High Performance Molecular Visualization:
In-Situ and Parallel Rendering with EGL

John E. Stone*, Peter MessmerT, Robert Sisnerosi, and Klaus Schulten®
*Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL
TNVIDIA, Developer Technology Group, Zurich, Switzerland
*National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL
SDepartment of Physics, University of Illinois at Urbana-Champaign, Urbana, IL
Email: *johns@ks.uiuc.edu, Tpmessmer@nvidia.com, j5sisnelros@illinois..edu, Skschulte @ks.uiuc.edu

Abstract—Large scale molecular dynamics simulations pro-
duce terabytes of data that is impractical to transfer to remote
facilities. It is therefore necessary to perform visualization tasks
in-situ as the data are generated, or by running interactive
remote visualization sessions and batch analyses co-located with
direct access to high performance storage systems. A significant
challenge for deploying visualization software within clouds,
clusters, and supercomputers involves the operating system
software required to initialize and manage graphics acceleration
hardware. Recently, it has become possible for applications to
use the Embedded-system Graphics Library (EGL) to eliminate
the requirement for windowing system software on compute
nodes, thereby eliminating a significant obstacle to broader use
of high performance visualization applications. We outline the
potential benefits of this approach in the context of visualization
applications used in the cloud, on commodity clusters, and
supercomputers. We discuss the implementation of EGL support
in VMD, a widely used molecular visualization application, and
we outline benefits of the approach for molecular visualization
tasks on petascale computers, clouds, and remote visualization
servers. We then provide a brief evaluation of the use of
EGL in VMD, with tests using developmental graphics drivers
on conventional workstations and on Amazon EC2 G2 GPU-
accelerated cloud instance types. We expect that the techniques
described here will be of broad benefit to many other visualization
applications.
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I. INTRODUCTION

Continuing advances in experimental imaging, structure re-
finement, and simulation of large biomolecular complexes such
as viruses and photosynthetic organelles have created an in-
creasing demand for high performance visualization. State-of-
the-art molecular dynamics (MD) simulations of large viruses
such as HIV [1], [2] and photosynthetic membranes [3], [4]
contain tens to hundreds of millions of atoms, and produce ter-
abytes of trajectory output, as do small-size but long-timescale
(tens of microseconds) protein folding simulations [5], [6].
Routine visualization of the structure and dynamics of such
biomolecular systems poses a formidable challenge, requiring
parallel rendering with high performance graphics hardware
and software. Next-generation atomic-detail simulations of
cellular complexes are expected to encompass billions of
atoms, with attendant increases in visualization and analysis
requirements.

Fig. 1. Example VMD EGL-based off-screen rendering of poliovirus using
OpenGL programmable shaders for shading of the virus capsid’s molecular
surface with pixel-rate lighting, depth cueing, and multisample antialiasing.

VMD is a widely used application for preparation, analysis,
steering, and visualization of molecular dynamics simula-
tions [7]-[9]. In the context of visualization on data cen-
ter compute nodes, VMD supports in-situ visualization and
computational steering of running MD simulations using a
lightweight communication protocol originally developed for
interactive haptic steering [8], [9], which is now supported by
the popular NAMD, LAMMPS, GROMACS, and Terachem
MD and quantum chemistry simulation tools. This capability
allows VMD to render and analyze MD trajectory data on-the-
fly as it is produced. VMD can be run as a conventional single-
node interactive visualization application on remote visualiza-
tion servers and clouds, but it also supports large scale parallel
rendering on clusters and petascale supercomputers [2]-[4],
[10]-[12].

Until now it was not possible to develop vendor-neutral
visualization applications that could take advantage of high
performance OpenGL implementations except through win-
dowing system-based software interfaces. In 2004, Sun Mi-
crosystems proposed gIP, an OpenGL extension for hard-
ware accelerated rendering without the need for a window-
ing system [13]. Unfortunately, gIlP remained a proprietary
solution and it was orphaned when Sun exited the high



performance graphics market. VMD has previously relied on
the OpenGL Extension to the X-Window System (GLX) to
manage OpenGL rasterization on GPUs and with software-
based rasterizers such as Mesa and OpenSWR. Recently, it has
become possible to eliminate the need for a running window-
ing system for visualization applications, through the use of
the Embedded-system Graphics Library (EGL) in conjunction
with the Vendor Neutral GL Dispatch Library (GLVND) that
is part of current vendor-provided OpenGL drivers. We have
adapted VMD to support EGL, permitting its use for parallel
visualization without any dependency on windowing system
software. The VMD EGL renderer efficiently supports multi-
GPU compute node configurations without the need for any
additional software libraries other than MPI, making it easy
to deploy at end-user sites.

Cloud computing environments are rapidly becoming an
interesting target for deployment of advanced visualization
software due to the opportunity to provide a broader commu-
nity of molecular scientists with access to visualization and
analysis capabilities formerly available only at supercomputer
centers, and perhaps most importantly, eliminating the require-
ment for expertise in installation and maintenance of molecular
visualization and analysis tools on parallel computers. The new
VMD EGL implementation was tested using Amazon Elastic
Compute Cloud (Amazon EC2) “G2” GPU-accelerated com-
pute nodes with single-GPU and quad-GPU instance types,
with large host and GPU memory capacities required to load
test visualizations from petascale MD simulations. The use
of Amazon cloud instances permitted evaluation of develop-
mental, i.e. so-called “beta”, EGL implementations in a data
center environment. We report our early experiences testing the
EGL-based VMD renderer on Amazon EC2 and comment on
its potential suitability for large scale visualization workloads.

Prior to the availability of EGL, the only widely available
method for using OpenGL without a windowing system was
via the Mesa open source OpenGL implementation, using
software rasterization. One of the major potential advantages
of EGL as compared with the use of Mesa software raster-
ization is that EGL now provides direct access to the same
robust full-functionality OpenGL implementations widely used
by commercial software on conventional desktop computers.
For example, Mesa does not support the complete range of
OpenGL extensions available in commercial OpenGL imple-
mentations. Furthermore, to date, Mesa exhibits compatibility
problems with certain VMD OpenGL shaders that otherwise
function properly with the commercial OpenGL implementa-
tions provided by AMD, Intel, and NVIDIA (see Fig. 6).

In this paper we describe the benefits of EGL for parallel
rendering as well as remote and in-situ visualization. However,
EGL offers many other benefits including simplified system
configuration, management, and job scheduling for support of
visualization, and simplified application deployment. Below
we discuss technical and software engineering considerations
for the use of EGL-based parallel rendering and remote and in-
situ visualization through our early experience incorporating
EGL into VMD. We report, and evaluate when possible, other

potential benefits such as reduced node memory footprint,
reduced propensity for operating system (OS) jitter, improved
parallel job launch and cleanup performance, and reduced
filesystem I/O. Multiple vendors currently support EGL and
GLVND-based OpenGL libraries, and we feel that EGL is
poised to become the best route for portable and efficient
parallel OpenGL rendering on high performance computing
systems.

II. WINDOWING SYSTEM CONSIDERATIONS

Windowing systems are a necessary component for many in-
teractive visualization and analysis scenarios. They are needed
when a fully interactive remote desktop is required to allow
users to work with a large number of computing tools with
disparate graphical interfaces under a cohesive environment,
as they would on a conventional desktop workstation. Full
remote desktop type compute node usage is a valuable means
for presenting a user with a familiar and convenient interactive
computing environment, and it allows direct access to high
performance storage systems that contain simulation inputs
and both intermediate and final results. Remote desktop use
can also facilitate direct communication with other jobs,
including large scale parallel visualization back-ends, through
direct access to high performance message passing hardware
and job management systems.

At present, windowing systems are not well supported
by compute nodes found in data centers, clouds, and su-
percomputers. In most cases the work of configuring and
supporting windowing systems for these platforms falls onto
the shoulders of system administration staff at customer sites
rather than being provided by system vendors. The complexity
of this process can be daunting in the case of large scale
supercomputer systems due to the degree of specialization (and
often minimalism) of their compute node OS software [14].

The creation of graphics on supercomputers poses many
challenges. First, hardware configurations routinely partition
the resources that users have direct access to from those
that perform computations, and sometimes at multiple levels.
Moreover, any significant network latency for remote users
makes interacting with visualizations disagreeable, regardless
of back-end rendering performance. Early researchers, in their
designs of Vislt [15] and ParaView [16], [17], utilized compo-
nentized structures on top of VTK [18] consisting of at least
a front-end and back-end operating in client-server mode; this
model persists as state-of-the-art.

The client-server model does not resolve all issues however.
Graphics accelerators have only been recently incorporated
into supercomputers. Previously, visualizations performed on
supercomputer compute nodes were implemented entirely in
software, e.g. with Mesa. This ecosystem created a significant
challenge for visualization applications that sought to support
HPC clusters and supercomputers, while maintaining support
for conventional laptops and desktop workstations. While
supercomputers could compensate for a lack of software-
based graphics performance through the use of larger node
counts, support for visualization applications on laptops and



TABLE I
Summary of resources used by an X-Windows server on Cray XK7 nodes.
The X-Windows server process resident set size (RSS) includes the size of
code, data, and stack segments, but doesn’t count some kernel structures.

Resource X11 Server l No X11 Server ‘
Tesla K20X GPU mem use 46 MB 32MB

X11 process RSS 52MB -

X11 I/0, rchar 3.4MB -

X11 /O, wchar 1.6 MB -

kernel threads 171 170
user-mode procs 21 16

workstations was entirely dependent on graphics accelerator
hardware and associated vendor-provided OpenGL implemen-
tations. There was therefore a necessity for visualization
software components to handle rendering in multiple ways.
This was accomplished with a variety of unwieldy and un-
desirable workarounds, ranging from management of multi-
ple OpenGL-implementation-specific builds of visualization
software and component libraries, to “hot swapping” of the
required OpenGL libraries on-the-fly at runtime. Coupling
this with the inherent difficulties of building and deploying
software on supercomputers resulted in the requirement for
significant time and expertise. It is clear how valuable EGL
would have been for the development of visualization tools
in days past; we believe the timely incorporation of EGL
into ParaView version 5.0.0 (January, 2016) and VTK version
7.0.0 (February, 2016) are further evidence of its value moving
forward.

By eliminating the need for a running windowing system,
a significant application deployment obstacle is removed, but
there are further benefits. HPC centers invest great effort on
efficient execution of target applications. A high priority is
therefore placed on the elimination of non-essential server-
side daemons or processes. The minute possibility of such
a process affecting application jitter, run-time variation, or
power consumption leads to a general reluctance to add it
to the list of software essential to operations. The windowing
system process and associated OS services consume compute
node resources, occupying a small amount of system memory
and increasing the number of active kernel threads and user-
mode processes. Launch-time loading of windowing system-
associated shared libraries and configuration files creates ad-
ditional I/O activity during parallel job launch, slowing job
launch and potentially causing disruption to other running jobs.
Such considerations, in conjunction with specific hardware
configurations, further slowed windowing system adoption.
One such example is Blue Waters, where message passing and
I/0 share the same communication fabric [10] which could
intensify any performance degradation.

At the time when support for full graphics capabilities
was first implemented on Blue Waters, its system monitoring
capabilities were not as complete as they are now [14].
While decisions were supported through specialized testing, to
our knowledge nothing comprehensive and reproducible has
been reported to date. With the deployment of updated and
additional data collection methods on Blue Waters, particularly
the OVIS framework [19], we had the available resources

to evaluate system effects. We first measured the compute
node resource usage associated with running an (unused) X-
Windows server on the Blue Waters Cray XK7 compute nodes,
summarized in Table I. The resources used by the X-Windows
server represent an insignificant fraction of the total host and
GPU memory on the XK7 compute nodes. We also verified
the additional resources to have no effect on GPU power
consumption.

To evaluate the impact of a running X-Window server we
performed a battery of performance tests incorporating cross-
node synchronization via parallel reductions, i.e. having XK7
node CPUs coordinating the completion of simultaneous GPU
benchmarks. Each benchmark included bidirectional host-GPU
data transfers and several iterations of runs were completed
before synchronizing to highlight any run-time variation. The
tests were run on the Blue Waters system under a normal
production workload period using up to 100 XK7 nodes.
The tests showed no measurable loss in performance when
the X-Windows server was active. In fact, aside from an
approximately ten second initialization overhead to start the
XK7 nodes in the correct mode, we were only able to measure
an additional two seconds of overhead we may associate
with the different configurations. These two seconds were
across one session that launched twelve separate tests running
over 24.2 minutes, a run-time variation well within the range
attributable to typical system noise.

In principle, reducing the number of user-mode processes
and kernel threads reduces contributions to OS jitter, which can
be very harmful to the performance of large scale collective
operations such as synchronizations and reductions [20]-[23].
While the above tests also showed no measurable loss in
the performance of MPI collective operations which would
be associated with increases in OS jitter, our tests were
not optimal for detecting detrimental effects thereof. We
nonetheless believe that at least on Blue Waters, a running
X-Window server is unlikely to impact OS jitter. While there
are X-Windows configurations that exhibit low-rate ongoing
background activity such that an unused server could foresee-
ably add to OS jitter, we verified (using strace) that on
Blue Waters an unused server makes no further system calls
after initialization. This observation in concert with the fact
that the X-Windows server is only active when requested by
a job suggests that further large-scale jitter measurements are
unnecessary.

While there are many potential benefits from the elimination
of the windowing system when it is not needed, there can be
a few obstacles that an application may need to overcome to
remove accumulated dependencies on the windowing system.
Sophisticated visualization applications often rely on other
software libraries that may themselves include hard-coded
assumptions of a running windowing system, availability of
windowing system-provided fonts or color definitions, or they
may require linkage with windowing system libraries even if
they are not used at runtime. Early versions of the OptiX [24]
GPU-accelerated ray tracing framework required linkage with
the X-Windows client libraries. To overcome this issue, VMD
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Fig. 2. Comparison of the software stack without EGL (left) and with EGL
(right). Prior to EGL, an application obtained an OpenGL context by calling
the X server via the GLX library. Depending on the version of X server, X
had to be run as a privileged process. EGL simplifies this architecture, by
allowing applications to obtain an OpenGL context without an X server.

previously incorporated stub functions that allowed compila-
tion and linkage with OptiX [11]. While recent versions of
OptiX no longer contain the windowing system dependency,
this issue is somewhat pervasive in other graphics related
software libraries such as OpenGL extension loaders, font
rendering libraries, and others, and is therefore an important
consideration in the process of implementing EGL off-screen
rendering support for an application.

IIT. OPENGL CONTEXT MANAGEMENT WITH EGL

For the past two decades, OpenGL has been the standard in-
terface to access graphics acceleration hardware. Being a state
based API, OpenGL requires a memory object, the OpenGL
context, to maintain the state between multiple API calls.
The details of the OpenGL context creation are deliberately
not part of the OpenGL standard. This is motivated by the
need for context creation routines to interface with system
specific resources like windowing systems and OS drivers.
While this leads to a graphics API standard largely free of
OS dependencies, it has led to a plethora of different methods
for creating this context object, including the GLX library on
Unix-like OSes, or WGL on Microsoft Windows.

In the case of GLX, the API is not directly responsible
for managing the OpenGL hardware, but it rather acts as an
interface to an X-Windows server running on the system and
managing the graphics acceleration hardware. As a result,
the use of OpenGL on Unix-like systems has required a
running X-Windows server. For workstation settings, this has
not been a significant hurdle, but in the embedded space, this
extra process requires resources that could be better used by
applications. Likewise in the HPC space, where the extra X-
Windows server software introduces additional complexities
for queuing systems’ prologs and epilogs, and may introduce

OS jitter or other system effects at a level unacceptable to the
system operators.

Despite these shortcomings, HPC centers such as NCSA,
CSCS, and ORNL have enabled X-Windows servers for their
users [14]. While this approach enables the use of the graphics
hardware in these GPU-accelerated supercomputers for graph-
ics purposes, the launch of an X-Windows sever on each com-
pute node is far from elegant. Over the years, the requirements
of the embedded space have led to the development of an
alternative context management mechanism, EGL. EGL is a
software interface that provides application access to platform-
native OpenGL rasterization hardware and software. Unlike
GLX or WGL, EGL was specifically designed to support em-
bedded systems platforms that use custom windowing systems
or no windowing system at all.

EGL provides application programming interfaces for man-
aging graphics contexts and resources such as memory buffers
and output surfaces, and for synchronizing rendering oper-
ations. In conventional use, applications typically call EGL
APIs to obtain contexts for OpenGL ES, a specialized vari-
ant of OpenGL for embedded systems. Since high per-
formance visualization applications typically use the full,
performance-oriented OpenGL rather than the more limited
subset OpenGL ES, conventional usage of EGL is inadequate.
In addition, many scientific visualization systems depend on
OpenGL standards predating OpenGL ES, making it a labor
intensive effort to switch to configurations without an X-
Windows server. EGL has therefore been extended to enable
the use of the full OpenGL standard in conjunction with
contexts managed by EGL. This means that the rendering code
in legacy applications can be migrated to EGL with changes
to the context management code only, rather than requiring
modifications to the core OpenGL rendering code. Figure 2
shows a comparison of a visualization application and the
graphics software stacks associated with conventional GLX-
and X-Windows-based OpenGL contexts and with the use of
EGL-based OpenGL contexts.

Management of resources like the OpenGL context is ac-
complished by a so-called EGL platform. In the case of a
workstation, this platform could be a windowing system, e.g.
X-Windows or Wayland. In the case of a headless system
in data center, a platform could be a generic buffer manager
independent of a windowing system. In particular, each EGL
client can determine which platforms are available on a
specific system and select one that is most appropriate for
a particular task. While this offers a great level of flexibility,
an application is not privy to which OpenGL library nor which
platform to link against until it inspects the available options
at runtime. Relying on finding the appropriate OpenGL library
first in the system library search path therefore is no longer
a suitable approach. Instead, applications should now link
against a vendor-neutral dispatch library, 1ibOpenGL. so,
that redirects the OpenGL API calls made through a given
EGL context to the correct vendor-specific OpenGL imple-
mentation that is associated with the EGL platform managing
the context.



IV. NUMA AND MULTI-GPU COMPUTE NODES

Over the past twenty years, HPC compute nodes have
evolved toward shared memory multiprocessors based on
non-uniform memory access (NUMA) architecture. NUMA
compute nodes present challenges for application software,
due to the need for HPC system software and applications
to carefully manage placement and migration of memory
allocations and application CPU threads to maintain high
performance. The incorporation of GPUs into NUMA compute
nodes adds further complexity. As observed by Li et al. [25],
the term NUMA has become slightly misleading in com-
mon usage, since the performance asymmetries arising from
modern NUMA architectures affect not only CPU memory
accesses, but also data transfers to and among devices for
disk and network I/O, and accelerators such as GPUs and
FPGAs. To maximize performance, applications must ensure
that threads managing GPU computation and rendering are
bound to CPU sockets with the most direct connectivity to
their associated GPUs. One of the exciting benefits of EGL
in the context of multi-GPU compute nodes is that it provides
APIs that enable applications to take simple and direct control
over the association of a host CPU thread with a particular
physical GPU, thereby ensuring optimal use of the compute
node NUMA topology.

The compute node block diagrams shown in Figs. 3 and 4
exemplify common commodity-based multi-GPU compute
nodes, with CPU and PClIe bus topologies that a visualization
application would need to contend with in the field. In ideal
scenarios where CPU threads are bound to the CPU (socket)
that drives the PCle I/O hub (IOH) for their corresponding
GPU and host-side memory buffers are “pinned” in advance,
host-GPU transfers would traverse only a single QuickPath
(QPID) or HyperTransport (HT) CPU link, and all GPUs and
network interfaces could communicate at maximum bandwidth
to their host CPU threads. Conversely, if CPU threads and
GPUs are mismatched, or host-side memory buffers are not
pinned, a worst case scenario could result in each host-GPU
transfer traversing two or more QPI/HT links, and the CPU
bus linking the two CPU sockets could become a bottleneck
limiting communication performance to roughly half (or less)
of what would be achieved in the best case. The degree of
application performance variation associated with optimal vs.
worst-case NUMA mapping can vary significantly depend-
ing on many application-specific factors in combination with
NUMA topology of the target hardware [25]-[28].

We have previously demonstrated the importance of correct
use of NUMA topology when mapping host CPU threads
to CPU sockets and GPUs for several molecular and cellu-
lar simulation applications [26], [28], [29]. Spafford et al.
and Meredith et al. report findings for several other HPC
applications [27], [30]. Li et al. report similar findings for
data-intensive applications that access other classes of PCle-
attached hardware such as SSDs and NIC interfaces [25]. Eile-
man et al. reported worthwhile parallel rendering performance
increases achieved by extending the Equalizer framework
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Fig. 3. Compute node block diagram for cloud-oriented hardware configu-
rations with commodity 10 Gbit/s ethernet networking, such as Amazon EC2
CG or G2 instance types. The diagram shows NUMA CPU and PCle bus
topology and bandwidths for each point-to-point link interconnect the CPUs,
PCle I/0 hubs (IOH), GPUs, and networking hardware.
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Fig. 4. Compute node block diagram representing hardware configurations
found in clusters and supercomputers, where NICs and GPUs are grouped
together to permit high performance RDMA transfers directly between the
on-board memory of GPUs on different compute nodes. The diagram shows
NUMA CPU and PCle bus topology and bandwidths for each point-to-
point link interconnecting the CPUs, PCle I/O hubs (IOH), GPUs, and high-
bandwidth low-latency interconnect adapters (NIC).

for NUMA-aware thread affinity [31]. Recently, Wang et al.
reported on the impact of NUMA link contention for multi-
GPU sort-last parallel image compositing [32], which is of
particular interest for HPC visualization applications [33]. At
present, most applications make only limited use of NUMA
topology information due the complexity of doing so correctly.
Our early experience with NUMA performance issues and lack
of NUMA-aware applications on the “QP” and “AC” GPU
clusters at NCSA led to the development of a NUMA-aware
CUDA interposer library that ensures the best mapping of
host threads to GPUs by intercepting CUDA context creation
calls and assigning them to the optimal GPU [26]. A similar
approach could conceivably be implemented for EGL by
intercepting EGL calls for enumerating and binding to specific
GPU devices.

The examples shown in Figs. 3 and 4 highlight different



NUMA topologies that must be used effectively for best
performance. The diagram shown in Fig. 3 is closely modeled
after the Amazon EC2 G2 (g2.2xlarge and g2.8xlarge) cloud
instance types used for development and testing of the EGL
features of VMD described further below. In Amazon EC2 G2
cloud compute nodes the application is bound to one or more
virtualized GPUs which are distributed among add-in GPU
boards that each contain two complete GPUs linked via an
on-board PCle switch. The cloud compute node configuration
allows full-bandwidth peer-to-peer transfers between the pairs
of GPUs on the same add-in-board, bypassing host CPUs
entirely, e.g. for parallel image compositing [32], [33], or
exchange of ghost cells or boundary elements [28].

An unusual challenge associated with cloud virtualization of
CPUs and GPUs is that the virtualization layer often obscures
hardware occupancy details required for an application to
determine correct mapping of threads to GPUs. We note that
Amazon only allows allocation of G2 instance types in one
of two configurations, g2.2xlarge (one GPU), and g2.8xlarge
(four GPUs). By eliminating the possibility of a two-GPU
configuration, Amazon has effectively eliminated the most
problematic scenario since hardware resources not used by one
instance are provided to other instances running on the same
compute node. Limiting instance allocations to only units of
one or four GPUs eliminates the need for the virtualization
system to provide a transparent view of the physical CPU and
GPU allocations to applications.

The compute node shown in Fig. 4 is representative of
existing and future multi-GPU cluster nodes that closely
couple high performance low-latency interconnect adapters
(NIC) with one or more GPUs. Although the configuration is
shown based on commodity x86 hardware, it is similar in some
respects to the proposed node architecture of the upcoming
DOE Summit and Sierra machines, albeit with only one GPU
per-socket, and a PCle-based host-GPU interconnect rather
than NVLINK. The key issue for compute node designs such
as the one shown in Fig. 4 involves use of so-called zero-copy
message passing approaches that allow inter-node messages to
be passed directly from the memory of a GPU on one node to
the memory of GPU on another, e.g. using InfiniBand RDMA
operations between GPUs, bypassing the host CPUs [34].

Applications can determine NUMA topology with hardware
introspection, using APIs for enumerating CPUs, PCle buses,
and PCle devices. Ensuring that GPU mappings are consistent
across multiple libraries can sometimes be a minor challenge.
As an example, GPUs are often indexed differently by CUDA,
OptiX, and EGL for reasons that are unique to each library.
To ensure that efficient zero-copy exchange of GPU-resident
data structures can be performed among several libraries, an
application must ensure that GPU device indexing is done
properly observing both hardware topology and the indexing
scheme used by a particular library.

One way to ensure consistent device enumeration across
multiple libraries is to use hardware-based enumeration. This
is the default enumeration scheme used by EGL to report
devices when queried via eglQueryDevicesEXT (). How-

[ Molecular Structure Data and Global VMD State ]

Scene Graph Graphical User Interface
Py Representations Subsystem
DI Tcl/Python Scripting
Non-Molecular Mouse + Windows
Geometry

6DoF Input “Tools”
N——o

Display

( GLX+X11+Drv A\

Subsystem

_ EGL+Drv
Opendl Renderer OpenGL Pbuffer/FBO /

Fig. 5. Block diagram of VMD display subsystem class hiearchy with EGL.
VMD can be compiled to support either a windowing system based OpenGL
implementation, e.g. by linking against GLX and X-Windows libraries, or it
can be compiled for EGL with no dependency on a windowing system or its
associated shared libraries.

ever, CUDA’s default performance-based enumeration order-
ing assigns GPUs with higher performance to lower indices.
This default behavior can be overridden by setting the envi-
ronment variable CUDA_DEVICE_ODER=PCI_BUS_ID, re-
sulting in an enumeration scheme identical to EGL. Al-
ternatively, an application can query EGL to provide the
CUDA device index for a given EGL device by querying the
EGL_CUDA_DEVICE_NYV attribute for a given device. Other
libraries such as OptiX provide APIs for correlating CUDA
device indices with their own device index.

V. ADAPTATION OF VMD 1O EGL

We have adapted VMD to support EGL-based OpenGL
contexts as an alternative to its existing GLX and WGL
renderer interfaces. The VMD display subsystem is designed
as a set of C++ classes and subclasses that collectively
implement all of the functionality required to render molecular
scenes for diverse display hardware ranging from conventional
planar displays to immersive displays including the CAVE
and tiled display walls [35], [36], and more recently for
VR headsets [37]. The same display class hierarchy is also
used for large scale parallel OpenGL rendering [10]. Figure 5
shows a block diagram of the major VMD display subsystem
components related to OpenGL rendering.

In the simplest case, the only application code that needs
modification is associated with OpenGL context creation and
management, thereby using EGL in much the same way that
GLX or WGL would normally be used. In practice, complex
software may need further modification, in particular if li-
braries used by the application have their own dependencies
on the windowing system, GLX, or WGL APIs. Previous
VMD versions used bitmap fonts provided by windowing
system APIs for the display of text labels and numerical
data in molecular scenes. We have redesigned VMD to use
a compiled-in Hershey font library, which is OS-independent
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Fig. 6. Swine Flu A/HINI neuraminidase bound to Tamiflu, with molecular
surfaces colored by electrostatic potential [38]-[40]. This EGL rendering
demonstrates the full function of the most complex VMD OpenGL shaders
for ray-cast spheres and 3-D volumetric texturing of potential maps, with
pixel-rate lighting, depth cueing, transparency, and multisample antialiasing
(8 samples per-pixel). VMD text labels, e.g. use for the electrostatic potential
color scale bar at top left, use built-in Hershey fonts, so that VMD does not
require windowing system-provided fonts.

and has no windowing system dependency. Some versions of
the OptiX ray tracing framework contain a dependency on
Xlib, which has required VMD to provide stub functions when
it is linked without X11. We eliminated the last dependencies
on the OpenGL utility library 11bGLU which VMD previously
used as a fall-back for rendering of quadric primitives when
OpenGL programmable shading was not available. Finally,
VMD uses its own internal mechanisms for managing OpenGL
extensions, compiling OpenGL shaders, and other functional-
ity that in many other applications tends to be provided by
external libraries, that may not be compatible with EGL yet.

As highlighted in the previous section, EGL allows multiple
general windowing systems, so-called platforms, to coexist at
the same time. In order for EGL to obtain the appropriate
context, it is therefore necessary to select the correct platform.
Given that a system could contain different graphics devices
with each of the devices supporting different platforms, an
application must therefore first obtain the list of available
graphics devices in a given system, followed by the selection
of an appropriate platform on the system. Once the platform
has been initialized, one can then initialize EGL and select
the desired graphics API, and then the OpenGL context can
be created.

Before the OpenGL context can be used for rendering op-
erations, rendering resources must be created. In the simplest
form, this requires a so-called EGL surface. A surface can
either be a (visible) window resource managed by the selected
platform, or it can be an off-screen pixel buffer. This off-
screen pixel buffer is particularly useful in the case of headless
compute nodes typical in HPC environments. Once the surface
is created, the newly created OpenGL context can be made

current and the actual rendering activities can proceed.

While this approach is straightforward to follow, a draw-
back is that all of the rendering objects are transparently
managed by EGL. If an application needs to access one of
the buffer objects, e.g. for interoperability with CUDA, an
additional copy is required from the EGL-managed surface
to the buffer resource. Performance critical applications can
therefore choose to bypass the EGL surfaces and create an
OpenGL context without any EGL-managed buffers associated
with them. It is then the application’s responsibility to create
the appropriate framebuffer, textures, and renderbuffer objects
to enable correct rendering activities. On the other hand,
this enables the most efficient path to sharing data between
OpenGL and CUDA.

VMD currently allows the use of POSIX CPU thread
affinity APIs to bind threads to the CPU sockets most closely
connected to their associated GPUs, as a means of ensuring
good performance on contemporary NUMA compute node
architectures [10]. Some batch queuing systems and MPI im-
plementations also enforce their own CPU affinities. At present
VMD assigns EGL devices to MPI ranks in a round-robin
fashion consistent with its assignment of CUDA and OptiX
devices, but this scheme is not yet flexible enough to handle
scenarios where CPU affinities are externally assigned and
enforced by job schedulers, runtime software, cloud hardware
virtualization software, or the like.

VI. EVALUATION OF VMD EGL RENDERER

At the time of writing, support for EGL in combination
with full-capability-OpenGL (as opposed to OpenGL ES) is
available only in the most recent development-oriented “beta”
NVIDIA driver releases. As such, it is not yet possible to
run large-scale tests on production GPU-accelerated supercom-
puters such as the Blue Waters or Titan Cray XK7 systems.
Accordingly, we have developed and tested the EGL-based
OpenGL rendering path in VMD using conventional desktop
workstations and with GPU-accelerated Amazon EC2 G2
cloud instances.

Using a workstation, we verified that the VMD EGL
renderer produces an output that is pixel-for-pixel identical
to that produced by the conventional GLX-based renderer
in VMD. We verified that EGL-based rendering produced
correct images, including scenes that made extensive use of
OpenGL extensions and VMD-specific OpenGL shaders for
pixel-rate lighting, transparent materials, and efficient sphere
rendering [36], as shown in Figs. 1 and 6.

VMD EGL parallel rendering tests were performed on
Amazon EC2 cloud virtual machines running on g2.8xlarge in-
stance types containing two Intel Xeon E5-2670 CPUs with 8-
cores @ 2.6 GHz, 60 GB RAM, and two NVIDIA GRID K520
GPUs, each containing two on-board virtualizable GPUs with
8 GB RAM in each on-board GPU (4 GPUs in total). Amazon-
provided AMIs are very similar to the environment found on
supercomputer compute nodes — they are extremely minimal-
istic. We prepared a GPU-capable Amazon Machine Image
(AMI), replacing the Amazon-provided NVIDIA GPU drivers



Fig. 7. VMD EGL-based off-screen OpenGL renderings of a 64 M-atom
HIV-1 capsid simulation [1] selected from a 1,079 frame movie rendered on
an Amazon EC2 g2.8xlarge GPU-accelerated instance. The top image shows
the spatial distribution of hexameric (tan) and pentameric (green) subunits
responsible for capsid morphology. The bottom image shows an atomic-detail
close-up rendering of one of the capsid’s hexameric subunits. The VMD HIV-1
EGL renderings used OpenGL shaders for ray-cast spheres, transparent surface
materials, pixel-rate lighting, and multisample antialiasing.

with the developmental NVIDIA 358.16 beta driver required
for EGL. The minimal software environment provided by
Amazon’s AMIs served as an excellent stand-in for a typical
HPC compute node, and it allowed us to ensure that no X-
Windows libraries or header files were on the system. In
order to test the VMD EGL renderer for a simple parallel
rendering workload, the Amazon-provided mpich-devel
package for MPI was installed, which was the only noteworthy
extra package needed beyond the standard Amazon-provided
GPU AML

To gauge the correct parallel operation of the VMD EGL
renderer we created an HIV-1 capsid visualization [11] using
the new EGL renderer in an MPI-enabled build of VMD (see
Fig. 7). Table II summarizes the movie rendering runtime with
up to 32 MPI ranks, with one virtual GPU and eight CPU cores
assigned to each MPI rank, and with each MPI rank assigned
to its own separate EGL GPU device. The overall movie
rendering runtimes shown in Table II include between 63 s
and 68 s of non-parallelizable I/O that is associated with initial
molecular structure loading and analysis that must be per-
formed by all MPI ranks, representing an increasing fraction
of overall runtime with larger numbers of MPI ranks. Through
repeated test runs on one and two MPI ranks with all file /O
directed to Amazon Elastic Block Storage (EBS), we observed

TABLE II
VMD EGL HIV-1 movie rendering performance on Amazon EC2
g2.8xlarge cloud instances. ‘

MPI Ranks g2.8xlarge Render Time (sec), (I/0%)
and vGPUs instances 1920 x 1080 | 3840x2160
1 1 619s (10%) | 6265 (10%)
2 1 331s (19%) | 347s (19%)
4 1 209s (32%) | 221s (31%)
8 2 140s (47%) | 141s (46%)
16 4 107 s (64%) | 107 s (64%)
32 8 90 (75%) 90s (76%)

significant run-to-run performance variations averaging 10%,
which is attributable to significant variation in I/O performance
when molecular data is first loaded and during rendering. In
the worst cases recorded, we observed the fastest and slowest
single-rank runtimes differ by 40%. To minimize the impact of
the observed EBS I/O rate variation on parallel performance
tests, we directed all disk I/O to instance-local (node-internal)
SSDs, thereby eliminating the most significant external system
noise from our test results, implementing a common sense
performance optimization that is the very reason that the
high-performance Amazon G2 instances incorporate instance-
local SSD storage hardware. The overall performance trend
shown in Table II indicates roughly linear parallel scaling
for the rendering-specific (post-initialization-1/O) parts of the
workload, with the 32-rank results representing a speedup of
26x and a parallel scaling efficiency of 81%. We note that the
runtime shown for the 32-rank results is dominated by initial
startup I/O and that if the initial /O runtime component were
removed (68 s), the achieved movie frame rate (49 FPS) for the
1,079 frame test movie is roughly 2 x faster than the real-time
playback rate (24 FPS) of the original movie [11].

We intend to investigate strategies for improving I/O per-
formance during initialization and to run tests with larger
numbers of MPI ranks on Amazon EC2 g2.8xlarge GPU
instances. We found that the overall convenience and low
cost of the Amazon EC2 GPU instances were very well
suited to the development needs of this project. Although
we operate and maintain significant local GPU clusters that
could have been used for the work described here, it was
much more convenient to use the cloud instances with the
developmental “beta” GPU drivers; our local GPU clusters
could continue running production science jobs with stable
system software. Amazon charges a price premium for on-
demand use of the highest-performance instances such as
g2.8xlarge ($2.60/hour), however we were able to run all of
our performance tests for less than 15% of the on-demand
price using so-called spot pricing during off-peak hours. By
running the tests during off-peak hours, the 32-rank tests cost
roughly the same as a 4-rank test would when run on-demand.
Overall we have been pleasantly surprised at how easy it was
to prepare a VMD-specific AMI supporting parallel rendering
with EGL. Cloud computing and EGL offer great potential
for enabling a broader community of molecular scientists to
benefit from parallel rendering features of VMD that were
previously only available on large supercomputers.



VII. CONCLUSION

We have implemented a new EGL-based rendering system
that enables the molecular visualization program VMD to
support high performance OpenGL rasterization on clouds,
clusters, and supercomputers that previously did not support
high performance visualization. While our EGL renderer im-
plementation is specifically tailored for the design of VMD and
the needs of molecular visualization, we feel that similar use
of EGL for in-situ and parallel rendering will be valuable for
many other science and engineering visualization applications.
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