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The relative reaction rate estimator (rrre) package provides several tools to estimate free energies,
committor functions, and relative reaction rates of different mechanisms/pathways associated with a
reaction, sampled by a nonequilibrium driven scheme such as steered MD. This tutorial provides all
the details needed to set up the program to perform the desired analysis. We also use three simple
examples to illustrate the workings of the code. These examples are based on examples generated
by a simple standalone code as well as well as NAMD and AMBER simulation packages.

I. INTRODUCTION

Many physical/chemical transitions/reactions occur on time scales beyond what is currently accessible computation-
ally using conventional sampling techniques such as room-temperature molecular dynamics (MD) simulations. This
problem is particularly acute for biomolecular systems, whose free energy surfaces are often quite rugged and complex,
with several different competing pathways and transition states. In order to enhance the sampling of rare events (i.e.,
crossing the large free energy barriers), one may use a biasing potential. Using a time-independent bias (e.g., umbrella
sampling technique [1]) has an advantage of keeping the system near equilibrium; however, reaching a reliable statisti-
cal convergence could be extremely expensive computationally particularly when the free energy landscape is rugged.
On the other hand, simulations generated by time-dependent biasing protocols require a nonequilibrium treatment. In
the context of MD simulations using an external (time-dependent) “driving” force is a well-known scheme to enhance
the sampling and estimate the free energies. Referred to as “nonequilibrium driven scheme” here, this scheme is used
most prominently in methods such as steered MD [2] (SMD) in which the biasing potential is a harmonic constraint
with a center in the collective variable space, moving by time linearly.

Using a time-independent bias (e.g., umbrella sampling technique [1]) has an advantage of keeping the system
near equilibrium; however, reaching a reliable statistical convergence could be extremely expensive computationally
particularly when the free energy landscape is rugged. On the other hand, trajectories generated by time-dependent
biasing protocols such as SMD require a nonequilibrium treatment. Nonequilibrium work relations such as Jarzynski’s
equality [3] (JE), Crooks equation [4] (CE), and Hummer-Szabo relation (HSR) provide a framework for analyzing such
trajectories. If a reaction is associated with competing mechanisms (i.e., distinct transition paths), the nonequilibrium
work relations can be used to estimate their relative reaction rates [5].

The relative reaction rate estimator (rrre) package provides several tools to estimate free energies, committor
functions, and relative reaction rates of different mechanisms/pathways associated with a reaction, sampled by a
nonequilibrium driven scheme such as SMD. Specificaly, the rrre package can be used for the following tasks:

• Reconstructing perturbed and unperturbed free energy profiles associated with a transition from uni- or bidi-
rectional SMD simulations using Hummor-Szabo approach [6] (Minh-Adib [7] variaton for the bidirectional
case).

• Reconstructing perturbed and unperturbed free energy profiles associated with any particular subclass of the
pathways generated by SMD simulations. The classification of the pathways must be done independently based
on certain mechanistically relevant criteria.

• Assuming each class of pathways is associated with a particular transition tube (in the language of transition
path theory [8]), rrre can measure the committor functions associated with each tube and estimate the relative
reaction rates of different tubes. The reaction rate associated with each tube will be given relative to the reaction
rate of the other tubes along with the overall probability of each tube.
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II. SYNTAX

The rrre programs takes only one argument that is the name of the parameter file in which specifies all the
parametres needed for the analysis. What is needed from the simulations is loaded via the standard input stream
that must include collective variable trajectories and work measurements. The standard output stream will include
all the results including free energies, committor functions, and transition path probabilities.

Typical Usage: ./rrre ParameterFile < InpuFile > OutputFile

A. Parameter File

All the parameter specifiers start with a “/” character (e.g., “/temperature”). Once a parameter specifier is used,
it must be followed by its specified value(s) as explained below (e.g., “/temperature 300.0”). The order of parameter
specifiers is not important unless specified otherwise below. Anything that is not a parameter specifier and comes
before, after, or in between parameter specifiers (combined with their values) is considered a comment and will not
be parsed.

/temperature [temperature]
[temperature]: a real number; unit: Kelvin; default: “300.0”.

/runs [runs]
[runs]: a positive integer; default: “10000”
[runs] specifies the number of trajectories to be loaded. If the actual number of trajectories in InputFile, PathFile
(see /paths), or ProtocolFile (see /protocol) is larger than [runs], the additional trajectories will not be loaded. If
the actual number of trajectories in InputFile, PathFile, or ProtocolFile is smaller than [runs], the [runs] parameter
will be automatically set to the smallest number; thus, only trajectories with known path and protocol will be used
in the analysis.

/protocol [protocol]
〈
[specifier] [ProtocolF ile] [ForwardRuns]

〉
[protocol]: “unidirectional” or “birirectional”; default: ”unidirectional”
“unidirectional”: all the trajectories are assumed to use the same protocol.
“bidirectional”: the trajectories are assumed to come from different (i.e., forward or reverse) protocols.
[specifier]” “file” or “sorted” or “alternate”; default: none; required only if [protocol]=“bidirectional”
“file”: the forward and reverse simulations will be loaded in an arbitrary order, specified in the file [ProtocolF ile]
([ProtocolF ile]is required only if [specifier]=“file”).
“sorted”: all the forward trajectories will be loaded prior to the reverse trajectories. [ForwardRuns] specifies the
number of forward protocols ([ForwardRuns] is required only if [specifier]=“sorted”).
“alternate”: the forward and reverse trajectories are loaded in an alternating manner.

/paths [paths]
〈
[specifier] [runs1] [runs2] . . .

〉
[paths]: positive integer; default: ”1”
[paths] specifies the number of classes of pathways identified. If [paths]=“1”, the relative reaction rate will not be
meaningful but the free energy profile and committor function will be calculated. [specifier]” “file” or “sorted” or
“alternate”; default: none; required only if [paths]¿1.
“file”: the trajectories will be loaded in an arbitrary order whose classes are specified in the file [PathFile] ([PathFile]
is required only if [specifier]=“file”).
“sorted”: if the trajectories are sorted based on their classes, only the number of trajectories that belong to each
class need to be specified (i.e., [runs1] [runs2] . . .). The number of trajectories of the last class will be determined
based on the number of remaining trajectories and not the number specified here so only [paths]-1 numbers need to
be specified.
“separate”: assumes the trajectories are sorted based on their classes (similar to “sorted” option) but treats forward
and reverse trajectories independently (if [protocol]=“bidirectional”). Two sets of numbers must be be specified:
[paths]-1 numbers for forward and [paths]-1 numbers for reverse trajectories (i.e., [ForwardRuns1] [ForwardRuns2]
. . . [ReverseRuns1] [ReverseRuns2] . . .). If [specifier]=“separate”, /paths must not come prior to /protocol.

/metric [metric 1] [metric 2] . . .
[metric i]: a real number; default: “1” (Eucledean metric).
[metric i] is an estimate |dφi/dλ|2 factor in which φ| is the centerline of the pathway i and λ is the collective variable.
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/initial [initial]
[initial]: a real number; default: “0”
[initial] specifies the initial value of the colvar.

/final [final]
[final]: a real number; default: “1”
[final] specifies the final/target value of the colvar.

/bin [bin]
[bin]: a real number; default: “0.1”
[bin] specifies the bin size, used to build the free energy and other functions in the colvar space.

/kernel [kernel]
[kernel]: a real number; default: “0”
[kernel] specifies the kenel width, used to reconstruct the unperturbed free energy in the colvar space. A Gaussian
Kernel will be used for any [kernel] > 0 while [kernel]=“0” will replace the kernel estimatation method by a simple
histogram based algorithm using [bin] for the histograms.

/snapshots [SnapShots]
[SnapShots]: a positive integer number; default: “10”
[SnapShots] specifies the number of snapshots from each run to be loaded. This number has to the same for all
trajectories and equal to [SnapShots], otherwise the results will be incorrect although you may not be notified of
any error.

/harmonic [harmonic]
[harmonic]: a real number; unit:(kcal/mol)/X2 (X: colvar unit); default: “1”
[harmonic] specifies the force constant, used in the simulations.

/convergence: [convergence]
[convergence]: a real number; unit: kcal/mol; default: “0.1”
[convergence] specifies the convergence precision used as a criterion for the self-consistent solution of free energies.

/iteration [iteration]
[iteration]: a positive integer number; default: “100”
[iteration] specifies the maximum number of iterations used as a secondary criterion for the self-consistent solution
of free energies.

/report [report]
[report]: “0” or a positive integer number; default: “0”
Results will be reported at the end of final iteration and every [report] iterations. If [report]=0, only the final results
will be reported.

/column x [column x]
[column x]: a positive integer number; default: “1”
[column x] specifies the column corresponding to the colvar value in the standard input stream.

/column w [column w]
[column w]: a positive integer number; default: “2”
[column w] specifies the column corresponding to the work value in the standard input stream.

/adjust [adjust]
[adjust]: “forward” or “reverse” or “average” or “optimized”; default: “forward”
[adjust] specifies the adjustment method from the options above. The “forward” option shifts the free energy
profiles of different classes to match their forward probabilities (i.e., Fi(x0) = −log(πF

i )/β in which x0=[initial])
while the “reverse” option does this for the reverse probabilities. The average option averages over the required
forward and reverse shifts (i.e., Fi(x0)+Fi(x1) = −(log(πF

i )+ log(piRi ))/β). The “optimized” option is not currently
implemented. The choice of the adjustment method is only relevent if [protocol]=“bidirectional”.
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B. Input File

rrre reads the standard input stream (a file or a pipeline) to import the trajectories. All the lines starting with
“#” character will be ignored. The [column x] and [column w] specify the columns corresponding to the colvar and
work values. The rest of the columns will be ignored. The columns can be separated by any number of space or tab
characters. The number of snapshots from each trajectory must be exactly [SnapShots], otherwise the results will be
incorrect although you may not be notified of any error. [runs] specifies the number of trajectories; however, If the
actual number of trajectories coming from the standard input stream is larger than [runs], the additional trajectories
will not be loaded. Also if the number of data coming from files [PathFile] or [ProtocolF ile] is smaller than the the
actual number of trajectories coming from the standard input stream, the additional trajectories will not be loaded.

C. Output File

rrre writes the results of the analyses to the standard output stream (a file or a pipeline). Lines starting with
“#” character include human readable information regarding the parameters used, the trajectories loaded (e.g., the
number of trajectories associated with each class or protocol), and final driven and equilibrium probabilities estimated.
The remaining lines start with the word “PFE” or “UFE” (perturbed or unperturbed free energy). These include free
energy estimates reported every [report] iteration while solving the equations self-consistently (if [report] 6= 0) as well
as the final free energies (shifted using the [adjust] method) and committor functions at the end of the self-consistent
algorithm. The results reported during the self-consistent solution start with “PFE ” or “UFE ” followed by the
current iteration number as the first column while the first field in the final results for perturbed and unperturbed
free energies only include “PFE” and “UFE” words. The second column is the path identification number: “0” (for
all paths combined) or a positive integer between 1 and [paths] for each particular path (or class of paths). One can
easily extract the perturbed or unperturbed free energies associated with each path (or all paths combined) from the
output using a simple script. For instance “grep ‘UFE 0’” extracts the unperturbed free energy profile of all paths
combined.

III. EXAMPLES

In order to illustrate the workings of the rrre package, here we provide several simple examples including (i) a
one-dimentional toy model, (ii) a proline dipeptide, and (iii) a dimeric proline peptide.

A. Toy Model

Here we consider a one-dimentional potential-free overdamped Langevin equation with a [0, 1) periodic boundary
conditions with a drag coefficient ζ, thermodynamic parameter β, and diffusion constant D = (βζ)−1/2:

ẋ =
√

2Dη,
〈
η(t)η(t′)

〉
= δ(t− t′). (3.1)

If the system starts at x0 = l, we define π1 (π0) to be the probability that the system reaches the boundary through
x = 1 (x = 0) rather than x = 0 (x = 1). The problem is finding π0 and pi1 or π0/π1 (note that π0 + π1 = 1). This
problem is reminiscent of a circular random walk with the following exact answers:

π1 = l, π0 = 1− l. (3.2)

The task here is to reproduce these (already known) answers from nonequilibrium simulations. Note that in the
driven trajectories πdr

i are not necessarily the same as pieq
i above and work measurements are needed to estimate the

correct equilibrium transition rates.
We define an order parameter:

α(x) =
{

1− x/l if x ≤ l
(x− l)/(1− l) if x > l.

(3.3)
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Clearly, α increases from 0 to 1 as the transition progresses from x0 to the boundary through either pathway. In
order to push the system along these pathways, we use a time-dependent external potential in the form of a moving
harmonic constraint:

V (α, t) =
1
2
k

(
α− t

T

)2

, (3.4)

in which 0 ≤ t ≤ T and k is a spring constant. The system starts from x = l, but we let the system equilibrate around
this point by applying V (α, 0) for a time Teq. At t = 0, we start pulling and let the transition take place through
one of the two possible mechanisms. We also need to use the right metric associated with the α space to measure
|dφi/dα|2. Note that φi(α) is equal to x here for both i = 0, 1. Therefore the |dφi/dα|2 would be the same as | dx

dα |
2

that is l2 and (1− l)2 for i = 0 and 1, respectively. These numbers can be easily passed to the rrre via the “/metric”
identifier in the parameter file. We also have a code in which generates sample trajectories based on the algorithm
described above.

B. Proline Dipeptide

In order to test the rrre package in a more realistic example (while keeping the system simple enough to allow
enough sampling with a very modest computational cost) we use a bidirectional SMD on a proline dipeptide whose
prolyl bond is pushed along cos ω (ω is the backbone dihedral angle) between cis (cos ω = 1) and trans (cos ω = −1)
isomers. There are two possible pathways since the intermediate cos ω = 0 is associate with two states: syn ω = 90◦
and anti ω = −90◦. We use NAMD 2.8 simulation package along with a short tcl script in which implements the SMD
algorithm and cos ω collective variables. The rrre package not only reconstructs the free energy profile along cos ω but
it also estimates the relative reaction rates between the two possible mechanisms (i.e., syn and anti intermediates).

C. Dimeric Proline Peptide

Here we show how rrre package can be used to analyze a typical set of SMD trajectories generated by AMBER
simulation package. The example chosen here is a dimeric proline peptide pushed along a collective variable Ω =
cos ωN +cos ωC (ωN and ωC are associated with the N- and C-terminal prolyl dihedral angles) between Cis-Cis (Ω = 2)
and Trans-Trans (Ω = −2) isomers. There are two possible pathways since the intermediate Ω = 0 is associate with two
states: Cis-Trans and Trans-Cis. We use AMBER 11 simulation package and its built-in SMD (“ncsu smd” module)
with the collective variable “COS OF DIHEDRAL”. After running several forward and backward simulations, the
rrre package will be able to reconstruct the free energy profile along Ω and estimates the relative reaction rates and
committor functions.

[1] Torrie and Valleau, Journal of Computational Physics 23, 187 (1977).
[2] S. Izrailev, S. Stepaniants, M. Balsera, Y. Oono, and K. Schulten, 72, 1568 (1997).
[3] C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997).
[4] G. E. Crooks, Phys. Rev. E 61, 2361 (2000).
[5] M. Moradi, C. Sagui, and C. Roland, Chem. Phys. Lett. 518, 109 (2011).
[6] G. Hummer and A. Szabo, Proc. Natl. Aca. Sci. USA 98, 3658 (2001).
[7] D. D. L. Minh and A. B. Adib, Phys. Rev. Lett. 100, 180602 (2008).
[8] W. E and E. Vanden-Eijnden, Annu. Rev. Phys. Chem. 61, 391 (2010).


