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Abstract: Savant is a asymptotic ray-tracing CEM tool used to predict the 
performance of antennas installed on electrically large platforms, including far-field 
antenna patterns, near-field distributions, and antenna-to-antenna coupling. Savant 
is based on the shooting and bouncing rays (SBR) formulation. While asymptotic 
solvers like Savant have significantly smaller computational and memory 
requirements for electrically large problems than full-wave techniques, the 
computation costs still increase significantly with frequency and simulation fidelity, 
and such solvers benefit greatly from parallelization techniques. Graphics 
processing units (GPUs) are throughput-oriented processing devices that are well 
suited for the mathematically intensive workloads found in CEM solvers. Current 
GPUs contain hundreds of processing units, leverage thousands of threads, and can 
execute over one trillion floating-point operations per second. A hybrid CPU and 
GPU parallelization approach has been developed for Savant, providing significant 
speedups compared to CPU-only implementations. Results from the execution of 
GPU-accelerated Savant on multiple case studies will be presented. 

 

1. Introduction 

Over the last two decades, there has been a phenomenal increase in the computational 
power of microprocessors due to the dramatic decrease in transistor size and advances in 
computer architecture. Initially, the smaller transistor size translated directly into faster 
clock speeds. However, as the size of transistors continued to decrease, increased clock 
speeds became unsustainable due to excessive power consumption and heat dissipation. 
As a result, new methods have been developed to translate the benefits of smaller 
transistors into increased computational power. One approach is to increase the number 
of computational cores in the processor. It is now common to find four or six core 
processors in modern computer workstations, but the complex circuitry in modern CPUs 
makes it difficult to combine a large number of processor cores into an effective and 
power-efficient multi-core processor. 

The trend toward increased transistor density has enabled the computer graphics industry 
to make dramatic advances in the power of graphics processing units (GPU). GPU cores 
are designed for throughput-oriented workloads. Instead of using large amounts of fast 
cache memory to hide memory latency as is done with CPUs, GPUs are heavily 
multithreaded and multiplex thousands of concurrently executing threads onto hundreds 
of processing units in order to keep arithmetic units busy while memory operations are 
being serviced. This design principle makes GPUs well suited to mathematically 



intensive workloads on very large datasets. In order to achieve high performance on these 
workloads, GPUs contain high-bandwidth memory systems capable of transferring 
hundreds of gigabytes per second. These hardware differences enable modern GPUs to 
process significantly more floating-point arithmetic operations (FLOPS) than modern 
CPUs.  

High-frequency asymptotic computational electromagnetics (CEM) solvers offer an 
approximate, yet computationally efficient, solution for many types of electromagnetics 
systems. Asymptotic solvers are preferred over full-wave solvers at high frequencies, 
where the electrical size of the platform becomes too large for the required matrix 
representation and solution. High-frequency codes do not depend on a large matrix 
representation and scale more efficiently with increasing frequency. Still, the 
computational cost of high-frequency algorithms increases with frequency; for many 
algorithms, such as the one in Savant, complexity grows quadratically with frequency.  
As a result, even high-frequency codes can require a significant amount of processing 
time, often requiring hours or days to complete a complex simulation.  

In addition to the basic computational requirements of high-frequency simulations, many 
use-cases for high-frequency codes require the execution of multiple simulations using 
either different project configurations or different input conditions. Examples of such 
use-cases include optimization of the placement of multiple antennas on complex 
platforms, simulation of dynamic scenarios with one or more moving platforms/parts in 
the scene, and hybrid closed-loop asymptotic/full-wave solutions that repeatedly simulate 
different portions of the platform with full-wave and high-frequency solvers, exchanging 
intermediate results at each iteration until a convergence criterion is met. For all of these 
reasons, high-frequency CEM solvers will benefit greatly from the dramatic speedups 
offered by GPU-based parallelizations. 

2. Asymptotic Solvers & Savant 

Asymptotic methods, also known as high-frequency (HF) methods, are widely used to 
efficiently compute the scattering by objects whose overall size and features are 
electrically large.  At high frequencies (or short wavelengths), propagation of 
electromagnetic (EM) waves can be approximated by ray bundles, and EM scattering is 
dominated by local conditions of the scattering body.  Perhaps the oldest and most 
familiar theory is geometric optics (GO).  The theory is not without drawbacks, one of 
which is its failure to model diffraction.  Various asymptotic enhancements (i.e., ones 
that are valid in the limit as wavelength goes to zero) have been proposed to overcome 
this limitation, including geometrical theory of diffraction (GTD) [1], physical optics 
(PO), and physical theory of diffraction (PTD) [2]. 

Savant is a tool for predicting the installed performance of antennas.  In particular, Savant 
focuses on modeling the interaction of the antenna with the installation platform, using an 
asymptotic methodology known as shooting-and-bouncing rays (SBR) [3,4].  SBR was 
originally developed to efficiently model RCS for electrically large cavities [3] and later 
extended for radar signature modeling on realistic targets [5].  It was subsequently 
adapted to installed antenna applications [6-8]. 

In SBR, many GO rays are launched toward the scattering object (platform) using a 
general-purpose geometric ray tracer for complex 3-D CAD models.  This determines 
which surfaces are lit by the antenna.  The launched GO rays are vector-field-weighted 



by the antenna and represent diverging volumetric ray tubes that “paint” surface currents 
on the CAD model according to the GO boundary condition (i.e., PO currents).  These 
induced currents are radiated to field observation points or receiving antennas.  Next, a 
set of reflected rays is generated from the first-bounce hit points, with their vector fields 
updated according to GO and the material properties of the surfaces.  Some of these 
reflected rays escape, while the remainder hit other surfaces of the CAD model, painting 
second-bounce currents. The process is continued, and in this way, SBR implements 
multi-bounce scattering mechanisms. 

The algorithmic steps of SBR can be summarized as follows: 

1. Launch many rays from the Tx antenna toward the platform.  The rest of the steps 
are for each ray. 

2. Assign each ray a vector field weight according to the Tx polarimetric antenna 
pattern. 

3. Test each ray for intersection with the surfaces of the CAD model. 

a. If the ray escapes, ignore it. 

b. If the ray hits a surface, generate a reflected ray.  Compute its fields according 
the incident ray fields, the material properties of the surface, and GO 
principles. 

c. If the ray hits a penetrable surface, also generate a transmitted ray in the same 
direction as the incident ray and then extend and process it as one would the 
reflected ray. 

4. At the ray hit-point, compute the total GO field (incident + reflected + 
transmitted) projected on to the surface.  Use these and the PO approximation to 
determine equivalent electric and magnetic surface currents. 

5. Radiate the equivalent currents to far-field angles and near-field points by 
convolving them with the free-space Green’s function: the radiation integral. 

6. Continue tracing the reflected and transmitted rays generated in Steps 3b) and 3c) 
and repeat from there.  Continue until either the ray escapes (Step 3a) or some 
maximum bounce limit is reached. 

When curved surfaces are encountered, special care must be taken in computing the 
change in GO fields as they propagate from bounce to bounce, adjusting for the change in 
ray tube divergence rate [3,9,10].  Savant also implements an extension of SBR to model 
the surface wave (creeping wave mechanism) based on creeping-wave rays and the 
surface currents they deposit as they propagate along the surface.  These details are not of 
concern in the current paper. 

Among asymptotic ray tracing methods, it is important to bear in mind the joint role of 
GO and PO in SBR.  As in GTD codes, SBR uses GO as an efficient means of accounting 
for the dominant mechanisms of interaction between surfaces of the scatterer.  However, 
unlike GTD codes, the GO rays are not of direct interest in determining the scattered 
fields at observation angles and points.  Instead, that role is played by radiation of the PO 
currents (Step 5) induced by the GO rays (Step 4).  As such, the terminal condition of GO 



rays is not of interest in SBR.  Thus, a search for a few critical rays’ paths is replaced by 
shooting many rays (thousands to millions) in order to sample the geometry in detail.  
This results in the ability to handle more varied and realistic geometric shapes. 

From a computational perspective, the costs of performing the SBR algorithm can be 
broken into two categories: a) the cost of performing geometric ray tracing and associated 
updates of GO ray fields (Steps 1 – 4, 6) and b) the cost of radiating equivalent currents 
to observation angles/points (Step 5).  In SBR, run time scales as O(Nr), O(No), and 
O(Nf), where Nr, No, and Nf are the numbers of rays, observation angles/points, and 
frequencies, respectively. For a convergent result, Nr is generally proportional to the 
surface area of the scatterer measured in square wavelengths. When all of these quantities 
are large enough, run time scales as ( )r o fO N N N⋅ ⋅ . However, as a practical matter, this 

condition is not often satisfied. For instance, the geometric ray-tracing burden is 
independent of No and Nf. Hence, when 1oN = , one can often increase Nf from 1 to 50 - 

100 before doubling run time. Eventually, however, the run time will scale with the 
number of frequencies. The same can be said for the number of observation 
angles/points, though its impact is felt sooner. For instance, we observe that for 1fN = , 

run time doubles for No going from 1 to 20. Also, once No is large enough that ray 
processing (Step 5, evaluating the radiation integral) dominates over geometric ray 
tracing (Steps 1-4, 6), run time doubles when Nf increases from 1 to 4 or 5, at least in 
Savant’s implementation. The memory footprint of SBR does not grow with any of these 
quantities, other than that needed to hold input and output, and is generally quite modest 
compared to the capacity of modern systems. 

For many installed antenna problems, No is large and the computation of the radiation 
integral (Step 5) is the dominant cost of a simulation, the bottleneck.  For example, in 
computing the installed antenna pattern, one frequently requires hundreds or thousands of 
observation angles to fill out a 1-D cut or a 2-D sector.  Similarly, in computing the 
distribution of fields in the vicinity of the platform, one is typically interested in 
thousands of field observation points, sufficient to generate a 2-D image of the fields.  
Because of its form and the limited need to address contingency conditions in the 
algorithm, the radiation integral lends itself to efficient acceleration on GPUs, the subject 
of the present paper. 

In its most general form, the radiation integral is a convolution of equivalent surface 
currents and charge densities with the free-space Green’s function, given by 
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where sE is the scattered field at the observation point, S’ is the domain of the ray tube at 

the hit point when projected onto the surface, ( )E E r′=  and ( )H H r′=  are the total 
electric and magnetic fields at the surface when considering the incident ray and reflected 
ray (i.e., the total GO field), r′  is the position vector of the equivalent currents, n̂′  is the 
surface normal, r  is the position vector of the observer, | ' |R r r= −  is the distance from 

the current sample point to the observer, and µ0 is the free-space magnetic permeability.  



The equivalent currents and charges mentioned in Steps 4 and 5 are those obtained by the 
cross-product or dot-product of n̂′  with E  or H , as indicated in Eq. (1). 

When R is sufficiently large that higher-order terms arising from the gradient operator are 
negligible, the equation simplifies considerably to 
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Still, Eq. (2) must be evaluated through numerical integration.  When R is also 
sufficiently large such that R d ′� , where d’ is the largest dimension of S’, then the 
vector dependence can be extracted from the surface integral as a scale factor.  The scalar 
surface integral then accounts for linear phase progression across S’ and can be evaluated 
analytically for the typical ray tube shape used in Savant, a triangle.  In practical 
problems of interest, this criterion is often met.  It is always satisfied for far-field 
observation angles and usually satisfied for near-field observation points. It is this 
analytic form of the integral that is accelerated using the GPU, as discussed in Section 4. 

3. GPU hardware architecture and programming model 

GPUs were originally designed as highly specialized fixed-function accelerators 
specifically for computer graphics workloads.  As the complexity and computational 
demands of computer graphics algorithms have grown, GPUs have become progressively 
more flexible and have incorporated fully programmable processing units. Over the past 
five years GPUs have evolved further, becoming effective general purpose co-processors 
for throughput oriented computational workloads with significant data parallelism [11-
13]. The latest generation of GPU hardware implements full IEEE double-precision 
floating point arithmetic, 64-bit addressing, incorporates caches, and uses error correcting 
codes to protect memory [14,15]. Collectively, these features have helped close gaps in 
ease-of-programming, reliability, and applicability of GPUs as compared to CPUs, 
making GPUs ideal accelerators for many arithmetic intensive data-parallel workloads 
found in science and engineering applications. Below we discuss the attributes of GPU 
hardware architecture and aspects of the CUDA GPU programming model that are most 
relevant for antenna modeling calculations. Detailed discussions of GPU hardware 
architecture and programming models are found in the literature [13-16,19].  

3.1 Comparison of CPU and GPU hardware architecture 

GPUs were originally designed for acceleration of computer graphics workloads that 
contain tremendous amounts of data-parallelism, and that by their nature are 
computationally intensive in terms of both floating-point arithmetic and memory 
bandwidth. These characteristics have led GPU hardware designs to employ massively 
parallel hardware architecture, with state-of-the-art GPUs containing over 512 processing 
units. Individual GPU processing units are organized into groups, so-called 
"multiprocessors" or "compute units” that share a single instruction decoder.  Each of the 
processing units in the same group executes instructions in lock-step, following the 
single-instruction multiple-data (SIMD) model.  By sharing instruction decoders among 
groups of processing units, GPUs use much less of the microprocessor die area for 
control logic, allowing the area to be used for arithmetic logic instead.  This approach 



enables GPUs to achieve arithmetic performance levels many times that of conventional 
multi-core CPUs while maintaining power consumption levels that are still roughly par 
with high-end CPUs. 

Another characteristic that differentiates GPUs from CPUs is that they are designed for 
high overall execution throughput rather than low latency execution, following directly 
from the needs of graphics workloads. GPUs achieve high throughput at moderate clock 
rates through data parallelism rather than the approaches taken by CPUs, such as high 
clock rates, instruction level parallelism, and out-of-order execution.  Conventional 
multi-core CPUs use large caches to mask the latency of read and write operations to off-
chip DRAM. Instead of relying on caches, GPUs hide off-chip memory latency primarily 
by saturating processing units with a large number of threads, and context switching from 
threads stalled on memory accesses to threads that are immediately runnable.  The need 
for runnable threads to be available for latency hiding increases the total concurrency 
required to allow a GPU to achieve peak execution throughput.  Current generation GPUs 
require at least 10,000 independent threads of execution to fully utilize all processing 
units and hide latency for off-chip memory accesses.  The extensive use of hardware 
multithreading reduces the amount of GPU die area spent on cache, thereby making this 
space available for arithmetic logic. 

Since graphics workloads make frequent use of square roots and transcendental functions, 
GPUs incorporate dedicated machine instructions for fast evaluation of an unusually 
large number of special functions, as compared with CPUs. CPUs typically incorporate 
few machine instructions for special functions and often compute only low-precision 
"estimates" in hardware, requiring math libraries or application code to compute or refine 
special function results entirely in software.  Dedicated GPU machine instructions for 
special functions give them a significant performance advantage versus CPUs, 
compounding with the performance benefits gained from massive parallelism.  
Applications that make heavy use of special functions have been observed to achieve 
GPU speedups over 100 times faster than a single CPU core [17-18]. 

The tremendous arithmetic capability of GPUs requires matching memory bandwidth. 
GPUs incorporate on-board high-bandwidth (over 140 GB/sec) multi-banked off-chip 
"global" DRAM memory systems to meet this demand. GPU global memory is accessible 
to both the host CPUs and to the GPU itself. Since current GPUs are not completely self-
sufficient computers, input and output must be transferred between the host memory and 
the GPU over the PCI express bus. GPU global memory systems achieve peak 
performance when they are accessed in large, aligned, contiguous read/write operations 
known as "coalesced" accesses. Although current generation GPUs contain caches, they 
are much smaller than those found in CPUs and are primarily used to help reduce the 
performance impact of uncoalesced global memory accesses. Compute-oriented GPUs 
incorporate small, near-register-speed on-chip "shared" memory accessible to all threads 
executing on the same multiprocessor or compute unit.  GPU shared memory provides a 
high performance mechanism for inter-thread communication needed for use as a 
software-managed cache. One of the key challenges involved in developing high-
performance GPU-accelerated algorithms is making most effective use of fast on-chip 
memory systems on the GPU. 



The future outlook for GPU hardware is bright. Vendor roadmaps project continuing 
increases in arithmetic throughput and memory bandwidth for at least three more 
processor generations, based on increased circuit density enabled by semiconductor 
fabrication process improvements leading to increasing numbers of cores, arithmetic 
units, and so on.  If the evolution of future GPU designs follows past trends, arithmetic 
throughput could increase by a factor of three or more and memory bandwidth might 
increase by a factor of two over the next two GPU generations. These expected changes 
would provide the greatest benefit to applications that are arithmetic bound on current 
generation GPUs and that have a surplus of parallelism that can be exploited by future 
hardware.  Even if future GPU hardware designs begin to diverge significantly from the 
GPUs of today, the algorithms designed for contemporary GPUs have been shown to be 
relatively easy to adapt to other highly parallel architectures and multi-core CPUs, with 
libraries, automatic translators, and even by hand.  Recent CPU designs such as AMD 
Fusion and Intel Sandy Bridge have recently begun to incorporate GPUs on a small scale.   
Hybrid CPU/GPU processors cannot match the peak arithmetic performance and memory 
bandwidth of traditional discrete GPUs, but they have the potential to offer performance 
levels beyond those available in traditional CPUs and may be worth utilizing, specifically 
for algorithms that lack sufficient parallelism to fully utilize high-end GPUs. 

3.2 GPU software interface and programming model 

The two leading GPU software interfaces at the time of writing are NVIDIA’s CUDA 
programming toolkit [19], and OpenCL [20,21], an industry standard heterogeneous 
computing API.  The key programming abstractions provided by CUDA and OpenCL are 
very similar.  Both APIs provide interfaces for allocating GPU memory, copying data 
between the host and GPU, defining functions (so-called “kernels”) that can be executed 
on the GPU, launching GPU kernels, and checking for errors.  CUDA and OpenCL both 
provide mechanisms for defining data-parallel computations in terms of multidimensional 
index spaces composed of tens of thousands of individual work items that can be 
computed in parallel.  Work items are mapped onto GPU hardware threads that are 
executed in groups on the underlying multiprocessors or compute units, with smaller 
subsets of threads known as “warps” or “wavefronts” being executed in lock-step on the 
GPU’s SIMD arithmetic hardware.  Multiple warps or wavefronts executing on the same 
multiprocessor or compute unit are grouped together into so-called ``thread blocks’’ or 
``work groups’’ that have access to on-chip shared memory and L1 cache, coordinating 
with each other through high-performance synchronization primitives. The mapping of 
work items to hardware threads and underlying arithmetic units has a significant effect on 
the resulting performance, particularly as it relates to GPU memory access patterns.  The 
best choice of parallel decomposition and hardware mapping is inherently device 
specific.  Today, applications must often be manually tuned for the target GPU 
architecture. Performance-portability of GPU-accelerated applications currently remains 
an ongoing research problem in the community. 

4. Approach  

In order to design the GPU-based version of the Savant SBR algorithm, the steps in the 
Savant SBR algorithm shown in Section 2 were analyzed to determine which steps were 
computational bottlenecks, and which steps were well-suited for throughput oriented 



data-parallel implementation on the GPU. As discussed in Section 2, the SBR algorithm 
consists of two primary tasks: creation of multi-bounce ray tracks and computation of the 
radiation integral at each bounce. Of these, the radiation integral was observed to be the 
dominant cost of the algorithm, especially as the simulation parameters were scaled up to 
produce higher fidelity results. Increasing the simulation fidelity involves increasing the 
number of rays, Nr, or increasing the number of observation angles (or points), No, or 
increasing the number of frequency steps, Nf. Increasing any of these three values 
increases the computational cost of the radiation integral, either by increasing the cost at 
a single bounce (No or Nf) or increasing the number of ray bounces where the radiation 
integral must be performed (Nr). However, the ray tracing cost only increases with Nr. As 
a result, as a Savant simulation is scaled up to produce higher fidelity results, the cost of 
the radiation integral dominates the computational cost when generating high fidelity 
results. 

For the second requirement for GPU computation, the computational structure of the ray 
tracing calculations and the radiation integral calculations were compared. Raytracing 
requires many unstructured memory accesses, as the rays propagate through the region 
around the platform and ray-surface intersection calculations are performed to determine 
the reflection and transmission points. Raytracing acceleration data structures, such as 
binary space partitioning (BSP) trees and k-d trees, are commonly used to reduce the 
number of ray-surface intersection calculations. But these structures increase the number 
of unstructured memory accesses and the tree traversal algorithms tend to be 
implemented using recursive functions, which are only supported by the latest GPU 
hardware. In addition, it is difficult to predict, a priori, how many times a given ray will 
reflect or transmit off the platform, leading to a wide variation in the computational cost 
of each ray. The unstructured memory accesses, variable length multi-bounce rays, and 
recursive nature of many acceleration algorithms make ray tracing a challenging 
algorithm to develop on the GPU. 

The radiation integral for each ray bounce has a uniform computational structure. The 
radiation integral calculation can be structured so that the same calculations are 
performed at each observation angle (or point), at each frequency step, for each bounce. 
The memory access pattern resulting from this design is regularly-structured, involving  
iteration over lists of observations, frequencies, and ray bounce data. In other words, the 
radiation integral is a data-parallel algorithm with the right computational structure to be 
considered for the GPU. 

Based on this analysis, a hybrid parallelization was developed for Savant, where the ray 
tracing calculations would be performed using Savant’s existing task-based 
parallelization for multi-core CPUs and the radiation integral would be performed using 
data-parallel computation on the GPU. With this approach, each processor type (CPU or 
GPU) is given the task that is well suited for its architecture, and the entire Savant 
simulation is parallelized across all available hardware in the system.  

After identifying the radiation integral as the appropriate candidate for GPU 
parallelization, we began to design the GPU version of the algorithm. Development 
began with the radiation integral derivation and the CPU implementation in C++ and led 
to the GPU implementation in CUDA C. The main focus of the effort was in redesigning 
the layout of the data structures used by the code. The object-oriented structure of C++, 



where data and methods are associated together for each object, is well suited for a large-
scale software project. However, this is not the best organization for data-parallel 
algorithms on the GPU. In C++, an object typically contains multiple fields of primitive 
data (floating point numbers, integers, etc.), and multiple objects are stored in arrays, in a 
so-called array of structures organization. For the GPU, arrays of C++ objects are 
flattened into many separate arrays of primitive data, known as a structure of arrays 
organization. These arrays are then passed to the GPU kernel functions. In CUDA, the 
kernel contains the operations and calculations to be performed by all threads on the 
GPU, but it is written in terms of the operations performed by a single thread. 

Three distinct GPU kernels were developed to implement the radiation integral on the 
GPU. The first kernel computes the projection of the ray tube footprint in the direction of 
the reflected ray, a required input for the second kernel. The second kernel computes the 
surface currents at the ray footprint, as described in Step 4 of the SBR algorithm. The 
third kernel calculates the radiation integral for all observations, as described in Step 5. 
The first and last kernels have separate implementations for far-field angles and near-
field points. The second kernel is common to both.  

Initial development of the GPU kernels was completed in the early stages of the project. 
At that point the focus of the development effort shifted from implementation correctness 
to performance tuning. Many experiments were conducted with different thread grid 
layouts in order to find a GPU thread grid design that performed well across a wide range 
of problem sizes. Data transfer costs between the CPU and GPU were measured and the 
communication over the PCI express bus was redesigned in order to minimize the costs. 
The GPU kernel functions were modified to reduce GPU register usage, improve memory 
access patterns and utilize GPU hardware mathematic functions. The software interface 
between the CPU and GPU was redesigned to improve the load balancing of the hybrid 
parallelization across the multiple CPU cores and multiple GPUs. These tuning efforts 
led to significant improvements in computational performance, as discussed in the next 
section.  

5. Results 

We conducted a series of experiments to demonstrate the acceleration potential of Savant 
GPU for the computation of both far-field radiation patterns and near-field field 
distributions in a variety of problem sizes. The base configuration is the same for all 
experiments: a short dipole antenna mounted on top of a Boeing 737 aircraft as shown in 
Figure 1. The antenna is simulated in a frequency range of 3 GHz to 4 GHz, with the 
single-frequency runs at 4 GHz. The aircraft is modeled by a triangle mesh containing 
18,370 triangles and 55,110 vertices. At 4 GHz, the aircraft is 413 wavelengths long and 
has a wingspan of 391 wavelengths.  

For both the far-field and the near-field cases, analysis is performed at five different 
levels of observations angles (or points), from 2500 to 40000, with the number of 
observations doubled in each level. Three different numbers of frequency steps are tested 
for each observation level: one, five and 25. This created 15 different experiments for far-
field radiation patterns, and 15 different experiments for near-field field distribution.  



Each set of experiments is solved using four different computational configurations: one 
CPU core, four CPU cores, one CPU core plus one GPU, and finally four CPU cores and 
two GPUs. The CPU was an AMD Phenom II x4 965 running at 3.4 GHz. The GPUs are 
NVIDIA GTX 480 based on the NVIDIA Fermi GPU running at 1.4 GHz. Wall clock 
times are provided for each compute configuration and CPU utilization is provided. The 
wall clock and CPU utilization are measured using the system tool time based on the 
entire run of the simulation, including initialization of the simulation and file input and 
output. Speedups for the three parallel processing configurations are provided relative to 
the configurations that precede them and are all based on total simulation run time. The 
baseline is the one-CPU-core case on the left, and the fastest is the four-CPU-core, two-
GPU case on the right. 

 

 

 

 
 
 

 

(a) (b) 

Figure 1: Test case showing the Boeing 737 platform with a short electric dipole antenna mounted on top 
of the fuselage. The far-field observation domain is shown in a). Near-field observation domain 
is shown in b). 

 

Performance data for the far-field radiation pattern and near-field field distribution 
experiments are shown in Tables 1 and 2. While the specific performance numbers are 
not exactly the same for the two sets of experiments, many of the trends are present in 
both. These trends are discussed in the remainder of this section. 

 



1 2500 1 455.9 393% 118.6 3.8 100% 19.3 23.6 342% 8.4 54.3 14.1 2.3

2 5000 1 897.8 394% 230.4 3.9 99% 19.5 46.1 335% 9.2 97.8 25.1 2.1

3 10000 1 1777.3 395% 453.9 3.9 99% 20.9 85.0 346% 9.8 182.1 46.5 2.1

4 20000 1 3536.9 394% 914.9 3.9 99% 26.6 133.1 344% 12.0 295.5 76.4 2.2

5 40000 1 7062.0 394% 1860.0 3.8 99% 41.1 171.7 322% 18.6 379.3 99.9 2.2

6 2500 5 1080.1 395% 279.6 3.9 96% 25.2 42.9 346% 11.3 95.6 24.7 2.2

7 5000 5 2141.2 395% 551.3 3.9 98% 32.8 65.3 323% 15.1 141.4 36.4 2.2

8 10000 5 4271.0 395% 1119.3 3.8 99% 73.4 58.2 288% 34.6 123.3 32.3 2.1

9 20000 5 8545.0 394% 2232.3 3.8 98% 117.4 72.8 250% 59.8 142.9 37.3 2.0

10 40000 5 17295.0 395% 4474.0 3.9 99% 217.3 79.6 229% 120.0 144.2 37.3 1.8

11 2500 25 2738.8 392% 728.3 3.8 98% 56.1 48.8 307% 26.2 104.6 27.8 2.1

12 5000 25 5446.0 393% 1460.0 3.7 99% 96.1 56.7 268% 47.4 114.9 30.8 2.0

13 10000 25 11053.0 394% 2899.6 3.8 98% 181.2 61.0 236% 91.6 120.7 31.7 2.0

14 20000 25 22055.0 394% 5952.0 3.7 98% 329.2 67.0 223% 172.3 128.0 34.5 1.9

15 40000 25 44279.0 394% 11554.0 3.8 99% 639.9 69.2 209% 374.2 118.3 30.9 1.7
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Table 1: Comparison of Savant run-time performance when computing a far-field radiation pattern using 

four different computational configurations on 15 different problem sizes. 

 

 

 

1 2500 1 652.5 393% 167.5 3.9 97% 20.1 32.5 341% 8.8 74.2 19.1 2.3

2 5000 1 1284.9 394% 329.3 3.9 99% 19.6 65.5 347% 9.3 138.2 35.4 2.1

3 10000 1 2559.6 394% 650.4 3.9 99% 24.4 104.9 327% 12.1 212.1 53.9 2.0

4 20000 1 5067.0 394% 1320.8 3.8 99% 35.3 143.6 330% 16.1 315.5 82.2 2.2

5 40000 1 10165.0 395% 2627.5 3.9 99% 58.6 173.4 297% 27.7 366.7 94.8 2.1

6 2500 5 1521.0 393% 392.0 3.9 99% 30.8 49.4 339% 14.0 108.3 27.9 2.2

7 5000 5 3027.4 392% 825.3 3.7 99% 44.8 67.6 314% 20.8 145.5 39.7 2.2

8 10000 5 6048.0 393% 1658.2 3.6 99% 73.9 81.8 282% 35.5 170.4 46.7 2.1

9 20000 5 12440.0 393% 3386.0 3.7 99% 133.6 93.1 250% 66.7 186.6 50.8 2.0

10 40000 5 24997.0 394% 6617.0 3.8 99% 253.0 98.8 223% 132.3 189.0 50.0 1.9

11 2500 25 4458.0 391% 1337.8 3.3 99% 108.3 41.2 264% 53.1 84.0 25.2 2.0

12 5000 25 9240.0 391% 2673.5 3.5 99% 202.4 45.7 234% 102.6 90.1 26.1 2.0

13 10000 25 18830.0 393% 5476.0 3.4 99% 386.7 48.7 215% 198.6 94.8 27.6 1.9

14 20000 25 36705.0 392% 11214.0 3.3 99% 769.0 47.7 207% 416.7 88.1 26.9 1.8

15 40000 25 73396.0 391% 21382.0 3.4 99% 1532.8 47.9 201% 861.9 85.2 24.8 1.8
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Table 2: Comparison of Savant run-time performance when computing a near-field field distribution using 

four different computational configurations on 15 different problem sizes. 

 



The four-core-CPU configuration (column set (b) in both of the tables) consistently 
shows a 3.8 to 3.9 times speedup over the one-core-CPU case. This demonstrates that the 
multi-core parallelization within Savant scales efficiently for a variety of problem sizes 
on a four-core CPU. It also serves as a baseline for the final configuration to demonstrate 
the benefits of adding multiple GPUs to a four-core CPU. The speedup is less than the 
ideal of 4.0 because the initialization and file output is not parallelized and there is a 
small amount of thread synchronization and coordination overhead when running on 
multiple cores. 

Performance data for the one-core-CPU, one-GPU case is shown in column (c). For each 
experiment the GPU provides a dramatic speedup, from 24x to 171x for far-field and 32x 
to 173x for near-field. The benefit of the GPU increases as the size of the problem 
increases because, as the problem size increases, the radiation integral becomes the more 
dominant computational cost. For the smallest problem sizes, such as those found in runs 
1, 2 and 3, the run time is constant, even though the problem size increases by a factor of 
four. Recall that the GPU and CPU are computing different parts of the problem in 
parallel. For each of these cases, the CPU performs the same amount of work to shoot 
rays at the platform, but the GPU workload is doubling. For the small problem sizes, the 
GPU completes the radiation integral before the CPU generates the next set of ray 
bounces, resulting in idle time for the GPU. As the cost of the radiation integral increases, 
the GPU workload increases and eventually, when the GPU utilization has been 
maximized, the run times double when the problem size doubles. 

The multi-frequency cases also benefit from GPU acceleration, but the degree of impact 
is less than that of the single-frequency case. The main reason for this is that the CPU is 
able to exploit a more efficient iterative formulation for the frequency-dependent aspect 
of the radiation integral that requires fewer sin() and cos() function evaluations per 
frequency step. Because the GPU computes all the frequency steps in parallel, it is not 
able to take advantage of the iterative algorithm. Because the CPU is roughly two to three 
times faster per frequency step when computing a linear sequence of frequency steps than 
when the CPU computes individual frequencies, and the GPU speedup is constant in 
either case, the relative improvement of the GPU verses the CPU is reduced for the multi-
frequency cases. 

The final configuration is the four-CPU-core, two-GPU case shown in column (d). This is 
the optimal configuration for this machine where Savant utilizes all computational 
processors available in the system. The results show that adding the second GPU doubles 
the speedup in almost all of the cases. Some of the smaller cases actually see a speedup 
that is more than double. These are the cases that are CPU-bound in the single-GPU tests 
and see a benefit from the extra CPU cores. The CPU utilization for all of the two-GPU 
runs is less than 400%, typically 200% to 300%. This is an indication that the simulation 
is GPU-bound, and that, for this simulation configuration on this hardware, only two or 
three CPU cores are required to reach a high bounce-generation rate to supply bounces to 
the two GPUs.  

Overall, these results show that there is a significant benefit for each level of 
parallelization in Savant, with significant performance gains through the use of one or 
more GPUs. At the same time, the data show that the degree of speedup is variable and 
depends on many factors, such as number of observations, number of frequency steps and 



the relative computational cost of ray tracing on the CPU verses the cost of the radiation 
integral on the GPU. For these reasons, it is very difficult to predict a priori the exact 
level of performance improvement that will be achieved for a particular Savant 
simulation.  

6. Conclusion 

In this paper we discussed the architectural differences between CPU and GPU designs, 
and demonstrated how those differences could be exploited to produce a hybrid CPU-
GPU parallelization of the Savant asymptotic CEM solver. Using a conventional desktop 
workstation with two GPUs, we were able to show 50x to 380x speedups over a single 
CPU core. While the level of speedup shown in the previous section is significant in its 
own right, it becomes even more significant when the cost of the hardware is taken into 
account. Adding the two GPU cards to the system roughly doubled the total cost of the 
hardware and roughly doubled the power consumption and heat dissipation. Yet the 
computational capacity of this GPU-based machine is equivalent to a cluster of a 
minimum of 14 quad-core machines and, for certain problems, a maximum of at least 100 
quad-core machines. Clearly GPU parallelization offers a significant savings in 
computation time as well as a significant reduction in capital and operational costs for 
computing hardware, power and cooling budgets. 

The work presented in this paper represents the progress made during the first 18 months 
of a SBIR project with Dr. John Asvestas in the Radar and Antenna Systems Division of 
the Naval Air Systems Command (NAVAIR). The project will continue for another 18 
months. For the next phase in the project, we plan to support additional computation 
algorithms on the GPU, such as the creeping wave radiation integral and GPU-based ray 
tracing for triangle mesh and NURBS surfaces. We also plan to develop a dynamic load-
balancing MPI-based cluster algorithm to enable execution of Savant on clusters of GPU-
enabled nodes. 
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