microscopic limit for general t �� �� At �nite temperature� the temperature
enters only through the temperature�dependent modi�cation of the chiral con�
densate which was obtained in ��	��� As de�ned in ����� with ���� given by
���� the microscopic limit is strictly independent of the temperature�

�S�u� �
u

	
�J�

� �u� � J�
� �u�� � ��
��

����	 Conclusions

In this paper� we have studied a random matrix model with the chiral
structure of the QCD Dirac operator and a temperature dependence charac�
teristic of the lowest Matsubara frequency� This model possesses the global
color and �avor symmetries of QCD� It undergoes a chiral phase transition
with critical exponents given by mean �eld theory�

Using the supersymmetric method for random matrix theories� we have
found an exact� analytic expression for the average spectral density of this
model� The result has the form of a two�dimensional integral which is valid
for matrices of any dimension� In the large�n limit� these integrals can be
performed using a saddle�point approximation� The spectral density then
follows from the solution of an elementary cubic equation and nicely con�rms
our earlier numerical work ��	���

Our primary result is that the spectral density in the microscopic limit is
strictly independent of the temperature below the critical temperature of this

�	



model� This result supports the recent work of Br&ezin� Hikami and Zee� who
investigated several families of random matrix models and found the same mi�
croscopic limit of the spectral density in all cases� As noted in the introduction�
our model di�ers from the models considered by these authors in an essential
way� In each of their models� the spectrum of each element in the ensemble is
strictly invariant under the unitary symmetry of the probability distribution�
In the present model this symmetry is violated for T �� �� Thus� agreement
between the microscopic limit of the spectral density for our model and the
models of Br&ezin� Hikami and Zee increases our con�dence in the universality
of this quantity�

In lattice QCD simulations the microscopic limit of the spectral density
enters in the valence quark mass dependence of the chiral condensate� This
quantity has been calculated for a variety of temperatures ����� and it has
been shown that the results below the critical temperature and not too large
valence quark masses fall on a universal curve that can be obtained from the
microscopic limit of the spectral density ������ The present work provides a
proper theoretical foundation of this analysis�

In our derivations� the symmetries of the partition function played a cru�
cial role� The universal behavior was closely related to the existence of an
invariant saddle�point manifold generated by these symmetries� This suggests
that the �miraculous� cancellation of the temperature dependence of the mi�
croscopic spectral density found here is not a coincidence� It would be very
interesting to obtain this result using more general arguments� Recent work
by Guhr ���� on the superposition of two matrix ensembles appears to o�er a
promising method towards this goal�

����
 Appendix A� Notations and conventions

In this appendix we summarize our notations and conventions� For a more
detailed discussion regarding the motivation for these conventions� we refer to
��
� 	�
��

The integration measure for complex Gaussian integrals is de�ned such
that

Z d�� d�

	�
exp�i��� � � � ��
��

For Grassmann integrals� the measure is de�ned so that

	�
Z
d� d exp�i� � � � �����

��



A graded vector or supervector is de�ned by

( �

�
�


�
� �����

with � a commuting vector of length n and  an anti�commuting vector of
dimension m� The corresponding supermatrix which acts on this vector has
the structure

A �

�
a �
� b

�
� ���	�

where a and b are complex matrices of dimension n�n andm�m� respectively�
The entries in the n � m dimensional matrix � and the m � n dimensional
matrix � are Grassmann variables� The graded trace of the matrix A is de�ned
as

TrgA � Tra� Trb � �����

The Hermitean conjugate of A is de�ned as

Ay �

�
ay �y

��y by

�
� ����

where the y denotes transposition and complex conjugation� A graded matrix
is called Hermitean if Ay � A� We use complex conjugation of the second kind
for Grassmann variables� i�e�� �� � �� The graded determinant is de�ned
as

detg A � exp�Trg logA� � �����

With this de�nition� we obtain the following natural result for a Hermitean�
graded matrix�

Z nY
i��

d���i � d��i� d�
�
i � d�i� exp�i(�A( �

�

detgA
� ���
�

����� Appendix B� Perturbative evaluation of the av�

erage spectral density

In this appendix� we derive the large�n limit of the resolvent without
employing the supersymmetric method� Because the operator ����� has only

�



a �nite support� it is possible to expand the resolvent in a geometric series in
���z �K� for z su�ciently large� Here� K is the matrix

K �

�
� �T
�T �

�
� �����

One �nds by inspection that G�z� satis�es

G�z� � Tr
�

z �K
� Tr

�

z �K

�
� W
W y �

�
G
�

� W
W y �

�
G �����

where G is the matrix

G �
�

z �H
� �����

and the bar denotes averaging over the probability distribution ����� It
should be clear that G is block diagonal with the block structure

G �

�
g�n h�n
h�n g�n

�
� �����

where �n is the n� n identity matrix� Therefore� we �nd that G�z� � g� The
average over W can be carried out immediately to give�

� W
W y �

�
G
�

� W
W y �

�
�

�

n!�

�
g�n �
� g�n

�
� �����

This yields the following matrix equation for g and h��
z ��T

��T z

��
g h
h g

�
� ��

�

!�

�
g �
� g

��
g h
h g

�
� ���	�

which leads to the two independent equations

zg � �Th � � �
�

!�
g� �

zh� �Tg �
�

!�
gh � �����

Elimination of h yields the equation

zg � ��T �g

z � g�!�
� � �

�

!�
g� � ����

which agrees with ������ Evidently� it can be rewritten as a cubic equation
for g�

��



��� Interlude� Harish�Chandra � Itzykson � Zu�

ber integrals relevant for chiral ensembles

As discussed before the evaluation of a random matrix model partition
function involves an integration over a set of matrices� Usually this can be
performed easier if the matrices in question are parametrized with respect
to their eigenvalues and their diagonalizing groups� A certain class of group
integrals become important in this case� The group integrals relevant for the
standard gaussian unitary ensemble had been worked out by Itzykson and
Zuber ��		� and have the form

Z
dU exp

�
iTrRUSU y

�
� c

det�eirksl�kl
��R���S�

� �����

Here U�U�N�� dU is the Haar measure for U�N� and R and S are diagonal
real matrices� Also� c is a normalization constant and ��X� � det�xk��l � is the
Vandermonde determinant� As it was later realized� the general form of this
formula was discovered earlier by the Indian mathematician Harish�Chandra
������ Hence such group integrals are referred to as Harish�Chandra�Itzykson�
Zuber integrals�

The proof of this formula ��		� proceeds by recognizing the left hand
side of ����� to be a part of the kernel of a heat equation and by explicitly
constructing the solutions of this heat equation�

For the study of chiral ensembles a di�erent integration theorem is needed�
The partition function in ���� involves an integral over the nonzero block of
the Dirac operator� C� which is an arbitrary complex matrix � in contrast to
the hermitian matrices that appear in the standard gaussian unitary ensemble�

It can be shown ����� that an arbitrary complex matrix can be diagonal�
ized using two unitary matrices�

C � UXV y�

�U� V � � �U�N�� U�N�� �U���N � ���
�

Therefore the group integrals relevant for chiral gaussian unitary ensemble
have a form involving two unitary matrices�

Z
d��U� V � exp

�
ReTrRUSV y

�
� c�

det�I��rksl��kl
��R����S��

� �����

Here d��U� V � is the Haar measure of �U�N�� U�N�� �U���N � I� is a Bessel
function and R� S and ��X� are as before�

�




Remarkably the heat kernel method used in the proof of ����� can be
adapted for a proof of ������ This requires the solution of a heat equation
in curvilinear coordinates� The proper parametrization to separate the heat
equation naturally leads into the Bessel kernel seen in ������ The next sec�
tion contains a detailed proof of this last formula as well as its generalization
relevant for rectangular blocks� C�

As an additional remark we would like to point out that in the context
of the supersymmetry method of random matrix theory this integral requires
a generalization to supermatrices ����� �	�� �Conventions and relevant de��
nitions regarding supermatrices can be found in the appendix��

Z
d��U� V �e�str ���	�

y���	�� �
�

�k���
det ��s�p� r

�
q� det ��s

�
m� r

�
n�

B�S��B�R��
� �����

Here � and � are two �k � k�� �k � k� arbitrary complex super matrices
with eigenvalues �s�p� is

�
p� and �r�p� ir

�
p�� respectively� �The superscript � or �

indicates bosonic and fermionic eigenvalues�� The berezinian B�X� is de�ned
in the appendix as well� The quantity ��s� r� is de�ned as

��s� r� � exp
h
�s� � r�

i
I��	sr� � �����

This formula will be of utmost importance in section �
� where we analytically
evaluate the higher correlations functions of a non�invariant chiral random
matrix model�

��� Finite volume partition functions and

Itzykson�Zuber integrals

In this section we study Itzykson�Zuber type integrals corresponding to
arbitrary complex rectangular matrices� The motivation for this method came
from an attempt to compute higher correlation functions of chiral ensembles
using a method developed by Guhr ���� where he used the standard hermitian
Itzykson�Zuber integrals for a study the of the gaussian unitary ensemble�

Originally we have studied the supersymmetric generalization given in
����� as this is what is needed to express the higher correlation functions
in the supersymmetry method� However it turned out later that Guhr and
Wettig have also been working on the same problem unknowingly� After their
publication on these Itzykson�Zuber integrals� ������ we have published only
what is not covered by their work� namely the case for rectangular block ma�
trices� The author would like to take this opportunity to thank again T� Guhr

��



and T� Wettig for their cooperation which subsequently led to the simultane�
ous publication of the study of higher correlation functions in chiral gaussian
unitary ensemble� given in section �
� which was the natural consequence of
�and the motivation for� the work in this section�

Another remarkable property of Itzykson�Zuber integrals of the type de�
veloped below is that they allow an exact evaluation of the �nite volume
�mesoscopic� partition function of QCD for arbitrary quark masses as devel�
oped by Leutwyler and Smilga ����� In their work� where they also derive
the Leutwyler�Smilga sum rules� they evaluate this partition function only for
identical masses�

This work has been published in Phys� Lett� B�
	� �����
�� ����
��
which we reproduce here except for minor changes�

In general� numerical simulations o�er our only access to the QCD parti�
tion function� For su�ciently small volumes� however� the partition function
is dominated by the constant modes which makes analytic treatment possible�
�See� e�g�� ref� ������� In a similar spirit� Leutwyler and Smilga ���� identi�ed a
parameter range within which the mass dependence of the partition function is
completely determined by the underlying structure of broken chiral symmetry�
This range is given as

�

)
 L �

m�
� �����

where L is the linear size of the �dimensional Euclidean box� ) is a typical
hadronic mass scale and m� is the mass of the Goldstone modes �i�e�� m� 	p
m) for quark mass m�� The lower limit of this range ensures that the

partition function is dominated by the Goldstone modes� The upper limit
ensures that these modes can be treated as constant modes� If chiral symmetry
is broken according to SU�Nf� � SU�Nf � � SU�Nf �� the QCD partition
function in the range ����� and for vacuum angle � is given by ����

Z�M� �� �
Z
U�SU�Nf �

dU exp
�
V !Re�ei
�Nf tr UM�

�
� �����

Here� ! is the chiral condensate� andM is the mass matrix which can be taken
as diagonal without loss of generality� In the sector with topological charge ��
the partition function is given as

Z��M� �
�

	�

Z ��

�
d�e�i�
Z��� � ���	�

��



For equal quark masses� Leutwyler and Smilga obtained an exact analytic
expression for this partition function

Z��m� � det
ij
I��j�i�mV !� � �����

where i and j run from �� � � � � Nf � The importance of this partition function
lies in the fact that it enables us to determine the volume dependence of the
chiral condensate� This is of interest in lattice QCD simulations� where the
volume is necessarily �nite�

Recently� lattice QCD calculations have been performed to determine the
connected and disconnected contributions to the scalar susceptibility ������
The determination of these susceptibilities requires di�erentiation of the par�
tition function with respect to two di�erent masses� In order to determine
volume dependence of the scalar susceptibility in the range ������ we require
a generalization of ����� to di�erent quark masses� This is the primary ob�
jective of the present paper�

In the next section � we analyze the two �avor case and generalize the
result to an arbitrary number of �avors� Later� we present a generalization of
the Itzykson�Zuber formula valid for arbitrary rectangular complex matrices�
For square complex matrices� our result reduces to that obtained by Wettig and
Guhr ������ Finally� we derive the �nite volume partition function for di�erent
masses in the sector of zero topological charge� We also make a conjecture of
the result for arbitrary topological charge and show that it reduces to �����
for the special case of equal quark masses�

����� The �nite volume partition function for Nf � �

and its generalization to arbitrary Nf �

For two �avors and in the range ������ the QCD�partition function is
known for di�erent quark masses� For vacuum angle �� it is given as

Z��� �
	

V !�
I��V !�� � ����

where I� is a modi�ed Bessel function and where

�� � m�
� �m�

� � 	m�m� cos��� � �����

The partition function in the sector with topological charge � can be obtained
by integrating over � according to ���	�� Remarkably� this integral can be

��



expressed analytically� After some manipulations the result can be written as

Z��Nf � 	� �
	

x�� � x��
det

����� I��x�� x�I
�
��x��

I��x�� x�I
�
��x��

����� ���
�

where

xk � mkV !� �����

This suggests the generalization to three �avors

Z��Nf � �� �
�


�x�� � x����x
�
� � x����x

�
� � x���

� det

�������
I��x�� x�I

�
��x�� x��I

��
� �x��

I��x�� x�I
�
��x�� x��I

��
� �x��

I��x�� x�I
�
��x�� x��I

��
� �x��

������� � �����

where the numerical prefactor is chosen such that for equal masses the result of
Leutwyler is reproduced� The generalization to an arbitrary number of �avors
is now obvious� We de�ne a Vandermonde determinant as

��x�� �
Y
k�l

�x�k � x�l � � �����

and an Nf �Nf matrix as

Akl � xl��k I�l���� �xk� k� l � �� � � � � Nf � ������

The partition function is then given as

Z��m�� � � � � mNf
� � CNf

detA

��x��
� ������

where the normalization constant

CNf
� 	Nf �Nf�����

NfY
k��

�k � ��� ����	�

is determined by the limit of equal quark masses�

In section � we shall prove this formula for the special case � � �� It
will be shown that this formula reduces to the Leutwyler�Smilga �nite volume
partition function for arbitrary ��


�



����� The Itzykson�Zuber integral for complex rectan�

gular matrices

In this section we o�er a derivation of the extension of the Itzykson�
Zuber integral to the case of arbitrary complex rectangular matrices using
the di�usion equation method� The result for square matrices has also been
obtained in ������ Our derivation is patterned on the argument for Hermitean
matrices� which has been discussed widely in the literature� �See� e�g�� ����
��� ����� The expression which will be required in section  for the calculation
of the �nite volume partition function for di�erent masses is given in ���		��

Let � and � be arbitrary complex �i�e�� non�Hermitian� N��N� matrices�
Without loss of generality� we assume that � � N��N� � �� Any such matrix
can be diagonalized in the form �����

� � U
y

SV ������

where

S �

�
�S
�

�
� �����

and where the square diagonal matrix �S � diag�s�� � � � � sN�� has nonnega�
tive real entries� The matrices �U� V � parameterize the coset space U�N�� �
U�N����U����N� � Similarly� � can be written as � � U �

y

RV ��

In the following� we evaluate the integral

�

��t��N�N��

Z
d��U� V � exp

�
��

t
tr��� � ��

y

�� � ���
�

������

using the di�usion equation method and exploiting the invariance of the mea�
sure� d��U� V �� which is taken to be the Haar measure of U�N���U�N����U����N� �
The function

F ��� t� �
�

��t��N�N��

Z
d��� exp

�
��

t
tr��� � ��

y

�� � ���
�

��� ����
�

with integration measure d��� �
QN�
m��

QN�
n�� dRe�mndIm�mn satis�es the di�u�

sion equation

N�X
m��

N�X
n��

��

��mn���mn

F ��� t� �
�

�t
F ��� t� � ������


�



As initial condition� we choose an invariant function� i�e�� 
��� is a function of
the eigenvalues of � only� Then� using the invariance of the measure� we �nd
immediately that F ��� t� is a symmetric function of the eigenvalues of ��

In order to proceed� we express both the Laplacian and the integration
measure in the �polar coordinates� introduced by the diagonalization �������

d��� � *d�S� j��S� d��U� V � ������

where d�S� �
QN�
n�� dsn� Here� the constant *� which depends on the convention

adopted for the measure of the group� will be �xed later� The Jacobian is given
by J�S� � j��S� with

j�S� �
N�Y
n��

s�N��N������
n �� �S�� � ������

and �� �S�� is the Vandermonde determinant de�ned in ������ Because F is
an invariant function� it satis�es a di�usion equation which involves only the
radial part of the Laplacian�

N�X
n��

�

J�R�

�

�rn
J�R�

�

�rn
F � 

�F

�t
� ������

This equation can be simpli�ed materially with the introduction of a reduced
wave function�

f�R� t� � j�R�F �R� t� � ������

Now� ������ reduces to

N�X
n��

�
��

�r�n
� �

j�R�

�
��

�r�n
j�R�

��
f�R� t� � 

�f

�t
� ����	�

Remarkably� this di�erential equation is separable�� Performing the di�eren�
tiations of j�R�� it can be rewritten as

N�X
n��

�
��

�r�n
� �� � �



�

r�n

�
f�R� t� � 

�f

�t
� ������

�In ������ a separable equation was obtained for N� � N� by the substitution of
��R�	F �R� t	 instead of j�R	F �R� t	



	



Because of the presence of the factor j�R� in ������� f�R� t� is an antisym�
metric function of the eigenvalues� Therefore� the solution of ������ is given
by an integral over a Slater determinant

f�R� t� �
Z
d�S�

�

N��
det
k�l
jg�rk� sl� t�j j�S�
�S� � �����

where g�r� s� t� is the kernel of

��

�r�
g � �� � �

r�
g � 

�g

�t
� ������

The kernel can be expressed in terms of the regular eigenfunctions of the Bessel
equation of order ��

u�� � �k� � ��� � ���r��u � � � ����
�

This is obtained following a separation of variables which leads to a time
dependence of the form exp��k�t��� The regular eigenfunctions are given by

uk�r� 	
p
kr J��kr� � ������

where J� is a Bessel function� Recalling the orthogonality relation for Bessel
functions� the kernel of ������ can be written as

g�r� s� t� � ��t�
Z �

�
dk k

p
rse�k

�t�� J��kr�J��ks� � ������

This can be evaluated to give

g�r� s� t� � ��t�
	

t

p
rs exp

�
�r

� � s�

t

�
I�

�
	rs

t

�
������

where I� is a modi�ed modi�ed Bessel function�

Finally� we equate the de�nition of F ��� t� in ����
� with its expression in
terms of the kernel ������ as given by ������ and ������ Since this equality
is valid for an arbitrary choice of the initial condition 
���� the integrands of
d�S� must be the same�

Hence� we arrive at

Z
d��U� V � exp

�
��

t
tr��� � ��

y

�� � ���
�


�



�
tN�N��N�QN�
k���rksk�

�

	N��N�N�

*

�

N��

� det
k�l

�����exp
�
�r

�
k � s�l
t

�
I�

�
	rksl
t

������ ���S����R�� � ���	��

Here� the value of * follows from the normalization integral calculated in ������

* �
�N�N�	N�QN�

j�� j��j � � � ���
� ���	��

where we have used the convention that
R
d��U� V � � ��

This result enables us to calculate the Itzykson�Zuber integral for arbi�
trary complex matrices

Z
d��U� V � exp

�
Re trU

y

SV R
�

� CN�CN�

	�������Q���
k�� k�

QN�
k���rksk�

�

� det
k�l
jI��rksl�j ���S����R�� ���		�

When � � �� the product of factorials in this expression is understood to be
�� The constants CN� and CN� can be evaluated to be

Cn � 	n�n�����
nY

k��

�k � ��� � ���	��

In the special case N� � N� for which � � �� our expression reduces to the
result of Guhr and Wettig ����� apart from a normalization constant�

����� The �nite volume partition function for dierent

masses

The �nite volume e�ective partition function of QCD in the sector with
topological charge �� de�ned in ���	� and ������ can be written as an integral
over U�Nf � instead of SU�Nf � ����

Z� �
Z
U�Nf �

d��U��detU�� exp
�
V! Re trMU

y
�

� ���	�

For � � �� this result can be obtained from ���		� by taking R � V !M and
S � �Nf

� Because of the singularity as S � �� the �nal result requires a
careful analysis of this limit�






In ���		�� we take S � �� �S and expand the modi�ed Bessel functions
to order ��S�Nf � The result is

I��rksl� �
NfX
j��

rj��k

�j � ���
I�j���� �rk� �s

j��
l � O��SNf � � ���	��

which can be written as the product of the matrix A de�ned in ������ and
the matrix

Bjl �
�

�j � ���
�sj��l � ���	
�

The determinant of B can be written as

det�B� �
�QNf

k���k � ���
���S� �

�

CNf

�
�
�� � �S��

�
� ���	��

with the normalization constant de�ned in ���	��� Hence

Z��M� � CNf

detA

��R��
� ���	��

which is simply the result conjectured in ������ above� This result is now
proved for � � ��

We have not proved the result ������ for arbitrary �� However� we o�er
one non�trivial check of this conjecture by demonstrating that ������ reduces
to the �nite volume partition function of Leutwyler and Smilga in the limit of
equal masses� We start with the expression

Akj � C
��Nf

Nf
rj��k I�j���� �rk�� ���	��

Using the recursion relation

dI�
dr

� I��� �
�

r
I� ������

and adding a suitable multiple of the column to the left of the column in
question� we arrive at the matrix

Akj � C
��Nf

Nf
rj��k I��j���rk� � ������

This is evidently correct in going from the �rst to the second column and�
hence� true in general� The fact that the coe�cient of I��� in ������ is �
guarantees that the determinant will not be a�ected by this rearrangement�


�



To realize the limit rk � r � mV !� we write rk � r � �rk and expand

each element in A in a Taylor series through order �r
Nf��
k � The result is that

Akj � C
��Nf

Nf

NfX
p��

�

�p� ���

dp��

drp��

h
rj��I��j���r�

i
�rp��k � ����	�

This can be written as the product of the matrix with elements

Mjp � C
��Nf

Nf

dp��

drp��

h
rj�� I��j���r�

i
������

and the matrix Bjp � ��rk�
p����p� ���� As in ���	��� we have

det�B� �
NfY
p��

�

�p� ���
���R� �

�

CNf

�
�

r

�Nf �Nf�����

���R � �R��� ������

The determinant of the matrix M can be simpli�ed by using the recursion
relation

dI�
dr

� I��� � �

r
I� ������

and adding a suitable multiple of the row immediately above the row in ques�
tion� As before� this rearrangement does not alter the determinant� This
leaves us with

Mkj � C
��Nf

Nf
rj��I��j�k � ����
�

Now� the factor rj can be extracted from each column and used to eliminate
the r dependence in the prefactor� Thus� we arrive at the �nal result

det�A� � det�M� det�B� � det
k�j

I��j�k � ������

which is precisely the result in ���� as given in ������

����� Conclusions

We have obtained the �nite volume QCD partition function for di�erent
quark masses in the range ��)  L  ��m�� This result generalizes the
�nite volume partition function obtained previously by Leutwyler and Smilga
for the case of equal quark masses� In order to derive this result� we were
led to generalize the Itzykson�Zuber integral to arbitrary rectangular complex







matrices� The integral for square matrices� �rst obtained by Guhr and Wettig�
leads immediately to the proof in the sector of zero topological charge� Based
on the result for two �avors and the general result for � � �� we have conjec�
tured the result for arbitrary � and Nf � As a decidedly nontrivial check of this
conjecture� we have shown that the result of Leutwyler and Smilga emerges in
the limit of equal quark masses�

We wish to note a remarkable coincidence� Consider the Itzykson�Zuber
formula for complex rectangular matrices �with � equal to the di�erence be�
tween the number of rows and columns� in the same limit considered for � � ��
Up to a factor� this leads to the �nite�volume partition function in the sector
of topological charge �� While we can o�er no explanation of this coincidence�
it may be useful to note that� in the chiral limit� the joint eigenvalue density of
the random matrix model associated with the �nite volume partition function
depends only on the combination � �Nf �	�� 	��� 	�	��

��	 Universality of higher spectral correlation

functions for non�invariant deformations

of gaussian chiral random matrix models

As explained in the beginning of the previous section this work is both
the motivation for and the natural continuation of the work presented in the
previous section� The chiral Itzykson�Zuber integrals are used to analytically
compute the higher correlation functions of the temperature deformed �and
therefore non�invariant� chiral gaussian unitary ensemble�

The main result of this section is the universality of the aforementioned
correlation functions except for a trivial scaling of their functional form given
by a temperature dependent factor� This result is valid up to a critical tem�
perature as discussed in section ���

This work has been published in Nucl� Phys� B���� 
�	�
�	� �������

We address the question of universality within the context of random
matrix theory� An observable� typically a spectral correlation function� will
be called universal if it is stable against deformations of the probability dis�
tribution� Recently� this topic has attracted a great deal of attention� Two
types of deformations have been considered� deformations which maintain the
invariance of the random matrix ensembles ���
� ��� ���� 
�� �	�� and those
which violate that invariance �	�
� �	� � �� �� 	�� ��� ��� 	���� We will
consider spectral correlation functions for an example of the latter class� In


�



all cases which have been studied� spectral correlations measured in units of
the average level spacing are found to be universal even for deformations that
change the spectral density on a macroscopic scale�

Speci�cally� we investigate the stability of the spectral correlations of the
chiral ensembles ����� 	��� 	�� 	��� 	�	�� They are constructed to describe the
�uctuations of the Dirac eigenvalues in lattice QCD ����� ���� and are relevant
to the theory of universal conductance �uctuations� Because of an underlying
UA��� symmetry �i�e� because the Dirac operator commutes with �
� � the
eigenvalues of chiral matrices occur in pairs �	� Therefore� one can consider
three types of universal behavior each of which is given by invariant random
matrix ensembles� �i� correlations in the bulk of the spectrum ��
� ���� ��
��
�ii� correlations near the edge of the spectrum ������ and �iii� correlations near
	 � �� In this case� the microscopic spectral density �i�e�� the spectral density
near zero on the scale of a typical eigenvalue spacing� is universal� This has
been illustrated for both invariant �	� ���� �� and non�invariant deformations
��	���

The invariant random matrix ensembles and the chiral random matrix
ensembles are part of a larger classi�cation scheme� Altland and Zirnbauer
have shown that there is a one to one correspondence between random matrix
ensembles and symmetric spaces �
�� ���

The microscopic spectral density is of immediate physical interest� Ac�
cording to the Banks�Casher formula �		�� the spectral density at zero is di�
rectly proportional to the order parameter of the chiral phase transition in
QCD �i�e�� the chiral condensate�� The microscopic spectral density provides
information regarding the approach to the thermodynamic limit� This has
been demonstrated� for example� in connection with the dependence of the
chiral condensate on the valence quark mass �	�
�� Recently� it has been veri�
�ed by direct lattice calculations that the microscopic spectral density of lattice
QCD is given by one of the chiral ensembles �		��� Moreover� the microscopic
spectral density enter in sum�rules ���� for the inverse eigenvalues of the Dirac
operator�

The model which we shall consider is the chiral unitary ensemble per�
turbed by the lowest Matsubara frequencies� ��T � This model was introduced
in ��	�� as a model for the chiral phase transition� Indeed� the average spec�
tral density for this model undergoes a transition from one semicircle at zero
temperature to two disjunct semicircles at high temperature� In ��	�� it was
shown that the spectral density of this model on the scale of individual average
level spacings is independent of the temperature�

The aim of the present paper is to show that� below to the critical tem�
perature� all spectral correlations measured in units of the average eigenvalue


�



spacing are independent of the temperature� This will be achieved using the
methods of super�symmetric integration introduced by Guhr ���� and certain
super�symmetric Itzykson�Zuber integrals ��		� ��� ���� �	�� At zero tem�
perature our results coincide with earlier work ����� 	��� 	�� 	��� 	�	� ����
���� ��� 	��� ���� ���

The outline of the paper is as follows� In section �
��� we introduce
the random matrix model and express the correlation functions in terms of a
partition function� In section �
�	� we reduce this partition function to an
integral over a supermatrix� �� of much smaller size� The choice of an explicit
parametrization for � is essential for the rest of the paper� Thus� we will argue
in section �
�� that the correlation functions can be obtained by deforming the
non�compact parametrization required for uniform convergence into a compact
parametrization of �� This will be done through a detailed investigation of the
one�point function� In section �
�� we show that all correlation functions
follow from a two�point kernel� This will be evaluated at zero temperature
in section �
��� and we will reproduce the well�known Laguerre kernel� In
section �
�
� we evaluate the two�point kernel at �nite temperature using a
saddle point approximation� Our primary result will be that the correlation
functions are independent of temperature except for a trivial rescaling of their
arguments�

����� The random matrix model and the partition func�

tion for correlations

The partition function of Euclidean QCD is given by

ZE � hdet�i� �D � iM�iSE ������

where ��D is the Dirac operator�M is the mass matrix� and the brackets denote
the average over gauge �eld con�gurations with respect to the Euclidean Yang�
Mills action SE� Using a lattice regularization with anti�periodic boundary
conditions in the time direction� we can expand the fermion �elds as a sum
over Matsubara frequencies to obtain

��x� �� �
NX
k��

nX
l��n��

�k�x� exp ��i�	l � ��T�� � ������

Here� T is the temperature �i�e�� the inverse length of the time axis�� N is
to be identi�ed with the volume of space� and n denotes the total number
of Matsubara frequencies retained in the expansion� The �k are properly
normalized spinors�


�



Using this basis� we separate the time derivative in the Dirac operator�
���� � from the remaining terms� In terms of the matrix elements of the Dirac
operator the partition function for Nf massless �avors can then be written as

Zgauge �

	
detNf

��
� iCy

iC �

�
�

�
� i+� �N

i+� �N �

��

SE

� �����

The identity matrix of size N is denoted by �N � and + contains the Mat�
subara frequencies + � diag ���	n� ���T� � � � ���T� �T� � � � � �	n� ���T �� In
������ we have used a chiral representation of the Dirac matrices� For fun�
damental fermions with three colors� the matrix C is a complex matrix of size
	nN � 	nN � The detailed form of C depends on the particular gauge �eld
con�guration�

The corresponding random matrix model is obtained by replacing the
matrix elements of C by independent random variables with a Gaussian dis�
tribution� Thus� instead of ������ we study the properties of

ZRM � ND

Z
d�C�e�N��TrCyCdetNf

��
� iCy

iC �

�
�

�
� i+� �N

i+� �N �

��

where the measure d�C� is the Haar measure de�ned by
Q
m�n d�ReCmn�d�ImCmn��

and ND is a normalization constant to be speci�ed later� We wish to stress that
this partition function is a schematic model of the QCD partition function�
For example� we have ignored all spatial dependence of the matrix elements
of the Dirac operator� and the critical exponents of this model are necessarily
those of mean �eld theory� It is our claim� however� that this partition func�
tion belongs to the same universality class as the QCD partition function with
respect to local spectral �uctuations�

In this paper� we will study the spectral correlation functions of the model
given by ������ For simplicity� we will restrict our attention to the case in
which we retain only the lowest Matsubara frequencies� ��T � This enables us
to replace + by �T using a unitary transformation� After rede�ning N � the
matrix C can be taken to be a complex N �N matrix�

As was shown in ��	�� �	��� this model shows a second�order phase tran�
sition at �T! � �� Below this temperature� chiral symmetry is broken spon�

taneously with the chiral condensate given by ' � !
q
��� ��T �!��� At all

temperatures� the spectral density follows from the solution of a cubic equation
��	�� ���� �	��� In particular� we mention that� according to the Banks�Casher
formula �		�� the spectral density at zero virtuality is simply related to the chi�
ral condensate�

' �
�����

N
� �����

��



In ��	�� it was shown that the microscopic spectral density� de�ned as

�S�u� � lim
N��

�

N'
��

u

N'
� ���	�

is independent of the temperature parameter in the random matrix model�
This result greatly adds to our understanding of the empirically observed uni�
versality of the microscopic spectral density in lattice QCD �	�
� 		�� and
instanton liquid simulations ����� 	��� 	�� 	��� 	�	�� Because of these results
and numerical results for higher�order correlation functions in the bulk of lat�
tice QCD Dirac spectra ����� ����� we expect that the higher�order microscopic
correlation functions are universal as well�

The spectral density of a matrix with eigenvalues 	k is given by

��x� �
X
k

��x� 	k� � �����

The k�level correlation functions are then de�ned as

Rk�x�� � � � � xk� � h��x�� � � � ��xk�i � ����

where h� � �i denotes the ensemble average with respect to ������ However� in
our approach is is more convenient to work with correlation functions of the
resolvent

G�x� �
�
Tr

��
x � i��D

�
� �����

where D is the random matrix Dirac operator

D �

�
� C � �T

Cy � �T �

�
� ���
�

and � is a positive in�nitesimal� The spectral density is then given by

��x� �
�

�
ImG�x�� �����

The corresponding correlation functions are de�ned by

�Rk�x�� � � � � xk� �

	
kY
l��

�

�
Tr

��
xl � i�l �D



� �����

The spectral correlation functions follow by taking the imaginary part of each
trace� In the following� we will drop the i�l term� assuming that xl has a
positive in�nitesimal imaginary part�

��



Using the identity

TrA�� � ��

	

�

�j
�det�A� j�� det�A� j��jj�� � �����

one can express the correlation functions in terms of a generating function

�Rk�x�� � � � � xk� �
�

�	��k

kY
l��

�

�jl
Zk�j�� � � � � jk�

�����
jl��

� ������

Zk�j�� � � � � jk� � ND

Z
d�C�e�N��TrCyCdetNfD

kY
l��

det�D � xl � jl�

det�D � xl � jl�
�������

The prefactor� ND� in ������ is to be chosen such that Zk��� � �� In the
rest of the paper� we will restrict our attention to the quenched problem with
Nf � �� This is due to the fact that the current method does not allow us to
�nd a solution for arbitrary Nf � The reason for this will be discussed at the
end of section ��

����� Reduction of the partition function

The expression ������ for the generating function of correlators involves
an integral over a matrix� C� with 	N� degrees of freedom� When the deter�
ministic part� +� is absent� we can exploit the unitary invariance

C � UCV ��� ����	�

with U and V unitary matrices� in order to rewrite the partition function as
an integral over the eigenvalues of C only� It can then be evaluated easily
using� for example� the orthogonal polynomial method ���� ���� ���� ����
The presence of + destroys unitary invariance� and standard methods are
unsuitable� However� unitary invariance is not essential in the supersymmetric
formulation of random matrix theory ��
� 	�
�� Below� we adapt an approach
based on the supersymmetric method which is described in ����� This method
exploits the determinantal structure of the correlation functions and allows us
to calculate all k�point correlation functions at the same time� Readers not
familiar with the use of supersymmetry methods in random matrix theory are
referred to ��
� 	�
� ����

In this section� we will express the partition function� ������� as an inte�
gral over a k � k supermatrix in which N appears only as an overall factor

�	



in the action� This is particularly useful for the investigation of the thermo�
dynamic limit �i�e�� N ����

The ensemble average in ������ is performed by writing the determi�
nants as Gaussian integrals over commuting and anticommuting variables
�	�
�� Equivalently� the product of determinants and inverse determinants
in ������ can be considered as a superdeterminant and can be written as a
Gaussian integral over a complex supervector� In order to do this we introduce
the following supermatrices

C � diag�C� � � � � C�C� � � � � C� �

x � diag�x�� � � � � xk� x�� � � � � xk� �

j � diag��j�� � � � ��jk� j�� � � � � jk� � ������

Here� a semicolon separates the k boson�boson blocks from the k fermion�
fermion blocks� Each block is of size N�N � Further� xp and jp are understood
to be multiplied by the N �N identity matrix�

In order to exploit the chiral structure of the problem� we introduce a
pair of complex supervectors� �A and �B� each of size �k N � k N�� The two
numbers refer to the number of commuting and anticommuting components�
Then� the product of determinants in ������ can be written as

kY
l��

det�D � xl � jl�

det�D � xl � jl�
� sdet��

����� �x� j Cy � �T
C� �T �x � j

�����
�

Z
d��A�d��B� exp

�
�i
�
�yA
�yB

�

�
� �x� j Cy � �T
C� �T �x � j

��
�A
�B

��
�

�����

where we have taken + � �T � In ������ the blocks inside the superdetermi�
nant refer to the chiral structure� i�e�� each block is itself a supermatrix� The
measure on the right hand side of ����� is

d��� �
kY

p��

�
NY
l��

d���pl�d��
�
pl�

�

	�

�
kY

q��

�
NY

m��

d���qm�d��
�
qm�

�

i

�
� ������

Here� � refers to either �A or �B� �
�
pl and ��qm denote the commuting and an�

ticommuting components of �� respectively� The ranges of the indices follow
from the limits in the products� The integrals with respect to the anticom�
muting variables are normalized according to the convention ��	��

R
d � ��

��



The constants in ������ are chosen so that Gaussian integrals do not result
in additional prefactors� We recall that xl is understood to have a positive
imaginary part� which is su�cient to ensure the convergence of ������

The ensemble average can now be performed immediately by substituting
����� into ������ and completing the square in the exponent� Interchange
of the orders of the C� and ��integration is justi�ed because the C�integral is
uniformly convergent in �� In order to proceed� we rewrite the terms appearing
in the exponent of ������

�yA �Cy � �B �
�X

���

kX
p��

�����Tr Cy �
�
��Bp � ��yAp

�
� ����
�

and the complex conjugate equation for �yB � C � �A� Here� ��p and ��q are
commuting and anticommuting vectors of length N which represent the com�
ponents of �A and �B� The C�integral can now be performed usingZ

d�C� exp
h
�N!�TrCyC � iTr �CyX � CY �

i

� N��
C exp

�
� �

N!�
Tr �XY �

�
�

������

where N��
C �

R
d�C� exp

h
�N!�TrCyC

i
� �For Nf � � we have NC � ND

in �������� The matrices are arbitrary complex N � N matrices� Thus� the
generating function ������ becomes

Zk�j�� � � � � jk� �

Z
d��A�d��B� exp

�
� �

N!�

�X
�����

������
kX

pp���

���yAp � ��
�

Ap����
��y
Bp� � ��Bp�

�
�

� exp

�
i �X

���

������
kX

p��

�x� j�p��
�y
Ap�

�
Ap � ��yBp�

�
Bp�� �T ���yAp�

�
Bp � ��yBp�

�
Ap��

�
� �
������

As a result of the ensemble average� we obtain a fourth�order term in the
exponent which should be decoupled using a Hubbard�Stratonovitch transfor�
mation� In order to accomplish this� we rewrite the �rst exponential in ������
as exp ��str �AB��N!��� The �k � k�� �k � k� super�matrix A is given by

A���

lm � ���yAl � ��
�

Am� ������

�



with a similar form for B� Now� we can �undo� the transformation in ������
by introducing a non�hermitean complex �k � k�� �k � k� super�matrix� ��

exp
�
� �

N!�
str �AB�

�
�
Z
d��� exp

h
�N!�str

�
�y � �

�
�i str

�
�y � A� � �B

�i
� ���
��

After writing str ��y �A� � �yA ���y��N � ��A and str �� �A� � �yB �����N � ��B�
and performing a shift of integration variables given by � � ��x� j� we can
express the generating function for the correlation functions as

Zk�j�� � � � � jk� �
Z
d��A�d��B�

Z
d���

� exp
n
�N!�str

h
��y � x� j� � �� � x� j�

io
� exp

n
�i�yA � ��y � �N� � �A � i�yB � �� � �N� � �B

�i�T ��yA � �B � �yB � �A�
o
� ���
��

Here we still use the de�nition ������ for x and j� however from this point
on xp and jp in ������ are not meant to be multiplied by the N �N identity
matrix�

At this point� we would like to change the order of the integrations in
���
�� and perform the Gaussian integrals in �� This would result in a su�
perdeterminant involving the matrix �� However� this is possible only if the
��integral is uniformly convergent in �� which is not the case if � is an ar�
bitrary complex matrix� However� it can be shown in general �	�	� that it is
possible to choose a certain non�compact parametrization of the ��variables
that ensures uniform convergence� An explicit construction for one� and two�
point correlation functions has been given in ���� �	��� The parametrization
in the case of the one�point function will be discussed in great detail in the
next section�

Postponing further discussion of these points� we arrive at the following
expression after a change in the order of the integrals in ���
��

Zk�j� �
Z
d��� exp

�
�N!�str ��y � x� j� � �� � x� j�

�

�sdet�N
����� �

y �T
�T �

����� � ���
	�

This partition function� with N appearing only as an overall parameter� is
amenable to a saddle point approximation�

��



Before we continue with the evaluation of this partition function� we will
show in the case of the one�point function that the imaginary part of the par�
tition function can be obtained by replacing the non�compact parametrization
of ���
	� by a compact parametrization� We will conjecture that all higher�
order multipoint correlators Rk� as opposed to the �Rk de�ned in ������ can
also be obtained by using a compact parametrization with the ��variables
parameterized according to

� � USV �� � ���
��

This choice of integration domain allows us to utilize the Itzykson�Zuber�like
integrals developed earlier ��		� ��� ���� �	� for the integration over the
super�unitary matrices� Unfortunately� we have not been able to construct a
rigorous proof of this statement�

����� The one�point function

In this section� we wish to make the point that the spectral density can be
obtained from a compact parametrization of the ��matrix rather than the non�
compact parametrization which is required for uniform convergence� and which
justi�es the interchange of �� and ��integrations� Since fermionic integrals are
always �nite� convergence problems arise only from the integrations over the
boson�boson block of the � matrix�

The uniform convergence of the ��integrations can be achieved if we per�
form a Hubbard�Stratonovitch transformation using the identity

e�a
��b� �

��
�i

Z �

��
ds
Z �

��
�d�e��

���ia� cosh s��ib� sinh s � ���
�

where a is real positive and b� � a� has a negative real part� When expressed
in terms of the real and imaginary parts of �BB � �� � i��� this identity
corresponds to the non�compact parametrization introduced in ��	��� This
parametrization is given as

�� � �� � i�� cosh s�! �

�� � i�� � i�� sinh s�! � ���
��

where both � and s run over the real line� Note that this parametrization covers
only half of the ���� ��� plane� �The parameter � introduced here should not
be confused with the matrix � de�ned in the previous section�� We wish to

�




contrast this parametrization with the compact parametrization �i�e�� in polar
coordinates��

�� � � cos ��! �

�� � � sin ��! � ���

�

After performing the integration over the Grassmann variables in the ��matrix�
the partition function can be written as

Z�j� �
N�

��

Z �

��
�d�

Z �

��
ds
Z �

�
�d�

Z ��

�
d
F ��� � i���� ��� t��

�
�

�� � t�

t� � �� � i���

�N

� e�N ���	����x�j�����i�� cosh s��ix�	 cos�����x�j���x��� � ���
��

where t � �T!� �� and 
 parameterize the fermion�fermion block of the �
matrix� We have displayed the i� dependence of ���
�� explicitly� The con�
vergence of the s�integral is guaranteed by choosing x�j to be pure imaginary�
The de�nition of the function F ���� i���� ��� t�� and additional details can be
found in ��	���

We perform the ��integral �rst by saddle�point integration� The ��integrand
has poles at �t � i�� which allows us to deform the integration contour into
the lower complex half�plane� The saddle�points in the � integration are given
by  � � �ip�� t�� and thus only the saddle point with the negative sign can
be reached by deforming the integration contour� The resulting integral can
be analytically continued to x� j just above the real axis�

We now consider the imaginary part of the partition function� The 

integral gives rise to a Bessel function� J�� Thus� the only contribution to the
imaginary part comes from the factor

S �
Z �

��
ds exp��	N�x � j�! � cosh s� � ���
��

For positive x� we change integration variables according to s � s � �i�	�
Then� the integration path can be deformed into the integration path I shown
in Fig� �� and S is given by

S �
Z
I
ds exp�	iN�x� j�! � sinh s� � ���
��

The imaginary part of S is given by half the sum �note the arrows� of the
contributions along the integration paths I and II in Fig� �� The integral along

��
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Figure ��� The integration contour for the imaginary part of the generating
function�

the parts of the integration contour parallel to the real axis cancel� and we are
left with

ImS �
�

	
�S � S�� � Im

�

	

Z �i

��i
ds exp�	iN�x� j�! � sinh s� � ������

If we change integration variables� s � i�� we �nd

ImS �
Z �

�
d� cos�	iN�x � j�! � sin �� � ������

In e�ect� this implies that the imaginary part of the partition function can be
obtained by replacing the ��� s� parametrization required for uniform conver�
gence by a compact parametrization such as ���

�� With this parametriza�
tion� the partition function is given as

ZC�j� �
N�

��

Z �

�
�d�

Z ��

�
d�
Z �

�
�d�

Z ��

�
d
F ��� � i���� ��� t��

�
�

�� � t�

t� � �� � i���

�N

� e�N����	����x�j�����i�� cos 
��ix�	 cos�����x�j���x���� ����	�

In this form� the imaginary part of the partition function is determined by the
i� in the singularities of the pre�exponential factor� Therefore� the imaginary
part is even in �� This allows us to extend the ��integration from �� to �
with the introduction of a factor ��	� Such an extension of the ��integration

��



to the full real axis is required if we are to perform this integral by saddle�
point integration� This integration can be carried out in the same fashion as
in the non�compact case and yields the same result for ImZC�j� as obtained
by substituting the �nal result for ImS ������ back into ImZ�j� de�ned in
���
���

By contrast� the real part of the integral is odd in �� and it is not possible
to extend the ��integration over the entire real axis� Consequently� the ��
integration for the real part of Z�j� cannot be performed by saddle�point
integration if a compact parametrization is adopted� only the imaginary part
of Z�j� can be obtained in this fashion� A similar phenomenon was observed
in ���� for both the one� and two�point functions�

This leads us to the following conjecture� The spectral correlation func�
tions� which are given by the products of the imaginary parts of the resolvents
at di�erent points� can be obtained by parameterizing the ��integration in
���
	� as

� � U�S � i��V �� � ������

where U and V are taken from the super�unitary group as discussed in the
next section and where S is a diagonal matrix� This conjecture is central to
the remainder of this paper�

����� Integration over soft modes using Itzykson�Zuber

integrals

We now return to the evaluation of the generating function for correla�
tions� One possible method for the evaluation of ���
	� would be to integrate
out anticommuting degrees of freedom �rst� This is simple for a small number
of Grassmann variables when only a small number of terms contribute to the
integral� However� even for k as small as 	 this approach is impractical �����
and for larger values of k it is virtually impossible to perform the integrals this
way�

Rather� we adopt a technique developed in ����� where it was applied to
a study of the Gaussian unitary ensemble� This technique consists essentially
of separating the eigenvalue and angular coordinates of � by diagonalization
and then integrating over the angular coordinates using a super�symmetric
analogue of the Itzykson�Zuber integral� The remaining bosonic eigenvalue
integrals can then be carried out either exactly �e�g�� for the case of zero
temperature considered in section �� or in saddle point approximation �e�g��
for non�zero temperature as in section 
�� The main virtue of Guhr�s technique

��



is that it preserves the determinantal structure of the correlation functions�
which makes it possible to obtain all correlation functions at the same time�

We begin by reminding the reader of some relevant properties of super�
unitary matrices� As in the case of an arbitrary complex matrix ������ an
arbitrary super�matrix can be diagonalized by two super�unitary matrices

� � U ySV � �����

where S � diag�s��� � � � � s
�
k� is

�
�� � � � � is

�
k� is a diagonal matrix which can be

taken to have non�negative real entries and �U� V � parameterize the group
�U�kjk�� U�kjk�� ��U����k�k� �Here� U�kjk� denotes the super�unitary group�
With this parametrization� the integration measure can be written as �

d��� � d�S��d��U� V �B��S�� � ������

where d��U� V � is the super�invariant Haar measure� d�S�� �
Q�
���

Qk
l�� d�s

�
l �
��

The Jacobian of the transformation is given by the square of the Berezinian
������ When the bosonic and fermionic blocks are of the same size �i�e� for
Nf � �� the Berezinian can be simpli�ed to ����

B�S�� � det

�
�

�s�p�
� � �is�m�

�

�
p�m�������k

� ����
�

In terms of integration variables de�ned by the polar decomposition �����
�with an in�nitesimal negative imaginary increment included in the eigenval�
ues�� the generating function ���
	� can be rewritten as

Zk�j� �
Z
d�S�� B��S�� sdet�N

����� S �T
�T S

�����
�

Z
d��U� V � exp

�
�N!�str �� � x� j�y�� � x� j�

�
� ������

where we have used the fact that

sdet

����� �
y �T

�T �

����� � sdet

����� S �T
�T S

����� � ������

The group integral in ������ has precisely the form of an Itzykson�Zuber
integral over complex super�unitary matrices� For arbitrary complex super�
matrices � � U��SV and � � U

���RV �� one �nds by an application of the

�Note that our normalization of d��� and d��U� V 	 in ��
��	 di�ers by a factor
��k

�
from ref
 �����


��



heat kernel method ��		� ��� ���� �	� that

Z
d��U� V �e�str ���	�

y���	�� �
�

�k���
det ��s�p� r

�
q� det ��s

�
m� r

�
n�

B�S��B�R��
� ������

where �s�p� is
�
p� and �r�p� ir

�
p� �with p � �� � � � � k� denote the eigenvalues of � and

�� respectively� The quantity ��s� r� is de�ned as

��s� r� � exp
h
�s� � r�

i
I��	sr� � ������

For a derivation of this integral we refer the reader to ������ In this reference
contributions from Efetov�Wegner terms ���	� are discussed as well�

In ������� the matrix � is diagonal with diagonal elements R given by

R � diag�x� � j�� � � � � xk � jk� x� � j�� � � � � xk � jk� � ������

and the matrix � is as given in ������ It is easy to verify that

�

B�R��
�

kY
p��

xpjp � �� �O�j�� � ����	�

which enables us to carry out the di�erentiations with respect to the source
terms� We observe that� as a result of ����
�� the integrand of the generating
function ������ factorizes into products and determinants of k � k matrices�
By renaming the integration variables s�p it can be shown that all k� terms in
the expansion of the determinants of ��s�p� r

�
q� and ��s�m� r

�
n� are equal� The

only remaining determinant is the Berezinian ����
�� The products can then
be absorbed into the determinant� which leads to the following determinantal
structure for the correlation functions

�Rk�x�� � � � � xk� � det
h
! �KN �xp!� xq!�

i
p�q�������k

� ������

where the dimensionless kernel �KN��� �� is given by

�KN��� �� � ��N�

�

q
��

Z �

�
dr
Z �

�
ds

rs

r� � s�

�
s� � t�

�r� � t�

�N

� e�N�r��s������������I� �	Nr�� I� �	Nis�� � �����

In this equation� we have introduced a dimensionless temperature

t � �T! � ������

��



We have shown that all correlation functions follow from a single two�point
kernel� This is the main virtue of the application of Guhr�s supersymmetric
method�

The spectral correlation functions �R�x�� � � � � xk� follow from the discon�
tinuities of xl across the real axis� The imaginary part in ����� arises as
a result of the �i� term in the s�p� One can easily convince oneself that the
spectral correlators preserve the determinantal structure ������� We thus �nd

Rk�x�� � � � � xk� � det �!KN �!xp�!xq��p�q�������k � ����
�

where

KN ��� �� � ��N�

�

q
��

Z �

�
dr
Z �

�
ds

rs

r� � s�

�
s� � t�

�N

� Im

�
�

��r � i��� � t�

�N

� e�N�r��s������������I� �	Nr�� I� �	Nis�� � ������

Both in ����� and ������ the �x� y��dependence has been chosen so that the
kernel is symmetric in x and y when t � ��

Both at t � � �section 
� and t �� � �section �� the two integrals can be
separated by the Feynman method�

�

r� � s�
� N

Z �

�
d�e�N��r��s�� � ������

Most of the results leading to ������ can be generalized immediately to
an arbitrary number of �avors� The main modi�cations are that the fermionic
blocks will be of size k � Nf rather than k� and that the supermatrices x
and j in ������ will have Nf additional zero blocks� However� to the best of
our knowledge� it is not possible to write the Berezinian as a determinant as
in ����
�� and therefore the determinantal structure of ������ is lost� This
means that it is no longer possible to express the correlation functions in terms
of a single kernel�

On the other hand� work on both Wigner�Dyson random matrix mod�
els �	��� and chiral random matrix models with arbitrary unitary invariant
potentials ����� �� using the orthogonal polynomial method shows that the
correlation functions still possess a determinantal form� This suggests that
the present approach might be modi�ed to arbitrary Nf as well�

�	



����� Exact evaluation of correlation functions for T � �

In this section� we will show that kernel ������ at T � � reduces to the
usual Laguerre kernel obtained by means of the orthogonal polynomial method
��
� ���� ��
��

After the introduction of new integration variables by u � r� and v � s��
the kernel can be written as

KN �x� y� � �	N�

�

p
xye�N�x��y����

Z �

�
d�Iu�x�Iv�y� �

Iu�x� �
Z �

�
du Im

�
�

�u� i�

�N
I�
�
	Nx

p
u
�
e�N�����u �

Iv�x� �
Z �

�
dvvNI�

�
i	Ny

p
v
�
e�N�����v � ������

In order to evaluate Iu� we use the identity

Im �u� i���N � �
����N��
�N � ���

�N��

�uN��
��u� ������

in ������ and apply partial integrations in order to eliminate the derivatives
of the delta function� As a result� we �nd

Iu�x� � �����N
�N � ���

�N��

�uN��

�����
u��

h
I�
�
	Nx

p
u
�
e�N�����u

i
� ������

which precisely describes the derivatives of the generating function for the
Laguerre polynomials� �See eq� ��	����� We thus obtain

Iu�x� � ���N�� � ���N��

�N � ���
LN��

�
Nx�

� � �

�
� ����	�

where LN are the Laguerre polynomials� The integral Iv is well�de�ned and
can be found in the literature� �See eq� ��	����� The result is

Iv�x� � N �
e�

Ny�

�����

�N�� � ���N��
LN

�
Ny�

� � �

�
� ������

After making a change of variables to z � �������� we �nd for the two�point
kernel that

KN�x� y� � 	N�pxye�N�x��y����
Z �

�
dze�Ny�zLN���Nx�z�LN �Ny�z� ������

��



To further simplify ������ we will need the identity �see eq� ��	�	��

e�z�Ln�z��Ln���z�� �
d

dz

e�z� �Ln���z��Ln�z��� Ln�z��Ln���z���

� � �
�������

The integrand is now a total derivative� and we reproduce the well�known
result ��
� ���� ��
�

KN�x� y� � 	N

p
xy

x� � y�
e�N�x��y����

�
h
LN���Nx��LN �Ny��� LN�Nx��LN���Ny��

i
� ����
�

This justi�es our claim that the spectral correlation functions can be obtained
by using a compact parametrization for the ��variables�

It can be shown from the asymptotic properties of the Laguerre polynomi�
als that spectral correlations in the bulk of the spectrum are given by the Gaus�
sian unitary ensemble� The result for the microscopic region� %x � Nx � O����
follows from the asymptotic form of the Laguerre polynomials�

lim
n��

Ln�
x

n
� � J��	

p
x� � ������

which can be used after rewriting ����
� with the aid of recursion relations
for the Laguerre polynomials� As a result� we �nd the microscopic kernel

KS�%x� %y� � lim
N��

�

	N
KN�

%x

N
�
%y

N
�

�

p
%x%y

%x� � %y�
�%xJ��	%y�J��	%x�� %yJ��	%x�J��	%y�� � ������

which agrees with results obtained previously ����� ���� ��� 	��� ����
Finally� the microscopic spectral density is given by

�S�%x� � lim
y�x

KS�%x� %y� ������

� %x�J�
� �	%x� � J�

� �	%x�� � ��	���

which is also in complete agreement with previous results�

����� Correlation functions at nonzero temperature

In this section we evaluate the microscopic limit of the imaginary part
of the two�point kernel at nonzero temperature and show that� up to a scale

�



factor� it is in agreement with the zero temperature result in the limitN ���
To this end� we perform the u and v integrals by a saddle point approximation�
However� the saddle�point approximation to ������ su�ers from the di�culty
that  u � �� � t� and  v � � � t�� As a result� the pre�exponential factor
diverges at the saddle�point� The aim of the transformations performed in the
�rst part of this section is to eliminate this factor�

We begin by separating the r and s integrals ����� according to the
Feynman method ������� The Feynman parameter� �� is replaced by the new

integration variable � � ��
q
�� � ��� After rescaling r � �r and s� �s� we

�nd

�KN�x� y� � ��
N�

�

q
%x%y
Z �

�
�d�

Z �

�
rdr

Z �

�
sds

�
s� � t����

��r � i��� � t����

�N

� e�N�r��s�����x���y����J� �	i�r%x�J� �	�s%y� �

��	���

where we have also written the modi�ed Bessel functions in terms of ordi�
nary Bessel functions� Next� we express the product of the Bessel functions
as a derivative of the microscopic kernel ������ according to the following
remarkable identity �see eq� ��	���

	�
p
xyJ��	�x�J��	�y� �

d

d�
�KS��x� �y� � ��	�	�

This identity can be derived from eq� ������ using the asymptotic limit ������
of the Laguerre polynomials� After insertion of this identity in ��	��� and
partial integration with respect to �� we �nd

�KN �x� y� � ��N�

�

Z �

�
dr
Z �

�
ds
p
rse�N�r��s�����x���y����

�
��
�
�

s� � t�

��r � i��� � t�

�N
KS�ir%x� s%y�

�
Z �

�
d�KS�i�r%x� �s%y�

d

d�

�
s� � t����

��r � i��� � t����

�N��
� �

��	���

The second term in this equation can be simpli�ed further� We di�erentiate
with respect to s and undo the change of integration variables at the beginning
of this section� i�e�� r � r��� s � s��� and � � �� � ������� Finally� we

��



perform the integration with respect to � and obtain cancellation of the factor
r� � s� which results from the di�erentiation� We �nd that the integrands of
the two terms in ��	��� di�er only by a factor �t���s� � t����r� � t��� Thus�
this equation can be rewritten as

�KN�x� y� � ��N�

�

Z �

�
dr
Z �

�
ds
p
rse�N�r��s�����x���y����

�
�

s� � t�

��r � i��� � t�

�N �
�� t�

�s� � t����r� � t��

�
KS�ir%x� s%y� �

��	��

The saddle point evaluation of �K should be performed separately in the
microscopic limit and in the bulk of the spectrum� In the latter case� the
asymptotic forms of Bessel functions enter in the saddle point equations� How�
ever� this is not the case in the microscopic limit with %x �xed in the thermo�
dynamic limit� The saddle�point approximation in the microscopic limit is
particularly simple� At the saddle point� we �nd

 r� � �� � t� �

 s� � �� t� � ��	���

and both the second derivatives with respect to r and s are equal to N���t���
Note that the  r� is outside the integration domain� As discussed in section
� the imaginary part of the integrand of KN�x� y� is an even function of r�
which allows us to extend the integration range from �� to � at the cost of
a factor of ��	� It is then clear that the integration path can be deformed to
reach the saddle point �ip�� t�� We cannot extend the integration path for
the evaluation of the real part of KN �x� y�� and it is not clear how the integrals
can be performed by a saddle�point method�

As a result� we �nd

lim
N��

�

	N
�KN �

%x

N
�
%y

N
� � i�KS��%x� �%y� � ��	�
�

For convenience� we have introduced the scaling factor � �
p
�� t�� which

gives the temperature dependence of the spectral density in the neighborhood
of 	 � �� We have shown that� up to this rescaling factor� the kernel KN

is independent of the temperature� This constitutes the central result of this
paper�

�




����	 Conclusions

In this paper� we have shown that all correlations of the eigenvalues near
zero� measured in units of the average spacing� are independent of temperature
deformations of the unitary chiral random matrix model� This result extends
previous work on the microscopic spectral density� Together with other recent
work on the universality of correlation functions with respect to deformations
that preserve unitary invariance� this �rmly establishes the universality of the
complete eigenvalue distribution in the neighborhood of 	 � ��

It is our conjecture that the correlations of lattice QCD Dirac eigenvalues
near zero virtuality are in the universality class of the chiral Gaussian Unitary
Ensemble �chGUE�� This conjecture has been supported by lattice simulations
of the average microscopic spectral density via the valence quark mass depen�
dence of the chiral condensate� In view of the present results� it would be
interesting to study the correlations of lattice QCD Dirac eigenvalues in the
neighborhood of 	 � �� Our prediction is that such correlations are given by
the chGUE�

The present results were obtained by a generalization to the chGUE of the
supersymmetric method developed by Guhr for the Gaussian Unitary Ensem�
ble� The strength of this method is that it preserves the determinantal struc�
ture of the correlation functions� As usual in the supersymmetric formulation
of random matrix theory� this method also requires a proper parametriza�
tion of the integration variables� Following work by Wegner and Efetov� it
was believed that hyperbolic symmetry was an essential ingredient for the
parametrization of the integration manifold� The surprising feature of the
present method is that all spectral correlation functions can be obtained from
a compact integration manifold� One reason might be that� because of UA���
symmetry� the resolvent satis�es the relation

G�x � i�� � �G�x� i��� ��	���

and that all spectral correlation functions can therefore be obtained from a
generating function that does not involve in�nitesimal increments of opposite
signs� However� this does not explain why Guhr�s method also allows for a
compact integration manifold in the case of the GUE� Clearly� more work is
needed to address this issue�

Our results are based on the choice of a compact integration manifold�
We have provided two important pieces of evidence supporting this choice�
First� a detailed analysis of the imaginary part of the generating function of
the one�point function shows that a non�compact integration domain can be
transformed into a compact one� Second� a compact parametrization of the
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integration manifold reproduces the exact correlation functions of the chGUE�
However� the ultimate justi�cation of this change of integration variables re�
mains an open problem�

Appendix A� Some useful identities

A generating function for the generalized Laguerre polynomials is given
by

�X
n��

zn

,�n� �� ��
L�
n�x� � ez

�

�xz����
J��	

p
xz� � ��	���

The Laguerre polynomials are de�ned by Ln�x� � L���
N �x�� A closely related

integral is given by

Z �

�
dxxn����e�axJ��	b

p
x� �

n�

an����
e�

b�

a L�
n

�
b�

a

�
� ��	���

The Laguerre polynomials satisfy the following remarkable identity

nLn���z��Ln�z�� � �n� ��Ln���z��Ln���z��

� ez�
d

dz

h
ze�z�Ln���z��Ln���z��

i
� ��	���

By a recursive application of this relation and the Christo�el�Darboux formula�

n��X
k��

Lk���Lk��� �
n

� � �
�Ln�����Ln���� Ln���Ln������ � ��	���

we �nd

e�z�Ln�z��Ln���z�� �
d

dz

e�z� �Ln���z��Ln�z��� Ln�z��Ln���z���

� � �
���	�	�

From the asymptotic from of the Laguerre polynomials�

lim
n��

n��L�
n�
x

n
� � x����J��	

p
x� � ��	���

we obtain the following relation for Bessel functions

	�
p
xyJ��	�x�J��	�y� �

d

d�
�KS��x� �y� � ��	��
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where the Bessel kernel KS is de�ned as

KS�x� y� �

p
xy

x� � y�
�xJ��	y�J��	x�� yJ��	x�J��	y�� � ��	���

This kernel can be obtained from the Laguerre kernel ����
� with the help of
the asymptotic result ��	�� after rewriting the Laguerre polynomials in the
same order by means of the recursion relation

�� � n�L�
n�� � xL���

n � �x� n�L�
n � ��	�
�

��
 Universality in invariant deformations of

general chiral ensembles

In the previous sections we have worked with non�invariant deformations
of the probability density in chiral unitary ensembles and showed the uni�
versality of local spectral properties in the hard edge of the spectrum� This
was done using the supersymmetry method where we have adopted a gaussian
probability density for convenience�

In this section we will outline a proof of the universality of local spectral
properties of chiral ensembles under non�gaussian but invariant deformations
of the probability density in ����� The original proof has been given by the
Copenhagen group ��� �
�� and it employs the orthogonal polynomial method
introduced in section 	�� and the appendix� This proof is also of importance to
the work outlined in the next section� where we relate universality statements
for unitary ensembles to corresponding orthogonal and symplectic ensembles�

In the framework of the orthogonal polynomial method� all spectral quan�
tities are expressed in terms of the orthogonal polynomials corresponding to
the probability density of the ensemble� The correlator kernel �	�	��� which
is fundamental to almost all local spectral expressions can be analytically
summed using the Christo�el�Darboux formula �A�
�� Later the large N limit
of local correlators �N being the size of the matrix� can be expressed using
the asymptotic forms of the relevant orthogonal polynomials�

The fundamental observation of the Copenhagen group ��� �
�� has been
to realize that all orthogonal polynomials arising in chiral unitary ensembles
with arbitrary invariant probability densities� have the same asymptotic form
given in terms Bessel functions� In other words� they have generalized the fol�
lowing relation for Laguerre polynomials corresponding to the potential xae�x

lim
k��

�
�

ka
La
k

�
x

k

��
� x�

�
�
aJa�	

q
�x��� ��	���
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to be valid �except some scaling factors� for polynomials orthogonal with re�
spect to any potential xae�V �x� for a polynomial V �x� over the interval ������
This then is used to prove the universality of the Bessel Kernel in invariant
chiral unitary ensembles�

Central to the work of Akemann et al� ��� �
�� is the following theorem�

Theorem Let fpan�x�g be a set of orthogonal polynomials with respect to
the measure

dxxae�V �x�� V �x� �
X
k��

gk
k
xk� a � �� 	� � � �

over the range ����� whose moments are all �nite� If the polynomials can be
normalized according to pak��� � �� then� for �xed � � N�x and t � k�N � the
following limiting relation holds�

lim
N��

pak�
�

N�
�

�����
k�Nt

� a�
Ja
�
u�t�

p
�
�

�
u�t�

p
��	

� �

where Ja�x� are the Bessel functions and u�t� depends on the particular form
of the weight function via the following relations

u�t� �
Z t

�

dt�q
r�t��

� t �
X
i

gi
	

�
	i
i

�
r�t�i�

Here r�t� is given by the asymptotic form of the coe�cients of the three
term recurrence relation �A���� The assumption for nonvanishing pak�x� corre�
sponds to a nonvanishing spectral density at the origin� As it is well known�
this condition is necessary for the presence of the �hard edge� of the spectrum�
The Bessel kernel is no longer present when the microscopic spectral density
vanishes� This point was also seen earlier in sections �� and �� where we
have shown that a phase transition occurs to the local spectral properties at
the point where the microscopic spectral density vanishes�

The proof of the theorem above for arbitrary a is given by induction on
a where the case for a � � proceeds by establishing relations between the
coe�cients of the three term recurrence relation �A��� by using the identities

� � �
Z �

�
dx

d

dx

h
e�V �x�pk�x�pk�x�

i

�
Z �

�
dxV ��x�e�V �x�pk�x�pk�x�� ��	���
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� � �
Z �

�
dx

d

dx

h
xe�V �x�pk�x�pk�x�

i

�
Z �

�
dxxV ��x�e�V �x�pk�x�pk�x�� hk � 	hk� ��	���

where hk are normalization constants de�ned in the appendix�
The relations between recursion relation coe�cients thus obtained are

then used in their asymptotic form to establish a di�erential equation for
p�k�x� for large k� where the unique solutions are the aforementioned Bessel
functions� The details are involved� for which refer the reader to the original
references given above�

��� Relations between orthogonal� symplectic

and unitary ensembles

The purpose of the work in this section is to relate the spectral information
about the chiral unitary ensembles to corresponding chiral orthogonal and
symplectic ensembles�

Orthogonal and symplectic ensembles are generally harder to study than
the unitary ones� For example in the case of invariant ensembles the standard
orthogonal polynomial method does not work for them� instead one has to
introduce skew�orthogonal polynomials �
�� ��� for the iterative reduction of
the eigenvalue partition functions� Additionally� the Itzykson�Zuber integrals
which proved so useful for unitary groups �and ensembles� are not known
for orthogonal and symplectic ensembles� This has to do with the fact that
the corresponding heat equations� as discussed in section � and ��� are not
separable�

Because of these di�culties� studies of orthogonal and symplectic ensem�
bles are not as abundant as the unitary ones� Speci�cally universality proofs
for th em are much rarer to �nd� In this paper we try to remedy that sit�
uation by establishing a relation between the kernels of the three ensembles�
The kernels carry all important technical information about the spectra� More
precisely� the �prekernels� of orthogonal and symplectic chiral ensembles are re�
lated to the kernel of the corresponding unitary ensemble by a di�erential and
an integral operator� respectively� The motivation of this work is to extend
the universality theorems known for unitary ensembles to similar orthogonal
and symplectic ensembles� This is not yet a closed chapter and more work will
be the subject of further studies�

This work was published in Phys� Rev� Lett� 
�� 	��	��� ������� which
we reproduce except for minor changes�
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The success of RMT is based on universality� and it is no surprise that it
has received a great deal of attention in recent literature ��	� ��� ��� 	�� �� ��
�
�	�� ���� �� 	� �	��� � 
� ��� �	�� �	
� ��� ���� ��
� ��� ��� �� �	
� ��� �� ��
� 
�� 		�� ���� What has been shown is that spectral correlators on the scale of
the average eigenvalue spacing are insensitive to the details of the probability
distribution of the matrix elements� Because of its mathematical simplicity
most studies were performed for complex �� � 	� Hermitean RMT�s� However�
in the case of the classical RMT�s it was shown that universality extends to
real �� � �� and quaternion real �� � � matrix ensembles �	�� ��
� �	���
This suggests that relations between correlation functions for di�erent values
of � which can be derived for a Gaussian probability distribution �	��� ��� 	��
might be valid for a wide class of probability distributions� The main goal of
this paper is to establish such general relations� As a consequence� universality
for the much simpler complex ensembles implies universality for the real and
quaternion real ensembles�

In this letter we address the question of microscopic universality for the
chiral ensembles� These ensembles are relevant for the description of spectral
correlations of the QCD Dirac operator� They also appear in theory of uni�
versal conductance �uctuations in mesoscopic systems ����� ��� In particular�
they can be applied to spectral correlations near 	 � �� According to the
Banks�Casher formula �		�� this part of the spectrum is directly related to the
order parameter ! of the chiral phase transition �! � lim������V � where V is
the volume of space time and ��	� �

P
k ��	� 	k��� It is therefore natural to

introduce the microscopic limit where the variable u � 	V ! is kept �xed for
V ��� For example� the microscopic spectral density is de�ned by ����� 	��

�S�u� � lim
V��

�

V !
h�� u

V !
�i� ��		��

where the average is over the distribution of the matrix elements of the Dirac
operator� Successful applications of the chiral ensembles to lattice QCD spec�
tra can be found in ���� 	�� �	� ��� �����

The chiral random matrix ensembles for Nf massless quarks in the sector
of topological charge � are de�ned by the partition function �����

Z�
Nf ��

�
Z
DWdetNf

�
� iW

iW y �

�
e�n�TrV �W

yW �� ��		��

whereW is a 	n��	n��� matrix� As is the case in QCD� we assume that � does
not exceed

p
	n� The parameter 	n is identi�ed as the dimensionless volume of

space time� The matrix elements ofW are either real �� � �� chiral Orthogonal

�	



Ensemble �chOE��� complex �� � 	� chiral Unitary Ensemble �chUE��� or
quaternion real �� � � chiral Symplectic Ensemble �chSE��� For technical
reasons we only consider �nite polynomials potentials V �x�� The simplest case
is the Gaussian case with V �x� � !�x �also known as the Laguerre ensemble��

It was shown by Akemann et al� ��� that� for � � 	� the microscopic
spectral density and the microscopic spectral correlators do not depend on
the potential V �x� and is given by the result �	��� for the Laguerre ensemble�
For � � 	 all spectral correlators can be obtained from an orthogonal polyno�
mial kernel corresponding to the probability distribution� In their proof the
Christo�el�Darboux formula is used to express this kernel in terms of large or�
der polynomials� Microscopic universality then follows from the asymptotics
of orthogonal polynomials� As a remarkable achievement� they were able to
generalize the relation for Laguerre polynomials

lim
n��

n�aLa
n�
x

n
� � x�a��Ja�	

p
x� ��			�

to orthogonal polynomials corresponding to an arbitrary polynomial poten�
tial� However� their work cannot easily be generalized to � � � and � � �
The main result of the present work is a relation between the kernels for the
correlation functions of the chOE and chSE and the kernel of the chUE� This
relation is exact for the Gaussian ensembles and is valid asymptotically for an
arbitrary polynomial potential� For � � � this relation shows universality of
the microscopic spectral density and correlators �for � � � only a partial proof
was obtained��

The partition function ��		�� is invariant under W � U yWV where the
matrices U and V with dimensions determined by W are orthogonal for � � ��
unitary for � � 	� and symplectic for � � � This invariance makes it possible
to express the partition function ��		�� in terms of the eigenvalues xk ofWW y

as

Z�
Nf ��

�
Z Y

k

dxkx
�a
k j��xi�j�e�n�

P
k
V �xk�� ��		��

where the Vandermonde determinant is de�ned by ��xi� �
Q
k�l�xk � xl� and

a � Nf � � � ���	 � ��	�

For � � 	� the spectral correlation functions can be evaluated ���� ���
�
� by expressing the Vandermonde determinant in terms of the orthogonal
polynomials de�ned by

Z �

�
dxe���a�x�q�ak �x�q�al �x� � �kl� ��		�
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where we have introduced the potential �a�x� � nV �x� � a logx� By using
orthogonality relations it can be shown that all spectral correlation functions
can be expressed in terms of the kernel

K�a
�n�x� y� �

�n��X
k��

q�ak �x�q�ak �y�� ��		��

The spectral density is given by K�a
�n�x� x� exp��	�a�x��� Microscopic univer�

sality then follows from the following generalization of ��			� ���

lim
n��

q
h�ak q

�a
k �

x�

n�
� n�

�����
k�tn

� ,�	a� ��
J�a�u�t�x�

�u�t�x�	��a
� ��		
�

in the normalization q�ak ���
q
h�ak � �� The function u�t� follows from the

asymptotic properties of the leading order coe�cients of the q�ak �x� and the
normalizations h�ak � Its value at t � � is given by u��� � 	������

In order to perform the integrations by means of orthogonality relations
for � � � and � � � one has to introduce the skew�orthogonal polynomials
�
�� ��� ��� �
�� Below� we �rst discuss the case � � � and then give general
outlines for the case � � �

For � � �� the skew orthogonal polynomials of the second kind are de�ned
by

� Ri� Rj �R� Jij� ��		��

with the skew orthogonal scalar product

� f� g �R�
Z �

�
dxe���a�x�f�x� �Zg�x�� ��		��

and nonzero matrix elements of Jij given by J�k��k�� � �J�k����k � ��� The

operator �Z is de�ned by

�Zg�x� �
Z �

�
dye�a�x���x� y�e��a�y�g�y�� ��		��

Here� ��x� � x�	jxj� It can be shown that all correlation functions can be
expressed in terms of the kernel �
�� ��� ��� �
�

K��x� y� �
Z x

�
dze��a�z�k��z� y�e

��a�y�� ��	���

where we have introduced the pre�kernel

k��y� z� �
�n��X
i�j��

Ri�y�JijRj�z�� ��	���
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In particular� the spectral density is given by

��x� � K��x� x�� �

	
K���� x�� ��	�	�

A general scheme for the construction of skew�orthogonal polynomials
was introduced by Br&ezin and Neuberger���� The idea is to express them in
terms of orthogonal polynomials de�ned by ��		�� For technical reasons we
expand in the polynomials q�a��k �with weight function x�a�� exp��	nV �x����
The skew�orthogonal polynomials of degree i can thus be expressed as

Ri�x� �
iX

j��

Tijq
�a��
j �x�� ��	���

where T is a lower triangular matrix with nonvanishing diagonal elements� An
essential role is played by the inverse� �L� of the operator �X�� �Z with �Z de�ned
in ��		�� and �Xg�x� � xg�x�� It can be easily veri�ed that

�L � �X��� � ��a� �X�� � ��� ��	��

The matrix representations of the operators �X� �X ��� �X�� �Z and �L in the basis
q�a��k will be denoted by Xkl� Dkl� Ykl and Lkl� respectively� In the remainder
of this derivation the index 	a� � will be suppressed�

In matrix notation ��		�� can be rewritten as

TY T T � �J� ��	���

By using that LY � �� this relation can be expressed as

L � T TJT� ��	�
�

It can be shown that the matrix Lkl is a band matrix with width determined
by the order of the polynomial potential V �x�� It then follows that T is a
band matrix as well ���� For example� for a Gaussian potential we have that
T�m�k � a���m�k and T�m���k � b���m���k � b���m�k � b���m���k with coe�cients
derived in ����� 	����

It turns out that we do not need explicit expressions for the Tij� The
pre�kernel ��	��� can be expressed as

k��x� y� �
�n��X
i�j��

X
k�i

X
l�j

qk�x�T
T
kiJijTjlql�y�� ��	���

In this relation the indices i and j run up to 	n � � in contradistinction to
the relations ��	�
� where they run up to �� However� it follows from the
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band structure of L that the number of terms outside the range in ��	���
is of the same order as the degree of the polynomial potential which is �nite�
These terms are negligible in the continuum limit of the type ��		
� where the
q�a��k �x� and Lkl depend smoothly on k and l �notice that Lkl is not smooth
in jk � lj�� However� for x around zero and y near the largest zero of ql�y� we
expect potentially non�negligible contributions� We thus have that

k��x� y� �
�n��X
k�l��

qk�x�Lklql�y�� ��	���

By means of a partial integration the matrix elements of ��� �X��a� �X� in L can
be expressed in terms of the matrix elements of �X ��� This results in

Lkl �
�

	

Z �

�
zdze���a�z��ql�z�z�qk�z�� qk�z�z�ql�z��

�
�

	
�Dkl �Dlk�� ��	���

The matrix elements of D can be re�expressed as x�x or y�y� We �nally arrive
at a remarkably simple expression for k��x� y��

k��x� y� � �

	
�y�y � x�x�K

�a��
�n �x� y�� ��	��

With the help the asymptotic properties of the q�ak �which are the same as for
the Laguerre polynomials� this relation can be further simpli�ed to �up to an
overall factor determined by the average spectral density�

k��x� y� 	 �

	
��y � �x�K

�a
�n�x� y�� ��	��

This is the central result of this paper� It is valid asymptotically both at
the hard and the soft edge of the spectrum where a continuum limit of the
orthogonal polynomials q�a��k exists� However� as will be argued below� the
result ��	�� is not valid for x near the hard edge and y at the soft edge of the
spectrum� This result relates the orthogonal pre�kernel to the unitary kernel
K�a

�n�x� y� which has been studied elaborately in the literature ��� �
� ��
��
The relation ��	�� is exact for a Gaussian potential in which case it coincides
with the result obtained in �	��� ��	� ���� ��� 	� ���

Universality of the unitary kernel K�a
�n�x� y� at the hard edge has been

well established ��� for the chiral ensembles� whereas universality at the soft
edge was shown in ���� ���� ��
�� We therefore expect universal behavior of
k��x� y� in these domains�

�




Let us �nally focus on the spectral density� Using ��	�	� and ��	��� for
a Gaussian potential it can be expressed as

��x� � e��a�x�
Z �

�
dye��a�y���x� y�

�

	
��y � �x�K

�a
�n�x� y��

��		�

In the microscopic limit where n�� at �xed z � xn� the factor exp��	nV �x��
� � and K�a

�n approaches its universal limit� However� in one of the terms con�
tributing to the integral the microscopic limit and the integration cannot be
interchanged� It can be shown that there is an additional contribution with x
near zero and y near the edge of the spectrum� Naively taking into account this
contribution for nongaussian potentials leads to a microscopic spectral density
that di�ers from the universal expression� Alternatively� we have established
universality of the microscopic spectral density by means of Monte�Carlo sim�
ulations� Apparently� the smoothness assumptions in the derivation of ��	��
are violated in this case� The edge contribution resides in the termK��x��� in
��	�	�� In the �rst term contributing to spectral density� K��x� x�� the micro�
scopic limit and the integral can be interchanged� This establishes universality
of K��x� x��

In the case of a Gaussian potential the edge contribution can be obtained
from the asymptotic expansion of the Laguerre polynomials in this region �an
expression in terms of Airy functions�� In a future publication� we hope to
establish a possible relation with universal behavior of the q�ak near the edge
of the spectrum ���� ���� ��
��

The above analysis carries through for the symplectic ensemble� In this
case there are no contributions from the soft edge and universality of the
microscopic spectral density can be shown rigorously� For � �  �with an
additional factor ��	 in the exponent of ��		���� the correlation functions can
be expressed in terms of the kernel

k��x� y� �
�n��X
i�j��

Qi�x�JijQj�y�� ��	��

where the Qi�x� are skew orthogonal polynomials of the �rst kind which are
de�ned by the skew�scalar product

� f� g �Q�
Z �

�

dx

x
e���a�x�f�x���L� ���g�x�� ��	�

with the operator �L de�ned in ��	��� In this case we express the Qi�x� in
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terms of the polynomials q�a��k �x��

Qk�x� �
kX
l��

Sklq
�a��
l �x�� ��	��

The matrix elements of the operators are also in this basis� From the orthog�
onality relation � Qk� Ql �Q� Jkl it can be shown that SLST � �J from
which we derive STJS � XYX��� Again� due to the band structure of Lkl�
the range of the summations in this relation and in ��	�� di�ers by a �nite
number of terms which can be neglected in the continuum limit� We thus �nd

k��x� y� �
�n��X
k�l��

q�a��k �x�
�
�Z �X��

�
kl
q�a��l �y�

� e�a�y�
Z �

�

dz

z
e��a�z���y � z�K�a��

�n �x� z�� ��	
�

Universality of k��x� y� thus follows from universality of K�a��
�n �x� z�� This

relation is exact for a Gaussian potential and reproduces the result found in
���� 	���

In conclusion� we have shown that relations between the kernels for the
chOE and chSE and the kernel for chUE are not accidental but follow from
an intriguing underlying mathematical structure� Under certain smoothness
assumptions these relations are valid asymptotically for an arbitrary polyno�
mial potential� Microscopic universality for � �  and in part for � � � thus
follows from universality at � � 	 at hard edge of the spectrum�
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Chapter �

Conclusions and outlook

In this thesis we have contributed to establishing and extending the uni�
versality of the local spectral characteristics of the Dirac operator in quantum
chromodynamics� We have also developed novel mathematical tools which can
be used in similar studies� A central theme to this study has been the view of
random matrix models as minimal information models� which can be utilized
to extract universal properties of a �complex� dynamical system�

It is the sincere hope of this author that this kind of an approach of
extracting universal properties by the use minimal information models will
become more widespread in the future� especially in cases where the dynamical
systems in question are of social or biological origin� In those cases there is
a much larger degree of complexity present� In the study of such �complex
systems� �as they are loosely called� one typically constructs very simplistic
models �if modeling is attempted at all� which might be viewed to be marginal
in some �elds�� However any such model involves ad hoc decisions in its
construction and it is necessary to distinguish between model speci�c artifacts
and universal features that even a simplistic model shares with the actual
problem� We hope that the perspective outlined above will eventually be of
some help in these types of problems as well� However this shall be the subject
of other studies�
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Appendix A

Orthogonal polynomials

Orthogonal polynomials occur frequently in various studies in theoretical
physics� The orthogonal polynomial method outlined in chapter 	 is one of
the strongest tools in the arsenal of random matrix theory � whenever it is
applicable which is not always the case�

Below we outline basic de�nitions and theorems about orthogonal poly�
nomials which are used throughout this study� More detailed accounts can be
found in many standard references including ����� 	�� ���

Let an interval �a� b� on the real line and a nonnegative real weight function
w�x� de�ned on �a� b� be given where

Z b

a
dx w�x�xk� k � �� �� 	� � � � �A���

exist� Then there exist a set of polynomials p��x�� p��x�� p��x�� � � �� such that
pk�x� is a kth order polynomial with a nonzero coe�cient� ak� for x

k and that
this set of polynomials are orthogonal with respect to the inner product given
by

Z b

a
dx w�x�pk�x�pl�x� � hk�kl� �A�	�

This set of polynomials� fpk�x�g� are called a system of orthogonal polynomials
on �a� b� with the weight function w�x��

Two of the most common normalization conventions are to either take the
fpk�x�g to be orthonormal �i�e� hk � � for all k� or to take them to be monic
�i�e� the coe�cient� ak� of x

k in pk�x� is taken to be unity��
It can be shown that among any set orthogonal polynomials there is a

three term recurrence relation�

pk�x� � �Akx�Bk�pk���x�� Ckpk���x�� k � 	� �A���

���



where we have assumed that hk � � and Ak� Bk and Ck are constants� Fur�
thermore� we have

Ak �
ak
ak��

� �A��

Ck �
akak��
a�k��

� �A���

The three term recurrence relation can be used recursively to prove an
identity which expresses sums of polynomials of all orders in terms of high
order polynomials� �we again assume hk � ���

kX
l��

pl�x�pl�y� �
ak
ak��

pk���x�pk�y�� pk�x�pk���y�

x� y
� �A�
�

This relation is known as the Christo�el�Darboux identity� It is extremely im�
portant in invariant random matrix models as the kernel of correlation func�
tions can be expressed in terms of the left hand side of this relation with cor�
responding orthogonal polynomials� Then using the right hand side of �A�
�
and the asymptotic forms of the orthogonal polynomials� closed analytic forms
for the correlation functions can be obtained�

Below we list the properties of two of the most utilized orthogonal poly�
nomials in random matrix theory�

The Hermite polynomials occur frequently in the study of the gaussian
unitary ensemble in random matrix theory� They correspond to the interval
������� and the weight function w�x� � e�x

�
� A generating function for

them can be written as

Hk�x� � ����kex� d
k

dxk
�e�x

�

�� �A���

The lowest order Hermite polynomials are

H��x� � �� �A���

H��x� � 	x� �A���

H��x� � x� � 	� �A����

H��x� � �x� � �	x� �A����

The study of the chiral gaussian unitary ensemble naturally results in the
appearance of Laguerre polynomials� They correspond to the interval ������
and the weight function w�x� � xae�x� This happens because the spectrum is

���



symmetric around zero with eigenvalues �	k and it becomes natural to work
with the squares of the eigenvalues xk � 	�k�

The generating function for the Laguerre polynomials is given by the
Rodrigues formula�

La
k�x� �

�

k�
exx�a

dk

dxk

�
e�xxk�a

�
� �A��	�

The lowest order Laguerre polynomials are given by

La
��x� � �� �A����

La
��x� � �x � a � �� �A���

La
��x� �

�

	
x� � �a� 	�x�

�

	
�a� ���a� 	�� �A����

La
��x� � ��



x� �

�

	
�a� ��x� � �

	
�a� 	��a� ��x

�
�



�a� ���a� 	��a� ��� �A��
�

A remarkable identity relates Laguerre polynomials to Bessel functions
which is used in the derivation of the Bessel kernel of the chiral gaussian
unitary ensemble �

lim
k��

�
�

ka
La
k

�
x

k

��
� x�

�
�
aJa�	

q
�x��� �A����
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Appendix B

Superanalysis

In this appendix we outline the basics of superanalysis and �x our notation
and conventions�

�Super��mathematics� which was pioneered by Berezin�s work ��	�� refers
to the usage of commuting and anti�commuting degrees of freedom on an equal
footing� Physically this became relevant with the invention of supersymmetric
�eld theories where there exist a symmetry operation which converts fermionic
�elds to bosonic �elds and vice versa ������ The corresponding mathematical
techniques have been successfully introduced into random matrix theory after
Efetov�s work ��
��

Below we will proceed with �super��generalizations of algebra� linear spaces
and operators� operations on linear operators such as transposition� de�nitions
for di�erentiation and integration etc� A more complete treatment can be
found in Berezin�s book ��	�� We mostly follow the conventions used in �	�
��

An anticommuting algebra� or a Grassmann algebra� with N generators�
k� is given by the following relations�

jk � �kj� �B���

from which follows that all generators are nilpotent� �
k � ��

Conventionally one usually works with �complex� Grassmann algebras
with generators� k and �k� where k and �k are viewed as independent gen�
erators� We will adopt the conjugation of the second kind where

�k�
� � �k� �B�	�

and

��k�
� � �k� �B���

���



Furthermore we have

�kl�
� � �k

�
l � �B��

A �p� q��supervector �or a graded vector as it is sometimes called� has p
commuting components� zk� and q anticommuting components� �l�

( �

�
z
�

�
� �B���

A �p� q��supermatrix �or a graded matrix� acts on the space of �p� q��
supervectors� Hence it has the form

F �

�
a �
� b

�
� �B�
�

where a and b are p� p and q � q commuting matrices and � and � are p� q
and q � p anticommuting matrices� respectively�

Transposition on supermatrices are de�ned in such a way that

�F(�T � (TF T � �B���

Thus we have

F T �

�
aT�T

��T bT
�
� �B���

Furthermore we de�ne hermitian conjugation in the usual way

F y �
�
F T

��
� �B���

so that �F(�
y

� (
y

F
y

�
For two Grassmann vectors � and � we have

�
��T

�T
� ���T �B����

and therefore for any supervector (�
((y

�
y � ((y �B����

and for any supermatrix F �
F yF

�
y � F yF �B��	�

��



as in the case of ordinary matrices�
Supertrace and superdeterminants �again sometimes called graded trace

and graded determinants� are introduced in such a way to satisfy the relation

sdetF � exp �str lnF � � �B����

Therefore we introduce

strF � tr a� tr b �B���

and

sdetF � det�a� �b�����detb���� �B����

These de�nitions satisfy all useful properties of ordinary traces and determi�
nants� Namely�

strF T � strF� �B��
�

str �FG� � str �GF �� �B����

str �(�(�
y� � ��

y � ��� �B����

sdetF T � sdetF� �B����

sdet�FG� � sdet�F �sdet�G�� �B�	��

where ��
y � �� denotes inner product of two supervectors generalized in the

natural way�
Most of the useful framework in linear algebra admits a straightforward

�super��generalization� For example if we introduce superunitary matrices as
in

U yU � UU y � � �B�	��

than it can be shown that any hermitian supermatrix� H� can be �superdiag�
onalized� in the usual way

H � U y)U� �B�		�

where

) �

�
	b�
�	f

�
� �B�	��

with 	b and 	f ordinary diagonal real matrices� The eigenvalues in 	b are
called bosonic whereas the ones in 	f are called fermionic�

���



Even some results in harmonic analysis over unitary groups generalize
rather naturally to superunitary groups as we discuss in chapter �

Di�erentiation of Grassmann numbers are introduced in the natural way

�

�k
l � �kl� �B�	�

This implies� together with the nilpotency of Grassmann generators� that the
Taylor expansion of any Grassmann valued function truncates after a �nite
number of terms� As it is seen in chapter  this provides a number of advan�
tages in computations when the problem can be mapped into a supersymmetric
formulation�

The integration of Grassmann numbers are introduced in such a way to
satisfy the following identity

	�
Z
d�d exp �i�� � �� �B�	��

where  and � are Grassmann numbers as before and the factor 	� is con�
ventional� It is chosen in such a way as to satisfy �by cancelling the �bosonic
prefactor�� Z

d��d�d�d exp �i���� i�� � �� �B�	
�

where � is an ordinary complex number�
We therefore introduce the following conventions for Grassmann integra�

tion Z
d � � �B�	��Z

d  �
�p
	�

�B�	��

As any Grassmann valued function can be expanded linearly in terms of Grass�
mann generators these two identities are su�cient for de�ning all integrations�

Another useful identity follows directly from these de�nitions� In the case
ordinary complex vectors and determinants we haveZ

d�s��d�s� exp
�
isyHs

�
�

�

det �H�	��
� �B�	��

where s is a complex vector and H is an ordinary hermitian matrix� Using a
Grassmann vector � we arrive at a similar identityZ

d����d��� exp
�
i�yH�

�
� det �H�	�� � �B����

��




Furthermore for a supervector� (� and a hermitian supermatrix� H� we have
the identity

Z
d�(��d�(� exp

�
i(yH(

�
�

�

sdet �H�
� �B����

This identity will play a central role in some of the computations throughout
this work�
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