
USING GPUS TO ACCELERATE INSTALLED ANTENNA
PERFORMANCE SIMULATIONS

Tod Courtney1, John E. Stone2, Bob Kipp1

1Delcross Technologies, Champaign, IL 61821
2University of Illinois at Urbana-Champaign, Urbana IL

tcourtney@delcross.com, john.stone@gmail.com, kipp@delcross.com

Abstract: Savant is a asymptotic ray-tracing CEM tool used to predict the
performance of antennas installed on electrically large platforms, including far-field
antenna patterns, near-field distributions, and antenna-to-antenna coupling. Savant
is based on the shooting and bouncing rays (SBR) formulation. While asymptotic
solvers like Savant have significantly smaller computational and memory
requirements for electrically large problems than full-wave techniques, the
computation costs still increase significantly with frequency and simulation fidelity,
and such solvers benefit greatly from parallelization techniques. Graphics
processing units (GPUs) are throughput-oriented processing devices that are well
suited for the mathematically intensive workloads found in CEM solvers. Current
GPUs contain hundreds of processing units, leverage thousands of threads, and can
execute over one trillion floating-point operations per second. A hybrid CPU and
GPU parallelization approach has been developed for Savant, providing significant
speedups compared to CPU-only implementations. Results from the execution of
GPU-accelerated Savant on multiple case studies will be presented.

1. Introduction

Over the last two decades, there has been a phenomenal increase in the computational
power of microprocessors due to the dramatic decrease in transistor size and advances in
computer architecture. Initially, the smaller transistor size translated directly into faster
clock speeds. However, as the size of transistors continued to decrease, increased clock
speeds became unsustainable due to excessive power consumption and heat dissipation.
As a result, new methods have been developed to translate the benefits of smaller
transistors into increased computational power. One approach is to increase the number
of computational cores in the processor. It is now common to find four or six core
processors in modern computer workstations, but the complex circuitry in modern CPUs
makes it difficult to combine a large number of processor cores into an effective and
power-efficient multi-core processor.

The trend toward increased transistor density has enabled the computer graphics industry
to make dramatic advances in the power of graphics processing units (GPU). GPU cores
are designed for throughput-oriented workloads. Instead of using large amounts of fast
cache memory to hide memory latency as is done with CPUs, GPUs are heavily
multithreaded and multiplex thousands of concurrently executing threads onto hundreds
of processing units in order to keep arithmetic units busy while memory operations are
being serviced. This design principle makes GPUs well suited to mathematically

intensive workloads on very large datasets. In order to achieve high performance on these
workloads, GPUs contain high-bandwidth memory systems capable of transferring
hundreds of gigabytes per second. These hardware differences enable modern GPUs to
process significantly more floating-point arithmetic operations (FLOPS) than modern
CPUs.

High-frequency asymptotic computational electromagnetics (CEM) solvers offer an
approximate, yet computationally efficient, solution for many types of electromagnetics
systems. Asymptotic solvers are preferred over full-wave solvers at high frequencies,
where the electrical size of the platform becomes too large for the required matrix
representation and solution. High-frequency codes do not depend on a large matrix
representation and scale more efficiently with increasing frequency. Still, the
computational cost of high-frequency algorithms increases with frequency; for many
algorithms, such as the one in Savant, complexity grows quadratically with frequency.
As a result, even high-frequency codes can require a significant amount of processing
time, often requiring hours or days to complete a complex simulation.

In addition to the basic computational requirements of high-frequency simulations, many
use-cases for high-frequency codes require the execution of multiple simulations using
either different project configurations or different input conditions. Examples of such
use-cases include optimization of the placement of multiple antennas on complex
platforms, simulation of dynamic scenarios with one or more moving platforms/parts in
the scene, and hybrid closed-loop asymptotic/full-wave solutions that repeatedly simulate
different portions of the platform with full-wave and high-frequency solvers, exchanging
intermediate results at each iteration until a convergence criterion is met. For all of these
reasons, high-frequency CEM solvers will benefit greatly from the dramatic speedups
offered by GPU-based parallelizations.

2. Asymptotic Solvers & Savant

Asymptotic methods, also known as high-frequency (HF) methods, are widely used to
efficiently compute the scattering by objects whose overall size and features are
electrically large. At high frequencies (or short wavelengths), propagation of
electromagnetic (EM) waves can be approximated by ray bundles, and EM scattering is
dominated by local conditions of the scattering body. Perhaps the oldest and most
familiar theory is geometric optics (GO). The theory is not without drawbacks, one of
which is its failure to model diffraction. Various asymptotic enhancements (i.e., ones
that are valid in the limit as wavelength goes to zero) have been proposed to overcome
this limitation, including geometrical theory of diffraction (GTD) [1], physical optics
(PO), and physical theory of diffraction (PTD) [2].

Savant is a tool for predicting the installed performance of antennas. In particular, Savant
focuses on modeling the interaction of the antenna with the installation platform, using an
asymptotic methodology known as shooting-and-bouncing rays (SBR) [3,4]. SBR was
originally developed to efficiently model RCS for electrically large cavities [3] and later
extended for radar signature modeling on realistic targets [5]. It was subsequently
adapted to installed antenna applications [6-8].

In SBR, many GO rays are launched toward the scattering object (platform) using a
general-purpose geometric ray tracer for complex 3-D CAD models. This determines
which surfaces are lit by the antenna. The launched GO rays are vector-field-weighted

by the antenna and represent diverging volumetric ray tubes that “paint” surface currents
on the CAD model according to the GO boundary condition (i.e., PO currents). These
induced currents are radiated to field observation points or receiving antennas. Next, a
set of reflected rays is generated from the first-bounce hit points, with their vector fields
updated according to GO and the material properties of the surfaces. Some of these
reflected rays escape, while the remainder hit other surfaces of the CAD model, painting
second-bounce currents. The process is continued, and in this way, SBR implements
multi-bounce scattering mechanisms.

The algorithmic steps of SBR can be summarized as follows:

1. Launch many rays from the Tx antenna toward the platform. The rest of the steps
are for each ray.

2. Assign each ray a vector field weight according to the Tx polarimetric antenna
pattern.

3. Test each ray for intersection with the surfaces of the CAD model.

a. If the ray escapes, ignore it.

b. If the ray hits a surface, generate a reflected ray. Compute its fields according
the incident ray fields, the material properties of the surface, and GO
principles.

c. If the ray hits a penetrable surface, also generate a transmitted ray in the same
direction as the incident ray and then extend and process it as one would the
reflected ray.

4. At the ray hit-point, compute the total GO field (incident + reflected +
transmitted) projected on to the surface. Use these and the PO approximation to
determine equivalent electric and magnetic surface currents.

5. Radiate the equivalent currents to far-field angles and near-field points by
convolving them with the free-space Green’s function: the radiation integral.

6. Continue tracing the reflected and transmitted rays generated in Steps 3b) and 3c)
and repeat from there. Continue until either the ray escapes (Step 3a) or some
maximum bounce limit is reached.

When curved surfaces are encountered, special care must be taken in computing the
change in GO fields as they propagate from bounce to bounce, adjusting for the change in
ray tube divergence rate [3,9,10]. Savant also implements an extension of SBR to model
the surface wave (creeping wave mechanism) based on creeping-wave rays and the
surface currents they deposit as they propagate along the surface. These details are not of
concern in the current paper.

Among asymptotic ray tracing methods, it is important to bear in mind the joint role of
GO and PO in SBR. As in GTD codes, SBR uses GO as an efficient means of accounting
for the dominant mechanisms of interaction between surfaces of the scatterer. However,
unlike GTD codes, the GO rays are not of direct interest in determining the scattered
fields at observation angles and points. Instead, that role is played by radiation of the PO
currents (Step 5) induced by the GO rays (Step 4). As such, the terminal condition of GO

rays is not of interest in SBR. Thus, a search for a few critical rays’ paths is replaced by
shooting many rays (thousands to millions) in order to sample the geometry in detail.
This results in the ability to handle more varied and realistic geometric shapes.

From a computational perspective, the costs of performing the SBR algorithm can be
broken into two categories: a) the cost of performing geometric ray tracing and associated
updates of GO ray fields (Steps 1 – 4, 6) and b) the cost of radiating equivalent currents
to observation angles/points (Step 5). In SBR, run time scales as O(Nr), O(No), and
O(Nf), where Nr, No, and Nf are the numbers of rays, observation angles/points, and
frequencies, respectively. For a convergent result, Nr is generally proportional to the
surface area of the scatterer measured in square wavelengths. When all of these quantities
are large enough, run time scales as ()r o fO N N N⋅ ⋅ . However, as a practical matter, this

condition is not often satisfied. For instance, the geometric ray-tracing burden is
independent of No and Nf. Hence, when 1oN = , one can often increase Nf from 1 to 50 -

100 before doubling run time. Eventually, however, the run time will scale with the
number of frequencies. The same can be said for the number of observation
angles/points, though its impact is felt sooner. For instance, we observe that for 1fN = ,

run time doubles for No going from 1 to 20. Also, once No is large enough that ray
processing (Step 5, evaluating the radiation integral) dominates over geometric ray
tracing (Steps 1-4, 6), run time doubles when Nf increases from 1 to 4 or 5, at least in
Savant’s implementation. The memory footprint of SBR does not grow with any of these
quantities, other than that needed to hold input and output, and is generally quite modest
compared to the capacity of modern systems.

For many installed antenna problems, No is large and the computation of the radiation
integral (Step 5) is the dominant cost of a simulation, the bottleneck. For example, in
computing the installed antenna pattern, one frequently requires hundreds or thousands of
observation angles to fill out a 1-D cut or a 2-D sector. Similarly, in computing the
distribution of fields in the vicinity of the platform, one is typically interested in
thousands of field observation points, sufficient to generate a 2-D image of the fields.
Because of its form and the limited need to address contingency conditions in the
algorithm, the radiation integral lends itself to efficient acceleration on GPUs, the subject
of the present paper.

In its most general form, the radiation integral is a convolution of equivalent surface
currents and charge densities with the free-space Green’s function, given by

() () () ()0

'

1
ˆ ˆ ˆ'

4

jkR jkR jkR

s

S

e e e
E r dS n E n E j n H

R R R
ωµ

π

− − − ′ ′ ′ ′ ′= ∇ + × ×∇ − × 
 

∫ i , (1)

where sE is the scattered field at the observation point, S’ is the domain of the ray tube at

the hit point when projected onto the surface, ()E E r′= and ()H H r′= are the total
electric and magnetic fields at the surface when considering the incident ray and reflected
ray (i.e., the total GO field), r′ is the position vector of the equivalent currents, n̂′ is the
surface normal, r is the position vector of the observer, | ' |R r r= − is the distance from

the current sample point to the observer, and µ0 is the free-space magnetic permeability.

The equivalent currents and charges mentioned in Steps 4 and 5 are those obtained by the
cross-product or dot-product of n̂′ with E or H , as indicated in Eq. (1).

When R is sufficiently large that higher-order terms arising from the gradient operator are
negligible, the equation simplifies considerably to

() () ()0ˆ ˆ ˆ ˆ ˆ
4

jkR

s
S

jk e
E r dS r n E r r r n H r

R
η

π
−

′

 
 

− ′ ′ ′ ′ ′ ′ ′ ′= × × − × × ×∫ . (2)

Still, Eq. (2) must be evaluated through numerical integration. When R is also
sufficiently large such that R d ′� , where d’ is the largest dimension of S’, then the
vector dependence can be extracted from the surface integral as a scale factor. The scalar
surface integral then accounts for linear phase progression across S’ and can be evaluated
analytically for the typical ray tube shape used in Savant, a triangle. In practical
problems of interest, this criterion is often met. It is always satisfied for far-field
observation angles and usually satisfied for near-field observation points. It is this
analytic form of the integral that is accelerated using the GPU, as discussed in Section 4.

3. GPU hardware architecture and programming model

GPUs were originally designed as highly specialized fixed-function accelerators
specifically for computer graphics workloads. As the complexity and computational
demands of computer graphics algorithms have grown, GPUs have become progressively
more flexible and have incorporated fully programmable processing units. Over the past
five years GPUs have evolved further, becoming effective general purpose co-processors
for throughput oriented computational workloads with significant data parallelism [11-
13]. The latest generation of GPU hardware implements full IEEE double-precision
floating point arithmetic, 64-bit addressing, incorporates caches, and uses error correcting
codes to protect memory [14,15]. Collectively, these features have helped close gaps in
ease-of-programming, reliability, and applicability of GPUs as compared to CPUs,
making GPUs ideal accelerators for many arithmetic intensive data-parallel workloads
found in science and engineering applications. Below we discuss the attributes of GPU
hardware architecture and aspects of the CUDA GPU programming model that are most
relevant for antenna modeling calculations. Detailed discussions of GPU hardware
architecture and programming models are found in the literature [13-16,19].

3.1 Comparison of CPU and GPU hardware architecture

GPUs were originally designed for acceleration of computer graphics workloads that
contain tremendous amounts of data-parallelism, and that by their nature are
computationally intensive in terms of both floating-point arithmetic and memory
bandwidth. These characteristics have led GPU hardware designs to employ massively
parallel hardware architecture, with state-of-the-art GPUs containing over 512 processing
units. Individual GPU processing units are organized into groups, so-called
"multiprocessors" or "compute units” that share a single instruction decoder. Each of the
processing units in the same group executes instructions in lock-step, following the
single-instruction multiple-data (SIMD) model. By sharing instruction decoders among
groups of processing units, GPUs use much less of the microprocessor die area for
control logic, allowing the area to be used for arithmetic logic instead. This approach

enables GPUs to achieve arithmetic performance levels many times that of conventional
multi-core CPUs while maintaining power consumption levels that are still roughly par
with high-end CPUs.

Another characteristic that differentiates GPUs from CPUs is that they are designed for
high overall execution throughput rather than low latency execution, following directly
from the needs of graphics workloads. GPUs achieve high throughput at moderate clock
rates through data parallelism rather than the approaches taken by CPUs, such as high
clock rates, instruction level parallelism, and out-of-order execution. Conventional
multi-core CPUs use large caches to mask the latency of read and write operations to off-
chip DRAM. Instead of relying on caches, GPUs hide off-chip memory latency primarily
by saturating processing units with a large number of threads, and context switching from
threads stalled on memory accesses to threads that are immediately runnable. The need
for runnable threads to be available for latency hiding increases the total concurrency
required to allow a GPU to achieve peak execution throughput. Current generation GPUs
require at least 10,000 independent threads of execution to fully utilize all processing
units and hide latency for off-chip memory accesses. The extensive use of hardware
multithreading reduces the amount of GPU die area spent on cache, thereby making this
space available for arithmetic logic.

Since graphics workloads make frequent use of square roots and transcendental functions,
GPUs incorporate dedicated machine instructions for fast evaluation of an unusually
large number of special functions, as compared with CPUs. CPUs typically incorporate
few machine instructions for special functions and often compute only low-precision
"estimates" in hardware, requiring math libraries or application code to compute or refine
special function results entirely in software. Dedicated GPU machine instructions for
special functions give them a significant performance advantage versus CPUs,
compounding with the performance benefits gained from massive parallelism.
Applications that make heavy use of special functions have been observed to achieve
GPU speedups over 100 times faster than a single CPU core [17-18].

The tremendous arithmetic capability of GPUs requires matching memory bandwidth.
GPUs incorporate on-board high-bandwidth (over 140 GB/sec) multi-banked off-chip
"global" DRAM memory systems to meet this demand. GPU global memory is accessible
to both the host CPUs and to the GPU itself. Since current GPUs are not completely self-
sufficient computers, input and output must be transferred between the host memory and
the GPU over the PCI express bus. GPU global memory systems achieve peak
performance when they are accessed in large, aligned, contiguous read/write operations
known as "coalesced" accesses. Although current generation GPUs contain caches, they
are much smaller than those found in CPUs and are primarily used to help reduce the
performance impact of uncoalesced global memory accesses. Compute-oriented GPUs
incorporate small, near-register-speed on-chip "shared" memory accessible to all threads
executing on the same multiprocessor or compute unit. GPU shared memory provides a
high performance mechanism for inter-thread communication needed for use as a
software-managed cache. One of the key challenges involved in developing high-
performance GPU-accelerated algorithms is making most effective use of fast on-chip
memory systems on the GPU.

The future outlook for GPU hardware is bright. Vendor roadmaps project continuing
increases in arithmetic throughput and memory bandwidth for at least three more
processor generations, based on increased circuit density enabled by semiconductor
fabrication process improvements leading to increasing numbers of cores, arithmetic
units, and so on. If the evolution of future GPU designs follows past trends, arithmetic
throughput could increase by a factor of three or more and memory bandwidth might
increase by a factor of two over the next two GPU generations. These expected changes
would provide the greatest benefit to applications that are arithmetic bound on current
generation GPUs and that have a surplus of parallelism that can be exploited by future
hardware. Even if future GPU hardware designs begin to diverge significantly from the
GPUs of today, the algorithms designed for contemporary GPUs have been shown to be
relatively easy to adapt to other highly parallel architectures and multi-core CPUs, with
libraries, automatic translators, and even by hand. Recent CPU designs such as AMD
Fusion and Intel Sandy Bridge have recently begun to incorporate GPUs on a small scale.
Hybrid CPU/GPU processors cannot match the peak arithmetic performance and memory
bandwidth of traditional discrete GPUs, but they have the potential to offer performance
levels beyond those available in traditional CPUs and may be worth utilizing, specifically
for algorithms that lack sufficient parallelism to fully utilize high-end GPUs.

3.2 GPU software interface and programming model

The two leading GPU software interfaces at the time of writing are NVIDIA’s CUDA
programming toolkit [19], and OpenCL [20,21], an industry standard heterogeneous
computing API. The key programming abstractions provided by CUDA and OpenCL are
very similar. Both APIs provide interfaces for allocating GPU memory, copying data
between the host and GPU, defining functions (so-called “kernels”) that can be executed
on the GPU, launching GPU kernels, and checking for errors. CUDA and OpenCL both
provide mechanisms for defining data-parallel computations in terms of multidimensional
index spaces composed of tens of thousands of individual work items that can be
computed in parallel. Work items are mapped onto GPU hardware threads that are
executed in groups on the underlying multiprocessors or compute units, with smaller
subsets of threads known as “warps” or “wavefronts” being executed in lock-step on the
GPU’s SIMD arithmetic hardware. Multiple warps or wavefronts executing on the same
multiprocessor or compute unit are grouped together into so-called ``thread blocks’’ or
``work groups’’ that have access to on-chip shared memory and L1 cache, coordinating
with each other through high-performance synchronization primitives. The mapping of
work items to hardware threads and underlying arithmetic units has a significant effect on
the resulting performance, particularly as it relates to GPU memory access patterns. The
best choice of parallel decomposition and hardware mapping is inherently device
specific. Today, applications must often be manually tuned for the target GPU
architecture. Performance-portability of GPU-accelerated applications currently remains
an ongoing research problem in the community.

4. Approach

In order to design the GPU-based version of the Savant SBR algorithm, the steps in the
Savant SBR algorithm shown in Section 2 were analyzed to determine which steps were
computational bottlenecks, and which steps were well-suited for throughput oriented

data-parallel implementation on the GPU. As discussed in Section 2, the SBR algorithm
consists of two primary tasks: creation of multi-bounce ray tracks and computation of the
radiation integral at each bounce. Of these, the radiation integral was observed to be the
dominant cost of the algorithm, especially as the simulation parameters were scaled up to
produce higher fidelity results. Increasing the simulation fidelity involves increasing the
number of rays, Nr, or increasing the number of observation angles (or points), No, or
increasing the number of frequency steps, Nf. Increasing any of these three values
increases the computational cost of the radiation integral, either by increasing the cost at
a single bounce (No or Nf) or increasing the number of ray bounces where the radiation
integral must be performed (Nr). However, the ray tracing cost only increases with Nr. As
a result, as a Savant simulation is scaled up to produce higher fidelity results, the cost of
the radiation integral dominates the computational cost when generating high fidelity
results.

For the second requirement for GPU computation, the computational structure of the ray
tracing calculations and the radiation integral calculations were compared. Raytracing
requires many unstructured memory accesses, as the rays propagate through the region
around the platform and ray-surface intersection calculations are performed to determine
the reflection and transmission points. Raytracing acceleration data structures, such as
binary space partitioning (BSP) trees and k-d trees, are commonly used to reduce the
number of ray-surface intersection calculations. But these structures increase the number
of unstructured memory accesses and the tree traversal algorithms tend to be
implemented using recursive functions, which are only supported by the latest GPU
hardware. In addition, it is difficult to predict, a priori, how many times a given ray will
reflect or transmit off the platform, leading to a wide variation in the computational cost
of each ray. The unstructured memory accesses, variable length multi-bounce rays, and
recursive nature of many acceleration algorithms make ray tracing a challenging
algorithm to develop on the GPU.

The radiation integral for each ray bounce has a uniform computational structure. The
radiation integral calculation can be structured so that the same calculations are
performed at each observation angle (or point), at each frequency step, for each bounce.
The memory access pattern resulting from this design is regularly-structured, involving
iteration over lists of observations, frequencies, and ray bounce data. In other words, the
radiation integral is a data-parallel algorithm with the right computational structure to be
considered for the GPU.

Based on this analysis, a hybrid parallelization was developed for Savant, where the ray
tracing calculations would be performed using Savant’s existing task-based
parallelization for multi-core CPUs and the radiation integral would be performed using
data-parallel computation on the GPU. With this approach, each processor type (CPU or
GPU) is given the task that is well suited for its architecture, and the entire Savant
simulation is parallelized across all available hardware in the system.

After identifying the radiation integral as the appropriate candidate for GPU
parallelization, we began to design the GPU version of the algorithm. Development
began with the radiation integral derivation and the CPU implementation in C++ and led
to the GPU implementation in CUDA C. The main focus of the effort was in redesigning
the layout of the data structures used by the code. The object-oriented structure of C++,

where data and methods are associated together for each object, is well suited for a large-
scale software project. However, this is not the best organization for data-parallel
algorithms on the GPU. In C++, an object typically contains multiple fields of primitive
data (floating point numbers, integers, etc.), and multiple objects are stored in arrays, in a
so-called array of structures organization. For the GPU, arrays of C++ objects are
flattened into many separate arrays of primitive data, known as a structure of arrays
organization. These arrays are then passed to the GPU kernel functions. In CUDA, the
kernel contains the operations and calculations to be performed by all threads on the
GPU, but it is written in terms of the operations performed by a single thread.

Three distinct GPU kernels were developed to implement the radiation integral on the
GPU. The first kernel computes the projection of the ray tube footprint in the direction of
the reflected ray, a required input for the second kernel. The second kernel computes the
surface currents at the ray footprint, as described in Step 4 of the SBR algorithm. The
third kernel calculates the radiation integral for all observations, as described in Step 5.
The first and last kernels have separate implementations for far-field angles and near-
field points. The second kernel is common to both.

Initial development of the GPU kernels was completed in the early stages of the project.
At that point the focus of the development effort shifted from implementation correctness
to performance tuning. Many experiments were conducted with different thread grid
layouts in order to find a GPU thread grid design that performed well across a wide range
of problem sizes. Data transfer costs between the CPU and GPU were measured and the
communication over the PCI express bus was redesigned in order to minimize the costs.
The GPU kernel functions were modified to reduce GPU register usage, improve memory
access patterns and utilize GPU hardware mathematic functions. The software interface
between the CPU and GPU was redesigned to improve the load balancing of the hybrid
parallelization across the multiple CPU cores and multiple GPUs. These tuning efforts
led to significant improvements in computational performance, as discussed in the next
section.

5. Results

We conducted a series of experiments to demonstrate the acceleration potential of Savant
GPU for the computation of both far-field radiation patterns and near-field field
distributions in a variety of problem sizes. The base configuration is the same for all
experiments: a short dipole antenna mounted on top of a Boeing 737 aircraft as shown in
Figure 1. The antenna is simulated in a frequency range of 3 GHz to 4 GHz, with the
single-frequency runs at 4 GHz. The aircraft is modeled by a triangle mesh containing
18,370 triangles and 55,110 vertices. At 4 GHz, the aircraft is 413 wavelengths long and
has a wingspan of 391 wavelengths.

For both the far-field and the near-field cases, analysis is performed at five different
levels of observations angles (or points), from 2500 to 40000, with the number of
observations doubled in each level. Three different numbers of frequency steps are tested
for each observation level: one, five and 25. This created 15 different experiments for far-
field radiation patterns, and 15 different experiments for near-field field distribution.

Each set of experiments is solved using four different computational configurations: one
CPU core, four CPU cores, one CPU core plus one GPU, and finally four CPU cores and
two GPUs. The CPU was an AMD Phenom II x4 965 running at 3.4 GHz. The GPUs are
NVIDIA GTX 480 based on the NVIDIA Fermi GPU running at 1.4 GHz. Wall clock
times are provided for each compute configuration and CPU utilization is provided. The
wall clock and CPU utilization are measured using the system tool time based on the
entire run of the simulation, including initialization of the simulation and file input and
output. Speedups for the three parallel processing configurations are provided relative to
the configurations that precede them and are all based on total simulation run time. The
baseline is the one-CPU-core case on the left, and the fastest is the four-CPU-core, two-
GPU case on the right.

(a) (b)

Figure 1: Test case showing the Boeing 737 platform with a short electric dipole antenna mounted on top
of the fuselage. The far-field observation domain is shown in a). Near-field observation domain
is shown in b).

Performance data for the far-field radiation pattern and near-field field distribution
experiments are shown in Tables 1 and 2. While the specific performance numbers are
not exactly the same for the two sets of experiments, many of the trends are present in
both. These trends are discussed in the remainder of this section.

1 2500 1 455.9 393% 118.6 3.8 100% 19.3 23.6 342% 8.4 54.3 14.1 2.3

2 5000 1 897.8 394% 230.4 3.9 99% 19.5 46.1 335% 9.2 97.8 25.1 2.1

3 10000 1 1777.3 395% 453.9 3.9 99% 20.9 85.0 346% 9.8 182.1 46.5 2.1

4 20000 1 3536.9 394% 914.9 3.9 99% 26.6 133.1 344% 12.0 295.5 76.4 2.2

5 40000 1 7062.0 394% 1860.0 3.8 99% 41.1 171.7 322% 18.6 379.3 99.9 2.2

6 2500 5 1080.1 395% 279.6 3.9 96% 25.2 42.9 346% 11.3 95.6 24.7 2.2

7 5000 5 2141.2 395% 551.3 3.9 98% 32.8 65.3 323% 15.1 141.4 36.4 2.2

8 10000 5 4271.0 395% 1119.3 3.8 99% 73.4 58.2 288% 34.6 123.3 32.3 2.1

9 20000 5 8545.0 394% 2232.3 3.8 98% 117.4 72.8 250% 59.8 142.9 37.3 2.0

10 40000 5 17295.0 395% 4474.0 3.9 99% 217.3 79.6 229% 120.0 144.2 37.3 1.8

11 2500 25 2738.8 392% 728.3 3.8 98% 56.1 48.8 307% 26.2 104.6 27.8 2.1

12 5000 25 5446.0 393% 1460.0 3.7 99% 96.1 56.7 268% 47.4 114.9 30.8 2.0

13 10000 25 11053.0 394% 2899.6 3.8 98% 181.2 61.0 236% 91.6 120.7 31.7 2.0

14 20000 25 22055.0 394% 5952.0 3.7 98% 329.2 67.0 223% 172.3 128.0 34.5 1.9

15 40000 25 44279.0 394% 11554.0 3.8 99% 639.9 69.2 209% 374.2 118.3 30.9 1.7

Speedup
vs (b)

Speedup
vs (c)

Speedup
vs (b)

CPU
Util.
%

Speedup
vs (a)

1 CPU core, 1 GPU
(c)

4 CPU cores, 2 GPUs
(d)

CPU
Util.
%

Wall
Time
(sec)

Wall
Time
(sec)

1 CPU
core
(a)

Wall
Time
(sec)

CPU
Util.
%

Wall
Time
(sec)

Speedup
vs (a)

4 CPU cores
(b)

Boeing 737

Short Electric Dipole
3-4GHz

Rays: 747820

Run
#

Obv.
Angles

Freq
Steps

Far Field

Table 1: Comparison of Savant run-time performance when computing a far-field radiation pattern using

four different computational configurations on 15 different problem sizes.

1 2500 1 652.5 393% 167.5 3.9 97% 20.1 32.5 341% 8.8 74.2 19.1 2.3

2 5000 1 1284.9 394% 329.3 3.9 99% 19.6 65.5 347% 9.3 138.2 35.4 2.1

3 10000 1 2559.6 394% 650.4 3.9 99% 24.4 104.9 327% 12.1 212.1 53.9 2.0

4 20000 1 5067.0 394% 1320.8 3.8 99% 35.3 143.6 330% 16.1 315.5 82.2 2.2

5 40000 1 10165.0 395% 2627.5 3.9 99% 58.6 173.4 297% 27.7 366.7 94.8 2.1

6 2500 5 1521.0 393% 392.0 3.9 99% 30.8 49.4 339% 14.0 108.3 27.9 2.2

7 5000 5 3027.4 392% 825.3 3.7 99% 44.8 67.6 314% 20.8 145.5 39.7 2.2

8 10000 5 6048.0 393% 1658.2 3.6 99% 73.9 81.8 282% 35.5 170.4 46.7 2.1

9 20000 5 12440.0 393% 3386.0 3.7 99% 133.6 93.1 250% 66.7 186.6 50.8 2.0

10 40000 5 24997.0 394% 6617.0 3.8 99% 253.0 98.8 223% 132.3 189.0 50.0 1.9

11 2500 25 4458.0 391% 1337.8 3.3 99% 108.3 41.2 264% 53.1 84.0 25.2 2.0

12 5000 25 9240.0 391% 2673.5 3.5 99% 202.4 45.7 234% 102.6 90.1 26.1 2.0

13 10000 25 18830.0 393% 5476.0 3.4 99% 386.7 48.7 215% 198.6 94.8 27.6 1.9

14 20000 25 36705.0 392% 11214.0 3.3 99% 769.0 47.7 207% 416.7 88.1 26.9 1.8

15 40000 25 73396.0 391% 21382.0 3.4 99% 1532.8 47.9 201% 861.9 85.2 24.8 1.8

Speedup
vs (a)

Speedup
vs (b)

Speedup
vs (c) Run

#
Obv.
Points

Freq
Steps

CPU
Util.
%

Wall
Time
(sec)

Speedup
vs (b)

CPU
Util.
%

Wall
Time
(sec)

Rays: 747820 Wall
Time
(sec)

CPU
Util.
%

Wall
Time
(sec)

Speedup
vs (a)

Near Field 1 CPU
core
(a)

4 CPU cores
(b)

1 CPU core, 1 GPU
(c)

4 CPU cores, 2 GPUs
(d)Boeing 737

3-4GHz

Table 2: Comparison of Savant run-time performance when computing a near-field field distribution using

four different computational configurations on 15 different problem sizes.

The four-core-CPU configuration (column set (b) in both of the tables) consistently
shows a 3.8 to 3.9 times speedup over the one-core-CPU case. This demonstrates that the
multi-core parallelization within Savant scales efficiently for a variety of problem sizes
on a four-core CPU. It also serves as a baseline for the final configuration to demonstrate
the benefits of adding multiple GPUs to a four-core CPU. The speedup is less than the
ideal of 4.0 because the initialization and file output is not parallelized and there is a
small amount of thread synchronization and coordination overhead when running on
multiple cores.

Performance data for the one-core-CPU, one-GPU case is shown in column (c). For each
experiment the GPU provides a dramatic speedup, from 24x to 171x for far-field and 32x
to 173x for near-field. The benefit of the GPU increases as the size of the problem
increases because, as the problem size increases, the radiation integral becomes the more
dominant computational cost. For the smallest problem sizes, such as those found in runs
1, 2 and 3, the run time is constant, even though the problem size increases by a factor of
four. Recall that the GPU and CPU are computing different parts of the problem in
parallel. For each of these cases, the CPU performs the same amount of work to shoot
rays at the platform, but the GPU workload is doubling. For the small problem sizes, the
GPU completes the radiation integral before the CPU generates the next set of ray
bounces, resulting in idle time for the GPU. As the cost of the radiation integral increases,
the GPU workload increases and eventually, when the GPU utilization has been
maximized, the run times double when the problem size doubles.

The multi-frequency cases also benefit from GPU acceleration, but the degree of impact
is less than that of the single-frequency case. The main reason for this is that the CPU is
able to exploit a more efficient iterative formulation for the frequency-dependent aspect
of the radiation integral that requires fewer sin() and cos() function evaluations per
frequency step. Because the GPU computes all the frequency steps in parallel, it is not
able to take advantage of the iterative algorithm. Because the CPU is roughly two to three
times faster per frequency step when computing a linear sequence of frequency steps than
when the CPU computes individual frequencies, and the GPU speedup is constant in
either case, the relative improvement of the GPU verses the CPU is reduced for the multi-
frequency cases.

The final configuration is the four-CPU-core, two-GPU case shown in column (d). This is
the optimal configuration for this machine where Savant utilizes all computational
processors available in the system. The results show that adding the second GPU doubles
the speedup in almost all of the cases. Some of the smaller cases actually see a speedup
that is more than double. These are the cases that are CPU-bound in the single-GPU tests
and see a benefit from the extra CPU cores. The CPU utilization for all of the two-GPU
runs is less than 400%, typically 200% to 300%. This is an indication that the simulation
is GPU-bound, and that, for this simulation configuration on this hardware, only two or
three CPU cores are required to reach a high bounce-generation rate to supply bounces to
the two GPUs.

Overall, these results show that there is a significant benefit for each level of
parallelization in Savant, with significant performance gains through the use of one or
more GPUs. At the same time, the data show that the degree of speedup is variable and
depends on many factors, such as number of observations, number of frequency steps and

the relative computational cost of ray tracing on the CPU verses the cost of the radiation
integral on the GPU. For these reasons, it is very difficult to predict a priori the exact
level of performance improvement that will be achieved for a particular Savant
simulation.

6. Conclusion

In this paper we discussed the architectural differences between CPU and GPU designs,
and demonstrated how those differences could be exploited to produce a hybrid CPU-
GPU parallelization of the Savant asymptotic CEM solver. Using a conventional desktop
workstation with two GPUs, we were able to show 50x to 380x speedups over a single
CPU core. While the level of speedup shown in the previous section is significant in its
own right, it becomes even more significant when the cost of the hardware is taken into
account. Adding the two GPU cards to the system roughly doubled the total cost of the
hardware and roughly doubled the power consumption and heat dissipation. Yet the
computational capacity of this GPU-based machine is equivalent to a cluster of a
minimum of 14 quad-core machines and, for certain problems, a maximum of at least 100
quad-core machines. Clearly GPU parallelization offers a significant savings in
computation time as well as a significant reduction in capital and operational costs for
computing hardware, power and cooling budgets.

The work presented in this paper represents the progress made during the first 18 months
of a SBIR project with Dr. John Asvestas in the Radar and Antenna Systems Division of
the Naval Air Systems Command (NAVAIR). The project will continue for another 18
months. For the next phase in the project, we plan to support additional computation
algorithms on the GPU, such as the creeping wave radiation integral and GPU-based ray
tracing for triangle mesh and NURBS surfaces. We also plan to develop a dynamic load-
balancing MPI-based cluster algorithm to enable execution of Savant on clusters of GPU-
enabled nodes.

Acknowledgement

The authors gratefully acknowledge the support of U.S. Naval Air Systems Command
(NAVAIR) in funding the development of Savant and its acceleration with GPUs.

References:

[1] R. G. Kouyoumjian, “The geometrical theory of diffraction and its application,” in
Numerical and Asymptotic Techniques in Electromagnetics, R. Mittra, Ed., Springer-
Verlag, 1975, Ch. 6.

[2] P. Y. Ufimtsev, Theory of Edge Diffraction in Electromagnetics, Tech. Science Press,
Encino, CA, 2003.

[3] H. Ling, R. C. Chou, and S. W. Lee, “Shooting and bouncing rays: calculating the RCS of
an arbitrarily shaped cavity,” IEEE Trans. Antennas Propagat., vol. 37, pp. 194-205, Feb.
1989.

[4] J. Baldauf, S. W. Lee, L. Lin, S. K. Jeng, S. M. Scarborough and C. L. Yu, “High-
frequency scattering from trihedral corner reflectors and other benchmark targets: SBR vs.
experiments,” IEEE Trans. Antennas Propagat., vol. 39, pp. 1345-1351, Sep. 1991.

[5] D. J. Andersh, M. Hazlett, S. W. Lee, D. D. Reeves, D. P. Sullivan, and Y. Chu,
“XPATCH: A high frequency electromagnetic-scattering prediction code and environment
for complex 3D objects,” IEEE Antennas Propagat. Mag., vol. 36, pp. 65-69, Feb. 1994.

[6] S. W. Lee and R. Chou, “A versatile reflector antenna pattern computation method:
shooting and bouncing rays,” Microwave and Optical Tech. Letters, vol. 1, no. 3, pp. 81-87,
May 1988.

[7] T. K. Wu, R. A. Kipp, and S. W. Lee, “Field of view of a spacecraft antenna: analysis and
software,” NASA Tech Briefs Journal, vol. 19, no. 11, Nov. 1995.

[8] T. Ozdemir, M. W. Nurnberger, J. L. Volakis, R. Kipp, and J. Berrier, “A hybridization of
finite-element and high-frequency methods of pattern prediction for antennas on aircraft
structures,” IEEE. Antennas Propagat. Mag., vol. 38, pp. 28 – 38, June 1996.

[9] G, A. Deschamps, “Ray techniques in electromagnetics,” Proc. IEEE, vol. 60. no. 9, Sep.
1972, pp. 1022-1035.

[10] R. A. Kipp, “Curved surface scattering geometry in the shooting and bouncing rays
method,” 2010 IEEE Antennas Propagat. Intl. Symp., Toronto, ON.

[11] J.D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Kruger, A.E. Lefohn, and T. Purcell,
"A survey of general-purpose computation on graphics hardware", Computer Graphics
Forum, vol. 26, no. 1, pp. 80-113, 2007.

[12] J.D. Owens, M. Houston, D. Luebke, S. Green, J.E. Stone, and J.C. Phillips, "GPU
computing", Proceedings of the IEEE, vol. 96, pp. 879-899, 2008.

[13] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, "NVIDIA Tesla: A Unified
Graphics and Computing Architecture", IEEE Micro, vol. 28, no. 2, pp. 39-55, 2008.

[14] NVIDIA, Whitepaper: “NVIDIA’s next generation CUDA Compute Architecture: Fermi”,
2009.

[15] D.A. Patterson, "The top 10 innovations in the new NVIDIA Fermi architecture, and the
top 3 next challenges", Sept. 2009.

[16] M. Garland, S. Le Grand, J. Nickolls, J. Anderson, J. Hardwick, S. Morton, E. Phillips, Y.
Zhang, and V. Volkov, "Parallel computing experiences with CUDA", IEEE Micro, vol.
28, no. 4, pp. 13-27, 2008.

[17] J.E. Stone, J. Saam, D.J. Hardy, K.L. Vandivort, W.W. Hwu, and K. Schulten, "High
Performance Computation and Interactive Display of Molecular Orbitals on GPUs and
Multi-core CPUs", ACM International Conference Proceeding Series, vol. 383, pp. 9-18,
2009.

[18] J.E. Stone, D.J. Hardy, I.S. Ufimtsev, and K. Schulten, "GPU-Accelerated Molecular
Modeling Coming Of Age", J. Molecular Graphics and Modelling, vol. 29, no. 2, pp. 116-
125, 2010.

[19] J. Nickolls, I. Buck, M. Garland, K. Skadron, “Scalable parallel programming with
CUDA”, ACM Queue, vol. 6, pp. 40-53, 2008.

[20] A. Munshi, “OpenCL Specification Version 1.0”, 2008.

[21] J.E. Stone, D. Gohara, and G. Shi, “OpenCL: A parallel programming standard for
heterogeneous computing systems”, Computing in Science and Engineering, vol. 12, no. 3,
pp. 66-73, 2010.

