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Abstract: Savant is a asymptotic ray-tracing CEM tool used to predict the
performance of antennasinstalled on electrically large platforms, including far-field
antenna patterns, near-field distributions, and antenna-to-antenna coupling. Savant
is based on the shooting and bouncing rays (SBR) formulation. While asymptotic
solvers like Savant have significantly smaller computational and memory
requirements for electrically large problems than full-wave techniques, the
computation costs still increase significantly with frequency and simulation fidelity,
and such solvers benefit greatly from paralléization techniques. Graphics
processing units (GPUs) are throughput-oriented processing devices that are well
suited for the mathematically intensive workloads found in CEM solvers. Current
GPUs contain hundreds of processing units, lever age thousands of threads, and can
execute over one trillion floating-point operations per second. A hybrid CPU and
GPU parallelization approach has been developed for Savant, providing significant
speedups compared to CPU-only implementations. Results from the execution of
GPU-accelerated Savant on multiple case studies will be presented.

1. Introduction

Over the last two decades, there has been a pheabmerease in the computational
power of microprocessors due to the dramatic deereatransistor size and advances in
computer architecture. Initially, the smaller trist@r size translated directly into faster
clock speeds. However, as the size of transistonsirtied to decrease, increased clock
speeds became unsustainable due to excessive ponsrmption and heat dissipation.
As a result, new methods have been developed teslate the benefits of smaller
transistors into increased computational power. @m@oach is to increase the number
of computational cores in the processor. It is nmwnmon to find four or six core
processors in modern computer workstations, butdmeplex circuitry in modern CPUs
makes it difficult to combine a large number of ggssor cores into an effective and
power-efficient multi-core processor.

The trend toward increased transistor density habled the computer graphics industry
to make dramatic advances in the power of gragricsessing units (GPU). GPU cores
are designed for throughput-oriented workloadstebrs of using large amounts of fast
cache memory to hide memory latency as is done WiBUs, GPUs are heavily

multithreaded and multiplex thousands of concutyeexecuting threads onto hundreds
of processing units in order to keep arithmetidsubusy while memory operations are
being serviced. This design principle makes GPUdl weited to mathematically



intensive workloads on very large datasets. Inor@@chieve high performance on these
workloads, GPUs contain high-bandwidth memory systecapable of transferring
hundreds of gigabytes per second. These hardwHegetices enable modern GPUs to
process significantly more floating-point arithneetperations (FLOPS) than modern
CPUs.

High-frequency asymptotic computational electronaips (CEM) solvers offer an
approximate, yet computationally efficient, solatifor many types of electromagnetics
systems. Asymptotic solvers are preferred overvialve solvers at high frequencies,
where the electrical size of the platform becomms large for the required matrix
representation and solution. High-frequency codesndt depend on a large matrix
representation and scale more efficiently with @asing frequency. Still, the
computational cost of high-frequency algorithmsréases with frequency; for many
algorithms, such as the one in Savant, complexibyvg quadratically with frequency.
As a result, even high-frequency codes can recuisggnificant amount of processing
time, often requiring hours or days to complet®mplex simulation.

In addition to the basic computational requiremeariteigh-frequency simulations, many
use-cases for high-frequency codes require theugiwecof multiple simulations using
either different project configurations or diffeteimput conditions. Examples of such
use-cases include optimization of the placementmaoiitiple antennas on complex
platforms, simulation of dynamic scenarios with amemore moving platforms/parts in
the scene, and hybrid closed-loop asymptotic/fdisevsolutions that repeatedly simulate
different portions of the platform with full-wavena high-frequency solvers, exchanging
intermediate results at each iteration until a @vgence criterion is met. For all of these
reasons, high-frequency CEM solvers will benefigagly from the dramatic speedups
offered by GPU-based parallelizations.

2. Asymptotic Solvers & Savant

Asymptotic methods, also known as high-frequenci)(Fhethods, are widely used to
efficiently compute the scattering by objects whaseerall size and features are
electrically large. At high frequencies (or shomavelengths), propagation of
electromagnetic (EM) waves can be approximatedalyybundles, and EM scattering is
dominated by local conditions of the scattering yoodPerhaps the oldest and most
familiar theory is geometric optics (GO). The thecs not without drawbacks, one of
which is its failure to model diffraction. Variowsymptotic enhancementse(, ones
that are valid in the limit as wavelength goes ¢oox have been proposed to overcome
this limitation, including geometrical theory offfdaction (GTD) [1], physical optics
(PO), and physical theory of diffraction (PTD) [2].

Savant is a tool for predicting the installed parfance of antennas. In particular, Savant
focuses on modeling the interaction of the antemitiathe installation platform, using an
asymptotic methodology known as shooting-and-boyncays (SBR) [3,4]. SBR was
originally developed to efficiently model RCS fdeetrically large cavities [3] and later
extended for radar signature modeling on realiigets [5]. It was subsequently
adapted to installed antenna applications [6-8].

In SBR, many GO rays are launched toward the soajtebject (platform) using a
general-purpose geometric ray tracer for compldx GAD models. This determines
which surfaces are lit by the antenna. The lauth¢B® rays are vector-field-weighted



by the antenna and represent diverging volumediycdubes that “paint” surface currents
on the CAD model according to the GO boundary dooi(i.e., PO currents). These

induced currents are radiated to field observagiomts or receiving antennas. Next, a
set of reflected rays is generated from the fimifixe hit points, with their vector fields

updated according to GO and the material propedfethe surfaces. Some of these
reflected rays escape, while the remainder hitragbefaces of the CAD model, painting

second-bounce currents. The process is continuedl,irathis way, SBR implements

multi-bounce scattering mechanisms.

The algorithmic steps of SBR can be summarizedlésfs:

1. Launch many rays from the Tx antenna towardotaform. The rest of the steps
are for each ray.

2. Assign each ray a vector field weight accordioghe Tx polarimetric antenna
pattern.

3. Test each ray for intersection with the surfarf@tie CAD model.
a. If the ray escapes, ignore it.

b. If the ray hits a surface, generate a reflecdyd Compute its fields according
the incident ray fields, the material properties tbeé surface, and GO
principles.

c. If the ray hits a penetrable surface, also gereaa transmitted ray in the same
direction as the incident ray and then extend aondgss it as one would the
reflected ray.

4. At the ray hit-point, compute the total GO fielthcident + reflected +
transmitted) projected on to the surface. Useetlzesl the PO approximation to
determine equivalent electric and magnetic suréaceents.

5. Radiate the equivalent currents to far-field lasgand near-field points by
convolving them with the free-space Green’s functibe radiation integral.

6. Continue tracing the reflected and transmittag generated in Steps 3b) and 3c)
and repeat from there. Continue until either thg escapes (Step 3a) or some
maximum bounce limit is reached.

When curved surfaces are encountered, special mast be taken in computing the
change in GO fields as they propagate from bound®tince, adjusting for the change in
ray tube divergence rate [3,9,10]. Savant alsdémpnts an extension of SBR to model
the surface wave (creeping wave mechanism) basedreeping-wave rays and the
surface currents they deposit as they propagatey dle surface. These details are not of
concern in the current paper.

Among asymptotic ray tracing methods, it is impotte bear in mind the joint role of

GO and PO in SBR. As in GTD codes, SBR uses Ganaficient means of accounting
for the dominant mechanisms of interaction betwaaaces of the scatterer. However,
unlike GTD codes, the GO rays are not of direceredét in determining the scattered
fields at observation angles and points. Instdaat,role is played by radiation of the PO
currents (Step 5) induced by the GO rays (StepA$)such, the terminal condition of GO



rays is not of interest in SBR. Thus, a searchaftew critical rays’ paths is replaced by
shooting many rays (thousands to millions) in oriesample the geometry in detail.
This results in the ability to handle more varied aealistic geometric shapes.

From a computational perspective, the costs ofopeihg the SBR algorithm can be
broken into two categories: a) the cost of perfoigrgeometric ray tracing and associated
updates of GO ray fields (Steps 1 — 4, 6) and &)ctbst of radiating equivalent currents
to observation angles/points (Step 5). In SBR, tiore scales a®(N;), O(N,), and
O(Ns), whereN;, N,, and N; are the numbers of rays, observation angles/poand
frequencies, respectively. For a convergent redjltis generally proportional to the
surface area of the scatterer measured in squarglemgths. When all of these quantities
are large enough, run time scalesG($N, [N, [N, ) . However, as a practical matter, this

condition is not often satisfied. For instance, thpeometric ray-tracing burden is
independent oN, andN:. Hence, wherN, =1, one can often increa$é from 1 to 50 -

100 before doubling run time. Eventually, howeviae run time will scale with the
number of frequencies. The same can be said for nhmber of observation
angles/points, though its impact is felt sooner. iRstance, we observe that fof, =1,

run time doubles foN, going from 1 to 20. Also, oncHl, is large enough that ray

processing (Step 5, evaluating the radiation irtggdominates over geometric ray
tracing (Steps 1-4, 6), run time doubles wiNerncreases from 1 to 4 or 5, at least in
Savant’s implementation. The memory footprint ofRS@0es not grow with any of these
guantities, other than that needed to hold inpdt@utput, and is generally quite modest
compared to the capacity of modern systems.

For many installed antenna problem, is large and the computation of the radiation
integral (Step 5) is the dominant cost of a simaigtthe bottleneck. For example, in
computing the installed antenna pattern, one fretiyieequires hundreds or thousands of
observation angles to fill out a 1-D cut or a 2-€cter. Similarly, in computing the
distribution of fields in the vicinity of the platfm, one is typically interested in
thousands of field observation points, sufficiemtgenerate a 2-D image of the fields.
Because of its form and the limited need to adds®ingency conditions in the
algorithm, the radiation integral lends itself fGaent acceleration on GPUs, the subject
of the present paper.

In its most general form, the radiation integralaisconvolution of equivalent surface
currents and charge densities with the free-spaieerG function, given by
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where E_is the scattered field at the observation pdhis the domain of the ray tube at

the hit point when projected onto the surfages E(T') and H = H(F") are the total

electric and magnetic fields at the surface whersicering the incident ray and reflected
ray (.e., the total GO field)F" is the position vector of the equivalent currenisjs the
surface normaly is the position vector of the observ& =T -7 '| is the distance from

the current sample point to the observer, and the free-space magnetic permeability.



The equivalent currents and charges mentionedepsSt and 5 are those obtained by the
cross-product or dot-product éf with E or H , as indicated in Eq. (1).

WhenR is sufficiently large that higher-order terms egsfrom the gradient operator are
negligible, the equation simplifies considerably to
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Still, Eq. (2) must be evaluated through numerigcgegration. WhenR is also
sufficiently large such thaR>d', whered' is the largest dimension d8, then the
vector dependence can be extracted from the surftegral as a scale factor. The scalar
surface integral then accounts for linear phasgrpssion acrosS and can be evaluated
analytically for the typical ray tube shape usedSavant, a triangle. In practical
problems of interest, this criterion is often meit is always satisfied for far-field
observation angles and usually satisfied for neda-fobservation points. It is this
analytic form of the integral that is acceleratsthg the GPU, as discussed in Section 4.

3. GPU hardwar e ar chitecture and programming model

GPUs were originally designed as highly specializixed-function accelerators
specifically for computer graphics workloads. A tcomplexity and computational
demands of computer graphics algorithms have gr@&RiJs have become progressively
more flexible and have incorporated fully progranblegprocessing units. Over the past
five years GPUs have evolved further, becomingcéiffe general purpose co-processors
for throughput oriented computational workloadshwsignificant data parallelism [11-
13]. The latest generation of GPU hardware impleéméduall IEEE double-precision
floating point arithmetic, 64-bit addressing, ingorates caches, and uses error correcting
codes to protect memory [14,15]. Collectively, #hdésatures have helped close gaps in
ease-of-programming, reliability, and applicabiliof GPUs as compared to CPUs,
making GPUs ideal accelerators for many arithmetiensive data-parallel workloads
found in science and engineering applications. Bele discuss the attributes of GPU
hardware architecture and aspects of the CUDA GRIigramming model that are most
relevant for antenna modeling calculations. Dethitiscussions of GPU hardware
architecture and programming models are founderiitarature [13-16,19].

3.1 Comparison of CPU and GPU hardwar e ar chitecture

GPUs were originally designed for acceleration omputer graphics workloads that
contain tremendous amounts of data-parallelism, &nat by their nature are
computationally intensive in terms of both floatipgint arithmetic and memory
bandwidth. These characteristics have led GPU hanelwlesigns to employ massively
parallel hardware architecture, with state-of-thie@PUs containing over 512 processing
units. Individual GPU processing units are orgathizeito groups, so-called
"multiprocessors" or "compute units” that sharengle instruction decoder. Each of the
processing units in the same group executes ingingcin lock-step, following the
single-instruction multiple-data (SIMD) model. Bharing instruction decoders among
groups of processing units, GPUs use much less@fnicroprocessor die area for
control logic, allowing the area to be used fothametic logic instead. This approach



enables GPUs to achieve arithmetic performancddewany times that of conventional
multi-core CPUs while maintaining power consumptiewels that are still roughly par
with high-end CPUs.

Another characteristic that differentiates GPUsMrG@PUs is that they are designed for
high overall execution throughput rather than l@aiehcy execution, following directly
from the needs of graphics workloads. GPUs achigie throughput at moderate clock
rates through data parallelism rather than the aggbhres taken by CPUs, such as high
clock rates, instruction level parallelism, and -ofsorder execution. Conventional
multi-core CPUs use large caches to mask the latehead and write operations to off-
chip DRAM. Instead of relying on caches, GPUs toffechip memory latency primarily
by saturating processing units with a large nundbeinreads, and context switching from
threads stalled on memory accesses to threadarthatnmediately runnable. The need
for runnable threads to be available for latenayirfty increases the total concurrency
required to allow a GPU to achieve peak executwaughput. Current generation GPUs
require at least 10,000 independent threads ofugoecto fully utilize all processing
units and hide latency for off-chip memory access@$e extensive use of hardware
multithreading reduces the amount of GPU die apeatson cache, thereby making this
space available for arithmetic logic.

Since graphics workloads make frequent use of sgquats and transcendental functions,
GPUs incorporate dedicated machine instructionsfdst evaluation of an unusually
large number of special functions, as compared @fUs. CPUs typically incorporate
few machine instructions for special functions aften compute only low-precision
"estimates” in hardware, requiring math librariespplication code to compute or refine
special function results entirely in software. Rated GPU machine instructions for
special functions give them a significant perfore@mnadvantage versus CPUS,
compounding with the performance benefits gainedmfr massive parallelism.
Applications that make heavy use of special fumgtibave been observed to achieve
GPU speedups over 100 times faster than a singlecore [17-18].

The tremendous arithmetic capability of GPUs resglimatching memory bandwidth.
GPUs incorporate on-board high-bandwidth (over GBV/sec) multi-banked off-chip
"global” DRAM memory systems to meet this demanBUGlobal memory is accessible
to both the host CPUs and to the GPU itself. Sowreent GPUs are not completely self-
sufficient computers, input and output must bedfamed between the host memory and
the GPU over the PCIl express bus. GPU global mensystems achieve peak
performance when they are accessed in large, dligmantiguous read/write operations
known as "coalesced" accesses. Although currergrggan GPUs contain caches, they
are much smaller than those found in CPUs and aneaply used to help reduce the
performance impact of uncoalesced global memoressas. Compute-oriented GPUs
incorporate small, near-register-speed on-chipresiamemory accessible to all threads
executing on the same multiprocessor or compute UBPU shared memory provides a
high performance mechanism for inter-thread comeatiun needed for use as a
software-managed cache. One of the key challengeslved in developing high-
performance GPU-accelerated algorithms is makingtneffective use of fast on-chip
memory systems on the GPU.



The future outlook for GPU hardware is bright. Vendoadmaps project continuing
increases in arithmetic throughput and memory badlttiwfor at least three more
processor generations, based on increased ciremsity enabled by semiconductor
fabrication process improvements leading to inéngasiumbers of cores, arithmetic
units, and so on. If the evolution of future GPé&kigns follows past trends, arithmetic
throughput could increase by a factor of three aranand memory bandwidth might
increase by a factor of two over the next two GRdeagations. These expected changes
would provide the greatest benefit to applicatitimst are arithmetic bound on current
generation GPUs and that have a surplus of pasalieihat can be exploited by future
hardware. Even if future GPU hardware designsrbegidiverge significantly from the
GPUs of today, the algorithms designed for conteemyoGPUs have been shown to be
relatively easy to adapt to other highly parallelhéstectures and multi-core CPUs, with
libraries, automatic translators, and even by haRa&cent CPU designs such as AMD
Fusion and Intel Sandy Bridge have recently begundorporate GPUs on a small scale.
Hybrid CPU/GPU processors cannot match the pe#hknaetic performance and memory
bandwidth of traditional discrete GPUs, but theyehthe potential to offer performance
levels beyond those available in traditional CPbid may be worth utilizing, specifically
for algorithms that lack sufficient parallelismftdly utilize high-end GPUSs.

3.2 GPU softwareinterface and programming model

The two leading GPU software interfaces at the tohevriting are NVIDIA’'s CUDA
programming toolkit [19], and OpenCL [20,21], ardustry standard heterogeneous
computing API. The key programming abstractiors/pled by CUDA and OpenCL are
very similar. Both APIs provide interfaces foramting GPU memory, copying data
between the host and GPU, defining functions (skeddkernels”) that can be executed
on the GPU, launching GPU kernels, and checkingfosrs. CUDA and OpenCL both
provide mechanisms for defining data-parallel cotapons in terms of multidimensional
index spaces composed of tens of thousands of ithdily work items that can be
computed in parallel. Work items are mapped onRBUGhardware threads that are
executed in groups on the underlying multiprocessmr compute units, with smaller
subsets of threads known as “warps” or “wavefroising executed in lock-step on the
GPU'’s SIMD arithmetic hardware. Multiple warpswavefronts executing on the same
multiprocessor or compute unit are grouped togeithter so-called ““thread blocks™ or
“work groups” that have access to on-chip shareanory and L1 cache, coordinating
with each other through high-performance synchiaion primitives. The mapping of
work items to hardware threads and underlying ar@tic units has a significant effect on
the resulting performance, particularly as it re¢ato GPU memory access patterns. The
best choice of parallel decomposition and hardwar@pping is inherently device
specific. Today, applications must often be magualined for the target GPU
architecture. Performance-portability of GPU-acated applications currently remains
an ongoing research problem in the community.

4. Approach

In order to design the GPU-based version of thea®a8BR algorithm, the steps in the
Savant SBR algorithm shown in Section 2 were arg@yp determine which steps were
computational bottlenecks, and which steps werd-suiled for throughput oriented



data-parallel implementation on the GPU. As disedss Section 2, the SBR algorithm
consists of two primary tasks: creation of multishoe ray tracks and computation of the
radiation integral at each bounce. Of these, tdeatian integral was observed to be the
dominant cost of the algorithm, especially as thautation parameters were scaled up to
produce higher fidelity results. Increasing thedation fidelity involves increasing the
number of raysN;, or increasing the number of observation anglesp@nts), N,, or
increasing the number of frequency steps, Increasing any of these three values
increases the computational cost of the radiativegral, either by increasing the cost at
a single bounceN, or Ny) or increasing the number of ray bounces whererddetion
integral must be performedl(). However, the ray tracing cost only increase$ Wit As

a result, as a Savant simulation is scaled updadyme higher fidelity results, the cost of
the radiation integral dominates the computaticc@dt when generating high fidelity
results.

For the second requirement for GPU computationctireputational structure of the ray
tracing calculations and the radiation integralcakitions were compared. Raytracing
requires many unstructured memory accesses, amysepropagate through the region
around the platform and ray-surface intersectidoutations are performed to determine
the reflection and transmission points. Raytracuegeleration data structures, such as
binary space partitioning (BSP) trees and k-d trees commonly used to reduce the
number of ray-surface intersection calculationst tBese structures increase the number
of unstructured memory accesses and the tree savelgorithms tend to be
implemented using recursive functions, which ardéy ®upported by the latest GPU
hardware. In addition, it is difficult to predid, priori, how many times a given ray will
reflect or transmit off the platform, leading tavéde variation in the computational cost
of each ray. The unstructured memory accessegblariength multi-bounce rays, and
recursive nature of many acceleration algorithmskenaay tracing a challenging
algorithm to develop on the GPU.

The radiation integral for each ray bounce has ifonm computational structure. The
radiation integral calculation can be structured that the same calculations are
performed at each observation angle (or pointgagh frequency step, for each bounce.
The memory access pattern resulting from this desgegularly-structured, involving
iteration over lists of observations, frequenceasy ray bounce data. In other words, the
radiation integral is a data-parallel algorithmiwihe right computational structure to be
considered for the GPU.

Based on this analysis, a hybrid parallelizatiors waveloped for Savant, where the ray
tracing calculations would be performed using S#sanexisting task-based
parallelization for multi-core CPUs and the radiatintegral would be performed using
data-parallel computation on the GPU. With thisrapph, each processor type (CPU or
GPU) is given the task that is well suited for @schitecture, and the entire Savant
simulation is parallelized across all availabledveaare in the system.

After identifying the radiation integral as the appriate candidate for GPU
parallelization, we began to design the GPU versibrthe algorithm. Development
began with the radiation integral derivation and @PU implementation in C++ and led
to the GPU implementation in CUDA C. The main foofishe effort was in redesigning
the layout of the data structures used by the cdde.object-oriented structure of C++,



where data and methods are associated togetheadbrobject, is well suited for a large-
scale software project. However, this is not thetberganization for data-parallel
algorithms on the GPU. In C++, an object typicalbntains multiple fields of primitive
data (floating point numbers, integees;.), and multiple objects are stored in arrays, in a
so-calledarray of structures organization. For the GPU, arrays of C++ objeats a
flattened into many separate arrays of primitivéad&nown as atructure of arrays
organization. These arrays are then passed to ¢ K&rnel functions. In CUDA, the
kernel contains the operations and calculationbeqgoerformed by all threads on the
GPU, but it is written in terms of the operatiorsfprmed by a single thread.

Three distinct GPU kernels were developed to impleinthe radiation integral on the
GPU. The first kernel computes the projection & tay tube footprint in the direction of
the reflected ray, a required input for the seckewhel. The second kernel computes the
surface currents at the ray footprint, as describe8tep 4 of the SBR algorithm. The
third kernel calculates the radiation integral &lir observations, as described in Step 5.
The first and last kernels have separate implemientafor far-field angles and near-
field points. The second kernel is common to both.

Initial development of the GPU kernels was complatethe early stages of the project.
At that point the focus of the development effdnifted from implementation correctness
to performance tuning. Many experiments were cotetlavith different thread grid
layouts in order to find a GPU thread grid desiggt {performed well across a wide range
of problem sizes. Data transfer costs between #ld &nd GPU were measured and the
communication over the PCI express bus was rededignorder to minimize the costs.
The GPU kernel functions were modified to reducdJ@€gister usage, improve memory
access patterns and utilize GPU hardware matheratations. The software interface
between the CPU and GPU was redesigned to impta/éotd balancing of the hybrid
parallelization across the multiple CPU cores andtiple GPUs. These tuning efforts
led to significant improvements in computationatfpenance, as discussed in the next
section.

5. Reaults

We conducted a series of experiments to demongtratacceleration potential of Savant
GPU for the computation of both far-field radiatigratterns and near-field field

distributions in a variety of problem sizes. Thesdaonfiguration is the same for all
experiments: a short dipole antenna mounted omt@pBoeing 737 aircraft as shown in
Figure 1. The antenna is simulated in a frequeacyge of 3 GHz to 4 GHz, with the

single-frequency runs at 4 GHz. The aircraft is gled by a triangle mesh containing
18,370 triangles and 55,110 vertices. At 4 GHz, dineraft is 413 wavelengths long and
has a wingspan of 391 wavelengths.

For both the far-field and the near-field casesalysis is performed at five different
levels of observations angles (or points), from @36 40000, with the number of
observations doubled in each level. Three differemhbers of frequency steps are tested
for each observation level: one, five and 25. Theated 15 different experiments for far-
field radiation patterns, and 15 different expemtseor near-field field distribution.



Each set of experiments is solved using four dgffiéicomputational configurations: one
CPU core, four CPU cores, one CPU core plus one,@Rd finally four CPU cores and
two GPUs. The CPU was an AMD Phenom Il x4 965 mgrat 3.4 GHz. The GPUs are
NVIDIA GTX 480 based on the NVIDIA Fermi GPU rungrat 1.4 GHz. Wall clock
times are provided for each compute configuratiod @PU utilization is provided. The
wall clock and CPU utilization are measured using system tootime based on the
entire run of the simulation, including initializat of the simulation and file input and
output. Speedups for the three parallel processimdigurations are provided relative to
the configurations that precede them and are akdan total simulation run time. The
baseline is the one-CPU-core case on the lefttlaadastest is the four-CPU-core, two-
GPU case on the right.

(b)

Figure 1: Test case showing the Boeing 737 platform with a short electric dipole antenna mounted on top
of the fuselage. The far-field observation domain is shown in a). Near-field observation domain
isshown in b).

Performance data for the far-field radiation pattend near-field field distribution
experiments are shown in Tables 1 and 2. Whilesflexific performance numbers are
not exactly the same for the two sets of experisyemtany of the trends are present in
both. These trends are discussed in the remairidieissection.



Far Field
Boeing 737 Ll 4 CPUcores 1 CPUcore, 1 GPU 4 CPUcores, 2 GPUs
core
Short Bectric Diple | (a) ® © @
3-4GHz

# Rays: 747820 Wall CP.U Wall Speedup CI:.’U Wall Speedup CP.U Wall Speedup Speedup Speedup
Run #Obv. #Freq| Time | Util. = Time s (3) util.  Time s (b) uil.  Time w@ b s (©)
# Angles Steps | (S€0) % (sec) % (sec) % (sec)

1| 2500 1 455p 393% 1186 3.8 100% 193 236 342% 8.4 543 14.1 23
2 | 5000 1 8978 394% 230.4 3.9 99% 195 46.1 335% 2 978 25.1 21
3 | 10000 1 17778 395% 4539 39 9% 209 85.0 346% 9.8 1821 46.5 21
4 | 20000 1 35369 394% 914.9 39 99%  26.6 1331 | 344%  12.0 2955 76.4 2.2
5 [ 40000 1 70620 394% 1860.0 3.8 99% 411 1717 | 322%  18.6 379.3 99.9 2.2
6 | 2500 5 10801 395% 279.6 3.9 %% 252 429 346% 113 956 24.7 2.2
7 | 5000 5 2141p 395% 551.3 3.9 98% 328 653 323% 151 1414 364 2.2
8 [ 10000 5 42710 395% 11193 3.8 99%  73.4 582 288%  34.6 1233 323 21
9 | 20000 5 85450 394% 22323 3.8 98% 1174 7238 250%  59.8 1429 37.3 20
10 | 40000 5 17295|0 395% 4474.0 3.9 99% 217.3 79.6 229%  120.0 144.2 37.3 18
11| 2500 25 273818 392% 728.3 3.8 98%  56.1. 488 307%  26.2 1046 27.8 21
12| 5000 25 5446/0 393% 1460.0 3.7 9%  96.1 56.7 268%  47.4 1149 30.8 20
13| 10000 25 11053|0 394% 2899.6 3.8 98% 181.2 61.0 236% 916 1207 317 20
14| 20000 25 22055{0 394% 5952.0 3.7 98% 329.2 67.0 223% 172.3 128.0 345 19
15| 40000 25 | 4427910 394% 11554.03.8 99% 639.9 69.2 209% 374.2 1183 30.9 17

Table 1: Comparison of Savant run-time performance when computing a far-field
four different computational configurations on 15 different problem sizes.

radiation pattern using

Near Field 1CPU
Bosing 737 core 4 CPU cores 1 CPUcore, 1 GPU 4 CPU cores, 2 GPUs
(b) (© (d
3-4GHz @
#Rays: 747820 | wall | CPU Wall g | CPU Wall o 0 | CPU Wall o shesdup Speedup

Run #Obv. #Freq Time | Util. Time s (@) Util.  Time ws (b) util.  Time s (3) v (b) s (©)
# Points Steps (sec) % (sec) % (sec) % (sec)

1] 2500 1 652.6 393% 167.5 3.9 97%  20.1. 325 341% 88 74.2 19.1 23
2 | 5000 1 1284p 394% 329.3 3.9 99% 19.6 655 347% 9.3 138.2 354 21
3 | 10000 1 255966 394%  650.4 3.9 99%  24.4 104.9 327% 120 2121 53.9 2.0
4 | 20000 1 50670 394% 1320.8 3.8 99%  35.3 143.6 330% 16.. 3155 82.2 22
5 | 40000 1 101650 395% 2627.5 3.9 99%  58.6 1734 297%  27.7 366.7 94.8 2.1
6 | 2500 5 1521p 393% 392.0 3.9 99%  30.8 494 339% 14.0 108.3 279 22
7 | 5000 5 3027.4 392% 8253 3.7 9%  44.8 67.6 314%  20.8 1455 39.7 22
8 | 10000 5 60480 393% 1658.2 3.6 99% 739 818 282% 355 1704 46.7 21
9 | 20000 5 12440j0 393% 3386.0 3.7 99% 1336 93.1 250%  66.7 186.6 50.8 2.0
10| 40000 5 24997|0 394% 6617.0 3.8 99% 253.0 98.8 223% 132.3 189.0 50.0 1.9
11| 2500 25 4458/0 391% 1337.8 3.3 99% 108.3 41.2 264% 531 84.0 25.2 2.0
12| 5000 25 9240/0 391% 26735 35 99% 2024 457 234% 102.6 90.1 26.1 20
13| 10000 25 18830[0 393% 5476.03.4 99% 386.7 48.7 215% 198.6 94.8 27.6 19
14| 20000 25 36705/0 392% 11214.03.3 99%  769.0 47.7 207% 416.7 88.1 26.9 18
15| 40000 25 73396/0 391% 21382.03.4 99% 1532.8 47.9 201% 8619 85.2 24.8 1.8

Table 2: Comparison of Savant run-time performance when computing a near-field field distribution using
four different computational configurations on 15 different problem sizes.




The four-core-CPU configuration (column set (b)hkath of the tables) consistently
shows a 3.8 to 3.9 times speedup over the one@Bté-case. This demonstrates that the
multi-core parallelization within Savant scalesiaéntly for a variety of problem sizes
on a four-core CPU. It also serves as a baselinthéofinal configuration to demonstrate
the benefits of adding multiple GPUs to a four-cGfeU. The speedup is less than the
ideal of 4.0 because the initialization and filetpaut is not parallelized and there is a
small amount of thread synchronization and coottnaoverhead when running on
multiple cores.

Performance data for the one-core-CPU, one-GPUisad®wn in column (c). For each
experiment the GPU provides a dramatic speedupy #éx to 171x for far-field and 32x
to 173x for near-field. The benefit of the GPU mamses as the size of the problem
increases because, as the problem size increhsemdiation integral becomes the more
dominant computational cost. For the smallest mwbsizes, such as those found in runs
1, 2 and 3, the run time is constant, even thohgtptoblem size increases by a factor of
four. Recall that the GPU and CPU are computindeddht parts of the problem in
parallel. For each of these cases, the CPU perftiisnsame amount of work to shoot
rays at the platform, but the GPU workload is dowpl For the small problem sizes, the
GPU completes the radiation integral before the Gjtlderates the next set of ray
bounces, resulting in idle time for the GPU. As thst of the radiation integral increases,
the GPU workload increases and eventually, when @iJ utilization has been
maximized, the run times double when the probleza dbubles.

The multi-frequency cases also benefit from GPlekration, but the degree of impact
is less than that of the single-frequency case.mm reason for this is that the CPU is
able to exploit a more efficient iterative formudeat for the frequency-dependent aspect
of the radiation integral that requires fewer siafjJd cos() function evaluations per
frequency step. Because the GPU computes all dgpdéncy steps in parallel, it is not
able to take advantage of the iterative algoritBecause the CPU is roughly two to three
times faster per frequency step when computingeali sequence of frequency steps than
when the CPU computes individual frequencies, d@ GPU speedup is constant in
either case, the relative improvement of the GPtdasgethe CPU is reduced for the multi-
frequency cases.

The final configuration is the four-CPU-core, twdG case shown in column (d). This is
the optimal configuration for this machine wherev&@# utilizes all computational
processors available in the system. The resulte shat adding the second GPU doubles
the speedup in almost all of the cases. Some ofrtiedler cases actually see a speedup
that is more than double. These are the caseath&@PU-bound in the single-GPU tests
and see a benefit from the extra CPU cores. The @#iation for all of the two-GPU
runs is less than 400%, typically 200% to 300%sTikian indication that the simulation
is GPU-bound, and that, for this simulation confagion on this hardware, only two or
three CPU cores are required to reach a high begeceration rate to supply bounces to
the two GPUs.

Overall, these results show that there is a sicpmifi benefit for each level of

parallelization in Savant, with significant perfante gains through the use of one or
more GPUs. At the same time, the data show thati¢igeee of speedup is variable and
depends on many factors, such as number of obgsrsahumber of frequency steps and



the relative computational cost of ray tracing be €PU verses the cost of the radiation
integral on the GPU. For these reasons, it is déficult to predicta priori the exact
level of performance improvement that will be aelk@ for a particular Savant
simulation.

6. Conclusion

In this paper we discussed the architectural diffees between CPU and GPU designs,
and demonstrated how those differences could b®igag to produce a hybrid CPU-
GPU parallelization of the Savant asymptotic CEM/an Using a conventional desktop
workstation with two GPUs, we were able to show 5x380x speedups over a single
CPU core. While the level of speedup shown in trevipus section is significant in its
own right, it becomes even more significant whems ¢bst of the hardware is taken into
account. Adding the two GPU cards to the systenghiyudoubled the total cost of the
hardware and roughly doubled the power consumpdiod heat dissipation. Yet the
computational capacity of this GPU-based machineedsivalent to a cluster of a
minimum of 14 quad-core machines and, for certaablems, a maximum of at least 100
guad-core machines. Clearly GPU parallelizationersff a significant savings in
computation time as well as a significant reductiorcapital and operational costs for
computing hardware, power and cooling budgets.

The work presented in this paper represents thgr@se made during the first 18 months
of a SBIR project with Dr. John Asvestas in the &aahd Antenna Systems Division of
the Naval Air Systems Command (NAVAIR). The projeatl continue for another 18
months. For the next phase in the project, we ptasupport additional computation
algorithms on the GPU, such as the creeping wadiatran integral and GPU-based ray
tracing for triangle mesh and NURBS surfaces. Vge glan to develop a dynamic load-
balancing MPI-based cluster algorithm to enablecetien of Savant on clusters of GPU-
enabled nodes.
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