Structure Refinement with Cryo-EM Density Maps

Gunnar F. Schröder
Computational Structural Biology Group

Institute of Complex Systems - Structural Biochemistry (ICS-6)
Forschungszentrum Jülich
and
Heinrich-Heine Universität Düsseldorf
Structure Refinement at Low-resolution

Assume: We have a starting structure (crystal structure in different conformation or good homology model)

Standard refinement yields a bad structure

How to make use of prior structural information during the refinement?
The required X-ray resolution (determinacy point) depends on the number of degrees of freedom and the solvent fraction.

<table>
<thead>
<tr>
<th>Degrees of Freedom & N/N_{res}</th>
<th>S (Solvent Volume Fraction)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>All Atoms with H atoms</td>
<td>48</td>
</tr>
<tr>
<td>All Atoms no H atoms</td>
<td>24</td>
</tr>
<tr>
<td>All (Φ,Ψ,χ) Torsions</td>
<td>4</td>
</tr>
<tr>
<td>All (Φ,Ψ) Torsions</td>
<td>2</td>
</tr>
<tr>
<td>All (α) Torsions</td>
<td>1</td>
</tr>
</tbody>
</table>
Deformable Elastic Network (DEN)

Refine only those degrees of freedom that need to be refined to fit the data, but not more.

Find only the relevant degrees of freedom for which the data actually provide information.

Deformable Elastic Network

- randomly chosen distance restraints
- deformable distance restraints
- nothing to do with normal modes

The weight w_{DEN} and the γ-parameter control the flexibility of the restraints

$$E_{Target} = E_{Xray} + E_{Chem} + w_{DEN} E_{DEN}$$
Effect of the γ-parameter

$\langle\text{RMSD}\rangle$ (Å)

<table>
<thead>
<tr>
<th>γ</th>
<th>RMSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>0.2</td>
<td>3</td>
</tr>
<tr>
<td>0.4</td>
<td>2</td>
</tr>
<tr>
<td>0.6</td>
<td>1</td>
</tr>
<tr>
<td>0.8</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

$\gamma = 0$ increasing deformability

Reference model \rightarrow Experimental restraints

$\gamma = 1$
Application of DEN to Reciprocal-space Structure Refinement using X-ray Diffraction Data

DEN method implemented in

CNS (v1.3)
and
Phenix (v.1.8)
Real-space Refinement

- Efficient geometry-based conformational sampling
- Cross-correlation coefficient between model and target density map is optimized
- Cross-validation
- DEN restraints
- Symmetry restraints
- Distance restraints
- Positions restraints
- Accurate modeling of electron scattering
- Bulk solvent model
- Overall B-factor optimization

- no normal modes !!
- no coarse-graining (although possible)

http://simtk.org/home/direx/
http://www.schroderlab.org/software/direx/
DireX
Example: Elongation Factor 2 (EF-2)

6300 atoms, 14 steps/min (3.5 hrs for 3000 steps)

<table>
<thead>
<tr>
<th></th>
<th>Cα-RMSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial</td>
<td>13.6 Å</td>
</tr>
<tr>
<td>final</td>
<td>0.8 Å</td>
</tr>
</tbody>
</table>

8Å density map
DireX
Example: Elongation Factor 2 (EF-2)

<table>
<thead>
<tr>
<th></th>
<th>Cα-RMSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial</td>
<td>13.6 Å</td>
</tr>
<tr>
<td>final</td>
<td>0.8 Å</td>
</tr>
</tbody>
</table>

6300 atoms, 14 steps/min (3.5 hrs for 3000 steps)

synthetic 8Å density map
There are 3 main forces on atoms in DireX:

1) **Concoord restraints**: maintain correct stereochemistry (bond lengths, planarity, etc.) and prevent atom overlaps

2) **DEN restraints**: control the deviation from a reference model

3) **Density restraints**: fit model into density
DireX: Geometry-based conformational sampling

based on CONCOORD

1. Initial model

DireX:
Geometry-based conformational sampling

based on CONCOORD

1. Initial model
2. Generate list of distance restraints (intervals)
DireX: Geometry-based conformational sampling

based on CONCOORD

1. Initial model
2. Generate list of distance restraints (intervals)
3. Perturb coordinates
DireX: Geometry-based conformational sampling

based on CONCOORD

1. Initial model
2. Generate list of distance restraints (intervals)
3. Perturb coordinates
4. use CONCOORD algorithm to obtain a new structure which also obeys all distance restraints

CONCOORD: correct distances iteratively in a random order
DireX:
Geometry-based conformational sampling

based on CONCOORD

Random walk through conformational space while maintaining correct stereochemistry and avoiding atom clashes
DireX:
Geometry-based conformational sampling

based on CONCOORD

Random walk through conformational space
while maintaining correct stereochemistry
and avoiding atom clashes
Mitglied der Helmholtz-Gemeinschaft

\[\rho_{\text{difference}}(x) = \rho_{\text{target}}(x) - \rho_{\text{model}}(x) \]

DireX: Forces derived from a density map

Stochastic gradient to move atoms into high difference-density regions

For each atom:
average over 10 randomly chosen vectors weighted by density difference
Difference between MDFF and DireX

Low-resolution data are (obviously) missing high-resolution information.

The difference is where this missing information comes from:

MDFF uses MD force field, i.e. predicts missing information

DireX takes missing information from crystal structure (or other reference model)
Ribosome

tRNA translocation

2 million single-particle images sorted into 50 conformational substates

Resolution 8 - 15 Å

In collaboration with Holger Stark’s lab (MPI Biophysical Chemistry, Göttingen)

Ribosome
tRNA translocation

Each state was refined separately using DireX

Large subunit
Small subunit
tRNA
tRNA

24 states shown
MD Simulation of Conformational Transitions

Image classification can yield conformational states that are sufficiently similar to describe the transitions between these states by molecular dynamics simulations.

In collaboration with Holger Stark and Helmut Grubmüller (MPI Biophysical Chemistry, Göttingen)

Ion Channel Gating
The cyclic-nucleotide activated MloK1 K⁺ channel

The channel opens upon binding of cAMP to the CNBD.

Cryo-EM structure at 7 Å (12 Å vertical)
in collaboration with H. Stahlberg (Biozentrum Basel) and C. Nimigean (Cornell)
Kowal et al., Nat. Comm. (2013), accepted
Ion Channel Gating

Open and closed conformation of the CNBD determined by NMR in the group of Dieter Willbold

Schünke, et al. PNAS (2011)

in collaboration with H.Stahlberg (Biozentrum Basel) and C.Nimigean (Cornell)

Kowal et al., Nat. Comm. (2013), accepted
Ion Channel Gating
The cyclic-nucleotide activated Mlok1 K+ channel

channel closed

outside

inside

-cAMP

in collaboration with H.Stahlberg (Biozentrum Basel) and C.Nimigean (Cornell)

Kowal et al., Nat. Comm. (2013), accepted
Ion Channel Gating
The cyclic-nucleotide activated Mlok1 K+ channel

channel open

+ cAMP

inside

outside

in collaboration with H. Stahlberg (Biozentrum Basel) and C. Nimigean (Cornell)

Kowal et al., Nat. Comm. (2013), accepted
Ion Channel Gating
Transition between open and closed channel conformation

membrane

membrane

Voltage sensor domain

CNBD
Cross-validation

At low resolution overfitting becomes a serious problem. Standard procedure in X-ray refinement (Brunger, 1992):

Split data set (randomly) into two sets:
- ‘work’ set and ‘test’ set
- 95% 5%

Refinement is done only with work set.

Test set data are only used for computing R_{free}

$$R = \frac{\sum_h \left| F_{\text{obs}}(h) - F_{\text{calc}}(h) \right|}{\sum_h |F_{\text{obs}}(h)|}$$

If difference between R_{free} and R_{work} gets too large, model is overfitted.
Cross-validation

Exclude part of the data that is not used for refinement, but only for validation ("test set").

Neighboring Fourier components are correlated in EM densities, therefore define high-resolution shell as free set.

\[C_{\text{free}}: \text{density cross-correlation between model and target free maps} \]

Falkner and Schröder, PNAS (2013)
Cross-validation

- EM density
- Model density

Density cross-correlation:

Work interval (here 7 - 200 Å)
\[\rightarrow C_{\text{work}} \]

Free interval (here 5 - 7 Å)
\[\rightarrow C_{\text{free}} \]
Cross-validation
Starting from correct structure (1ikn)

Synthetic density map with added noise
FSC (0.5) ~11 Å

Free resolution range: 10 - 13 Å
Take at ~11 Å
from Benchmark set by Topf et al. (Structure 16: 295, 2008)

initial RMSD 3.6 Å
refined 1.5 Å

free resolution range 10-13 Å
Backbone Tracing at Low Resolution (4 – 6 Å)
Treat tracing as a global optimization problem

- Place Beads Randomly into the Density Map
- Refine Bead Positions
- Solve the Traveling Salesman Problem: find shortest path such that each bead is visited exactly one time
 - Lin-Kernighan algorithm
 + secondary structure restraints
 + statistical residue pair potential
- Refine Backbone Trace (with DireX + Secondary Structure Restraints)
Additional Restraints on the Traveling Salesman Problem

The **Miyazawa-Jernigan** potential is a statistical potential which favors contacts of amino acids that are frequently observed to be in contact in the PDB:

$$E_{MJ} = \sum_{i<j} M(a_i, a_j) D_{ij}$$

- D_{ij} is the contact matrix between amino acids of types a_i and a_j.
- M is the weight according to the observed frequency of the a_i, a_j pair.

Secondary structure prediction yields restraints on the distances between amino acids that are within the same secondary structure element:

$$E_{SSE} = \sum (d_{ij} - d_{ij}^{seq})^2$$

The tracing algorithm then optimizes the E_{Total}

$$E_{Total} = E_{Lin-Kernighan} + E_{MJ} + E_{SSE}$$
Calmodulin Backbone Trace at Different Resolutions

- Test with synthetic (perfect) density maps at different resolutions
- 10 traces were generated for each resolution
- For all resolution the correct topology was found

<table>
<thead>
<tr>
<th>Resolution</th>
<th>RMSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Å</td>
<td>6.4 Å</td>
</tr>
<tr>
<td>5 Å</td>
<td>7.5 Å</td>
</tr>
<tr>
<td>6 Å</td>
<td>4.7 Å</td>
</tr>
<tr>
<td>7 Å</td>
<td>8.1 Å</td>
</tr>
</tbody>
</table>
Sampling the backbone conformations with DireX

DireX does not require a complete input model

Ca-trace can be extensively sampled (simulated annealing)

Distance restraints can impose secondary structure information
Iho670 adhesion filaments from the *Ignicoccus hospitalis*

- EM reconstruction at 4 – 5 Å
- ~75% of trace complete
- Sequence assignment in progress
Heterogeneity and Flexibility in single-particle Cryo-EM

- Heterogeneity severely limits the resolution

- Advantage of Cryo-EM: all information is in the particle images (but difficult to extract due to noise).

- **Goal:** determine conformational variance **AND** improve resolution
Extracting Conformational Dynamics
Equilibrium Fluctuations

Single-particle images (18,168)

Bootstrapping

100 bootstrapped maps

GroEL at 8 Å
(GroEL–Aacpn10–ADP)

In collaboration with Wah Chiu (Baylor College) and Hays Rye (Texas A&M)

GroEL - Principal Component Analysis of the ensemble fitted models:

1. Eigenvector

- lock-in of GroES
- upward motion of cis-ring apical domains
- rotations of trans-ring apical domains

side view
GroEL - Principal Component Analysis of the ensemble fitted models:

1. Eigenvector

- lock-in of GroES
- upward motion of cis-ring apical domains
- rotations of trans-ring apical domains

top view on GroES
GroEL - Principal Component Analysis of the ensemble fitted models:

1. Eigenvector

- lock-in of GroES
- upward motion of cis-ring apical domains
- rotations of trans-ring apical domains

bottom view on trans-apical domain
Comparing GroEL/ES in two nucleotide states $R3_{\text{ATP}} - R4_{\text{ADP}}$

Image Sorting is key to achieving high resolution (not necessarily a large number of particles)

Images used for reconstruction need to show the molecule in the same conformation!

Image Sorting reveals different conformational states
Standard image classification sorts images according to density similarity.

But: Conformational Variance is not the same as Density Variance

Ongoing Work

- Use principal conformational motions to sort images into classes
- Iteratively determine residual conformational dynamics in subclasses of images for further
Refinement of generic bead models

DireX can refine any generic geometric model

you do not need a crystal structure to determine principal motions

- Use program beadgen to generate a bead model from a density map

- Refine bead model to different density maps

Models refined to 100 bootstrapped maps
Acknowledgements

Group Members
Benjamin Falkner
André Wildberg
Zhe Wang
Kumaran Baskaran
Dennis Della Corte
Amudha Duraisamy
Michaela Spiegel
Lena Möhlenkamp
Robin Pauli

Forschungszentrum Jülich
Dieter Willbold (ICS-6)
Karl-Erich Jaeger (IMET)
Jan Marienhagen (IBG-1)

Stanford University
Michael Levitt
Axel Brunger

Max-Planck-Institute Göttingen
Holger Stark
Niels Fischer

Biozentrum Basel
Henning Stahlberg

University of Virginia
Ed Egelman
Vitold Galkin

Baylor College of Medicine
Junjie Zhang
Dong-Hua Chen
Wah Chiu

Jülich Supercomputing Centre (JSC)
5.9 Petaflops