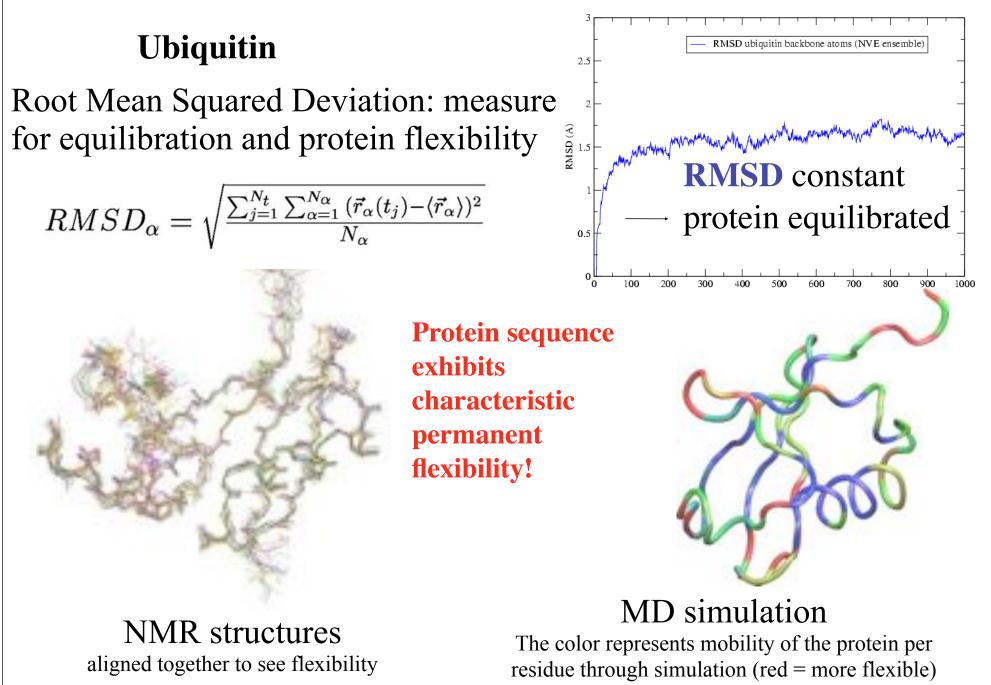
Statistical Mechanics of Proteins

Ubiquitin

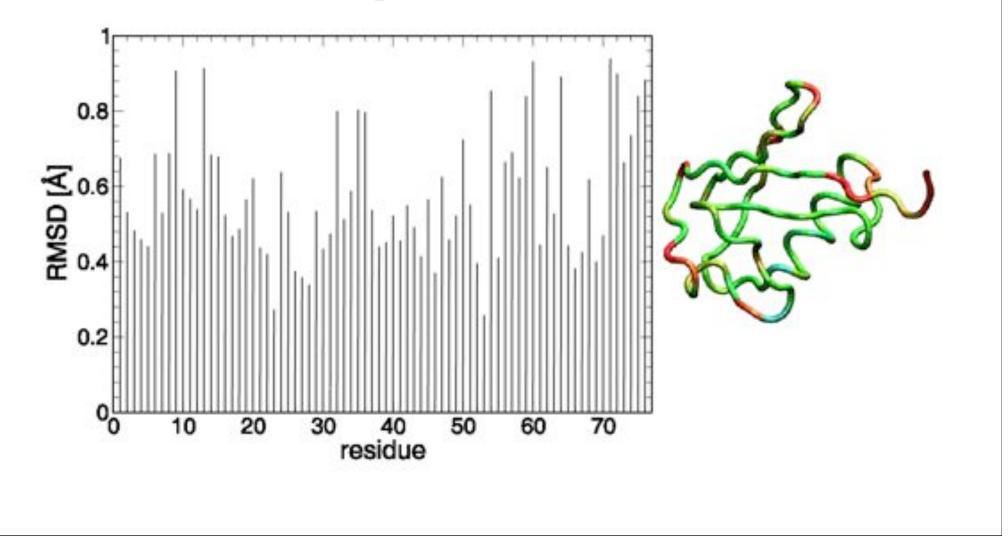
Show molecular dynamics trajectory in VMD

Equilibrium Properties of Proteins



Thermal Motion of Ubiquitin from MD

RMSD values per residue



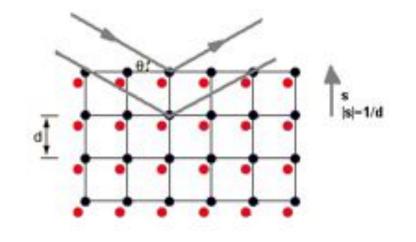
Thermal Motion of Ubiquitin from MD

Temperature Dependence of Crystal Diffraction (Debye-Waller factor)

Bragg's law $2 d \sin \theta = \lambda$

structure factor

$$f_j \exp[-i\vec{s}\cdot\vec{r_j}]$$



But the atom carries out thermal vibrations around equilibrium position \vec{x}_j

$$\vec{r}_j(t) = \vec{x}_j + \vec{u}_j(t)$$

Accordingly:

$$\langle f_j \exp[-i\vec{s}\cdot\vec{r}_j] \rangle = f_j \exp[-i\vec{s}\cdot\vec{x}_j] \langle \exp[-i\vec{s}\cdot\vec{u}_j] \rangle$$

Thermal Motion of Ubiquitin from MD

Temperature Dependence of Crystal Diffraction (Debye-Waller factor)

One can expand:

$$\langle \exp[-i\vec{s}\cdot\vec{u}_j] \rangle = 1 - i \underbrace{\langle \vec{s}\cdot\vec{u}_j \rangle}_{=0} - \frac{1}{2} \langle (\vec{s}\cdot\vec{u}_j)^2 \rangle + \dots$$

Spatial average for harmonic oscillator: $\langle (\vec{s} \cdot \vec{u}_j)^2 \rangle = \frac{1}{3} s^2 \langle u_j^2 \rangle$

One can carry out the expansion further and show

$$\langle \exp[-i\vec{s}\cdot\vec{u}_j] \rangle = \exp\left[-\frac{1}{6}s^2 \langle u_j^2 \rangle\right]$$

Debye-Waller factor

Using for the thermal amplitude of the harmonic oscillator

$$\frac{1}{2}m\omega^2 u_j^2 = \frac{3}{2}k_B T$$

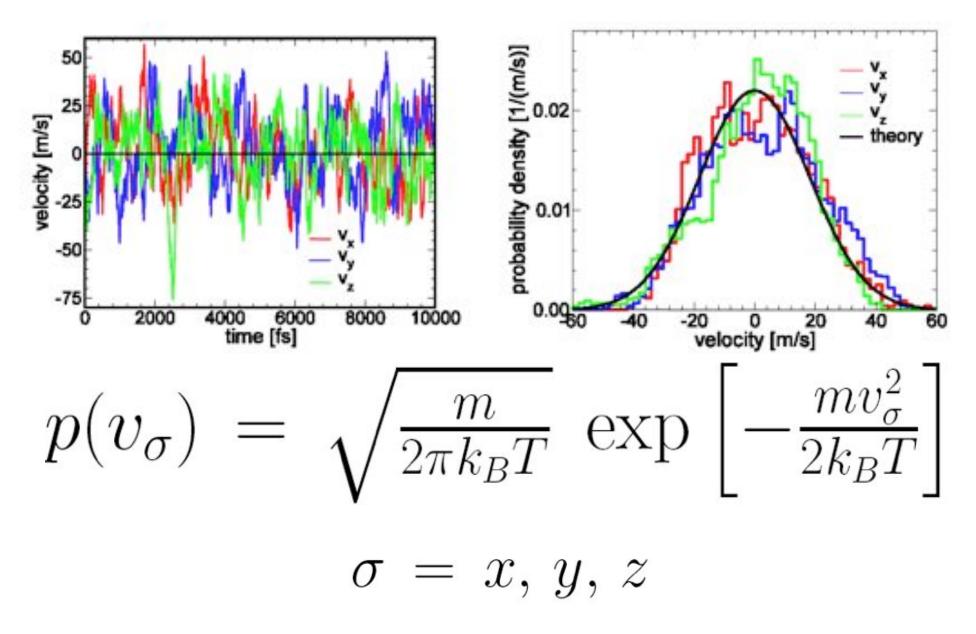
one obtains

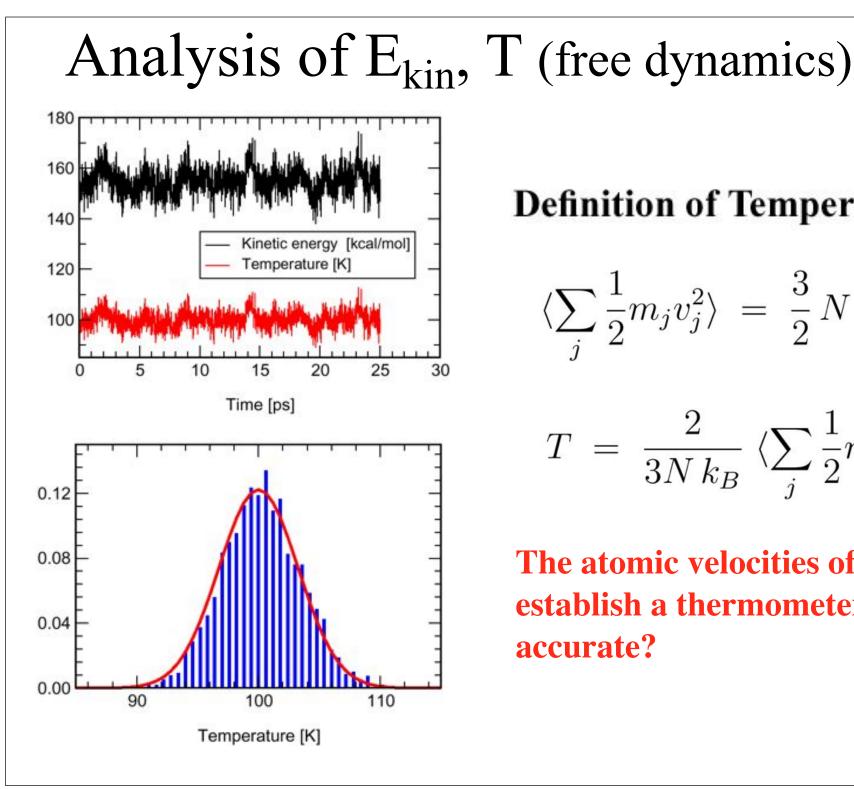
 $\langle f_j \exp\left[-i\vec{s}\cdot\vec{r}_j\right] \rangle = f_j \exp\left[-s^2 k_B T/2m\omega^2\right] \exp\left[-i\vec{s}\cdot\vec{x}_j\right]$

Equilibrium Properties of Proteins Energies: kinetic and potential $\left\langle \sum_{j} \frac{1}{2} m_j v_j^2 \right\rangle = \frac{3}{2} N k_B T$ Kinetic energy (quadratic) $= \sum_{i=1}^{n} k_i^{bond} (r_i - r_0)^2 + \sum_{i=1}^{n} k_i^{angle} (\theta_i - \theta_0)^2 + \sum_{$ $U(\vec{R})$ Uhond Uangle $k_i^{dihe}[1+\cos\left(n_i\phi_i+\delta_i\right)]+$ dihedrals Udihedral temperature $\left(\frac{\sigma_{ij}}{r_{ii}}\right)^{12} - \left(\frac{\sigma_{ij}}{r_{ii}}\right)^{6} + \sum_{i} \sum_{i \neq i} \frac{q_i q_j}{\epsilon r_{ij}}$ dependence Unonbond Potentialc energy (not all quadratic)

Equilibrium Properties of Proteins Energies: kinetic and potential 1×10³ $\left\langle \sum_{j} \frac{1}{2} m_j v_j^2 \right\rangle = \frac{3}{2} N k_B T$ 3,693 Kinetic energy (quadratic) 0 1.237 Energy [kcal/mol] ₂01×1-₈ $U(\vec{R})$ $\sum k_i^{bond} (r_i - r_0)^2 + \sum k_i^{angle} (\theta_i - \theta_0)^2 +$ bonds oulomb Uhond Uanale Bond $k_i^{dihe}[1+\cos\left(n_i\phi_i+\delta_i\right)]+$ Angle Total dihedrals $U_{dihedral}$ -2×10³ $\left(\frac{\sigma_{ij}}{r_{ij}}\right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}}\right)^{6} + \sum_{i} \sum_{j \neq i} \frac{q_i q_j}{\epsilon r_{ij}}$ $\sum \sum 4\epsilon_{ij}$ Unonbond -3×10 100 200 300 400 500 Temperature [K] Potentialc energy (not all quadratic)

Maxwell Distribution of Atomic Velocities





Definition of Temperature

$$\left\langle \sum_{j} \frac{1}{2} m_j v_j^2 \right\rangle = \frac{3}{2} N k_B T$$

$$T = \frac{2}{3N k_B} \left\langle \sum_j \frac{1}{2} m_j v_j^2 \right\rangle$$

The atomic velocities of a protein establish a thermometer, but is it accurate?

Temperatur Fluctuations

Maxwell distribution

 $dP(v_n) = c \exp(-m v_n^2/2k_BT) dv_n \qquad (7)$

The atomic velocity thermometer is inaccurate due to the finite size of a protein!

Individual kinetic energy $\epsilon_n = m v_n^2/2$

$$dP(\epsilon_n) = (\pi T_0 \epsilon_n)^{-1/2} \exp(-\epsilon_n / k_B T_0) d\epsilon_n \qquad (8)$$

One can derive

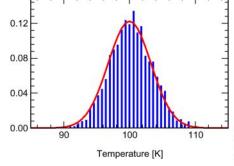
$$\langle \epsilon_n \rangle = T_0/2$$
 (9)

$$\langle \epsilon_n^2 \rangle = 3 T_0^2 / 4 \qquad (10)$$

$$\langle \epsilon_n^2 \rangle - \langle \epsilon_n \rangle^2 = T_0^2/2$$
 (11)

The distribution of the total kinetic energy $E_{kin} = \sum_j \frac{1}{2} m_j v_j^2$, according to the central limit theorem, is approximately Gaussian

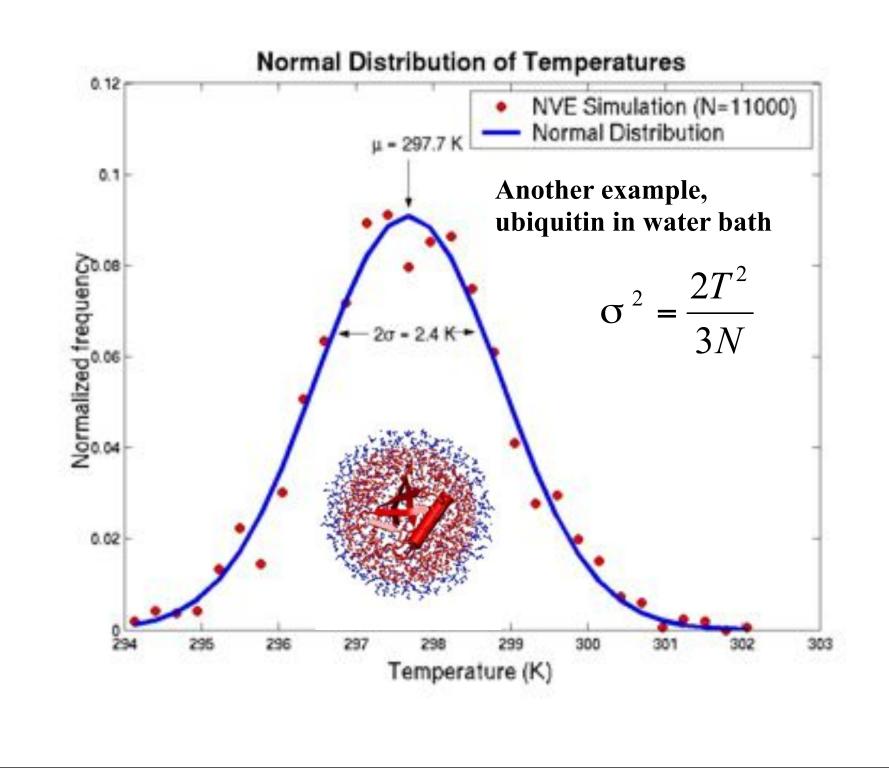
$$P(E_{kin}) = c \exp \left(\frac{-(E_{kin} - \langle E_{kin} \rangle)^2}{2\left(\frac{3Nk_B^2 T_0^2}{2}\right)}\right) \qquad (12)$$



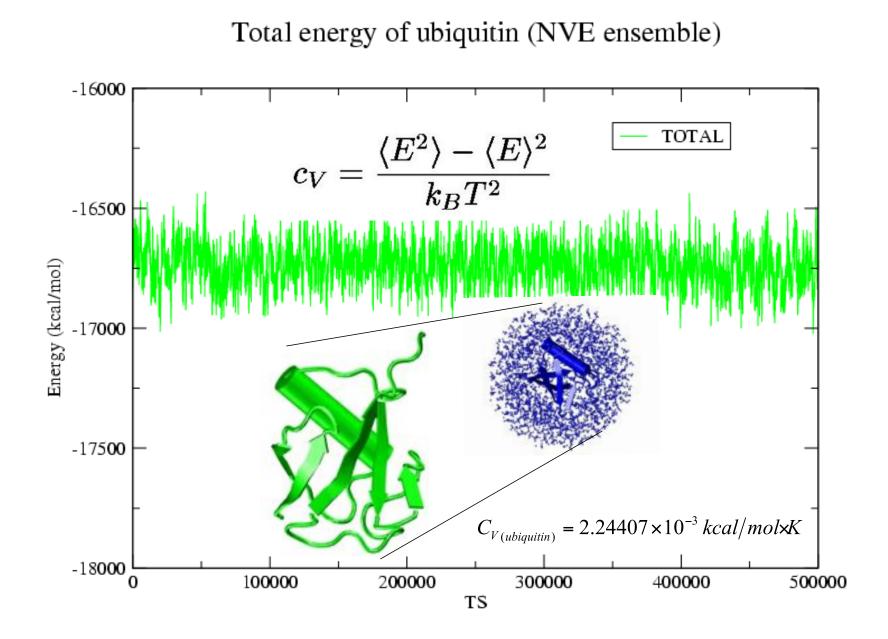
The distribution function for the temperature $(T = 2E_{kin}/3k_B)$ fluctuations $\Delta T = T - T_0$ is then

$$P(\Delta T) = c \exp[-(\Delta T)^2/2\sigma^2], \quad \sigma^2 = 2T^2/3N$$
 (13)

For $T_0 = 100$ K and N = 557, this gives $\sigma = 3.6$.

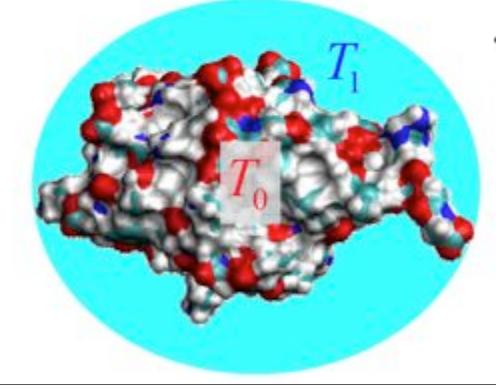


Specific Heat of a Protein



Simulated Cooling of Ubiquitin

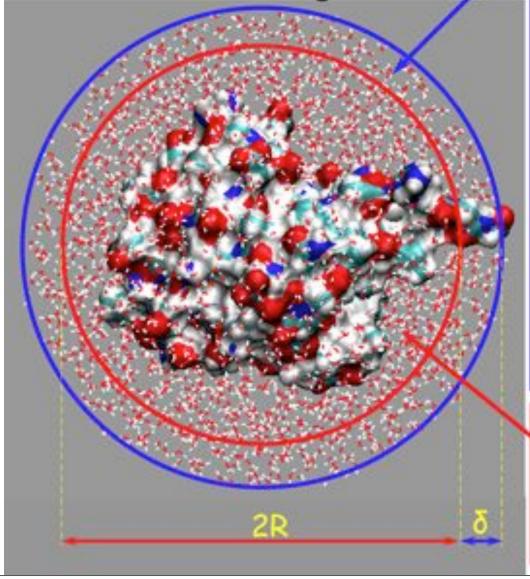
- Proteins function in a narrow (physiological) temperature range. What happens to them when the temperature of their surrounding changes significantly (temperature gradient) ?
- Can the heating/cooling process of a protein be simulated by molecular dynamics ? If yes, then how?



 What can we learn from the simulated cooling/heating of a protein ?

How to simulate cooling ?

Heat transfer through mechanical coupling between atoms in the two regions



coolant layer of atoms

motion of atoms is subject to stochastic Langevin dynamics $m \ddot{r} = F_{FF} + F_H + F_f + F_L$

 $F_{FF} \rightarrow$ force field $F_{H} \rightarrow$ harmonic restrain $F_{f} \rightarrow$ friction $F_{L} \rightarrow$ Langevin force

atoms in the inner region follow Newtonian dynamics

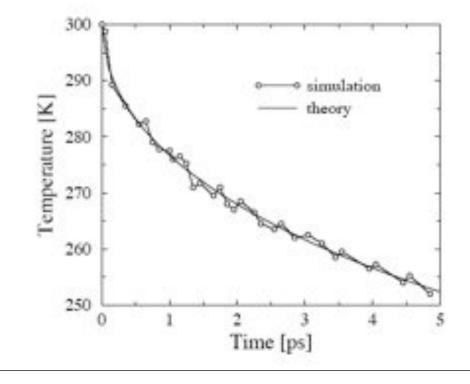
$$m\ddot{r} = F_{FF}$$

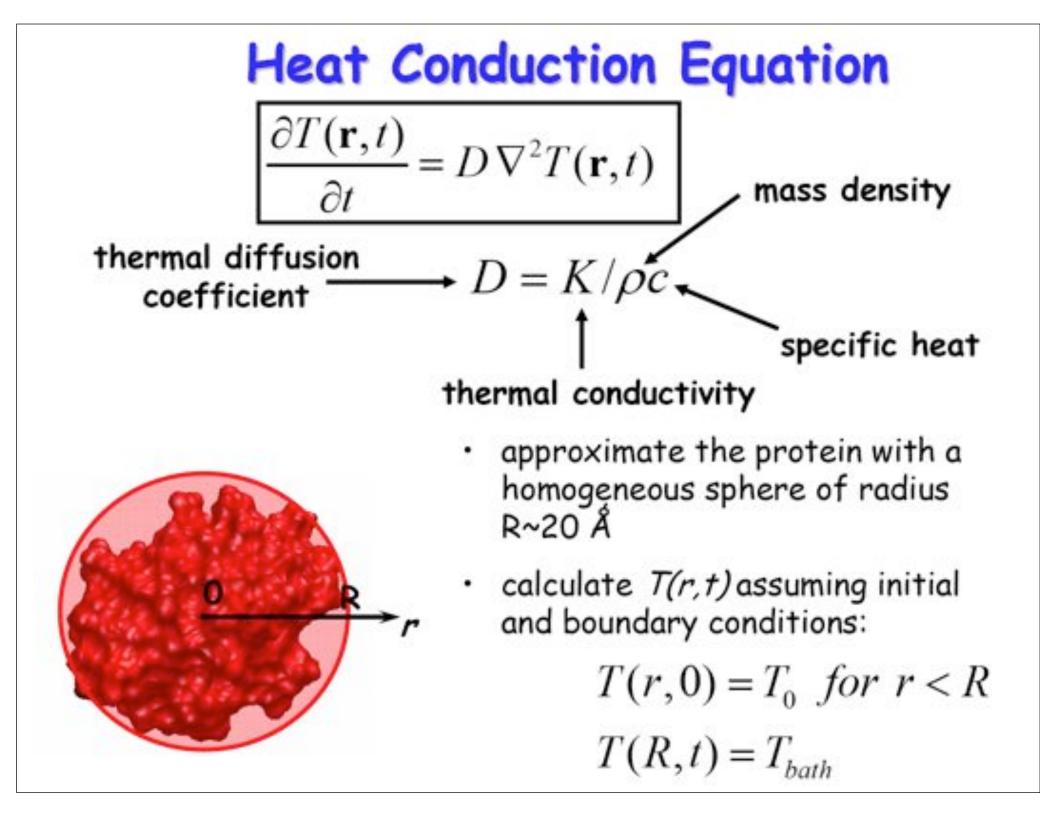
Simulated Cooling - Result

t	$\langle T_{sim} \rangle$						
0.05	298.75	1.05	276.00	1.95	267.00	3.25	261.00
0.15	289.25	1.15	276.50	2.05	268.50	3.45	258.50
0.35	285.50	1.25	275.25	2.25	266.50	3.55	259.50
0.55	282.25	1.35	271.00	2.35	264.50	3.95	256,50
0.65	282.75	1.45	271.75	2.55	263,50	4.05	257.25
0.75	279.00	1.65	269.50	2.65	264.50	4.45	254.00
0.85	277.75	1.75	271.00	2.85	262.00	4.55	255.25
1.00	277.50	1.85	268.00	3.05	262.50	4.85	252.00

Result from simulation

Table 1: Mean temperature $\langle T_{sim} \rangle$ [K] of the protein as a function of time t [ps].

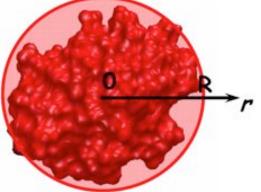




Solution of the Heat Equation

$$\frac{\partial T(\mathbf{r}, t)}{\partial t} = D \nabla^2 T(\mathbf{r}, t) ,$$
$$D = K/\rho c ,$$

Initial condition



 $T(\mathbf{r},0) = \langle T_{sim} \rangle(0)$

for r < R,

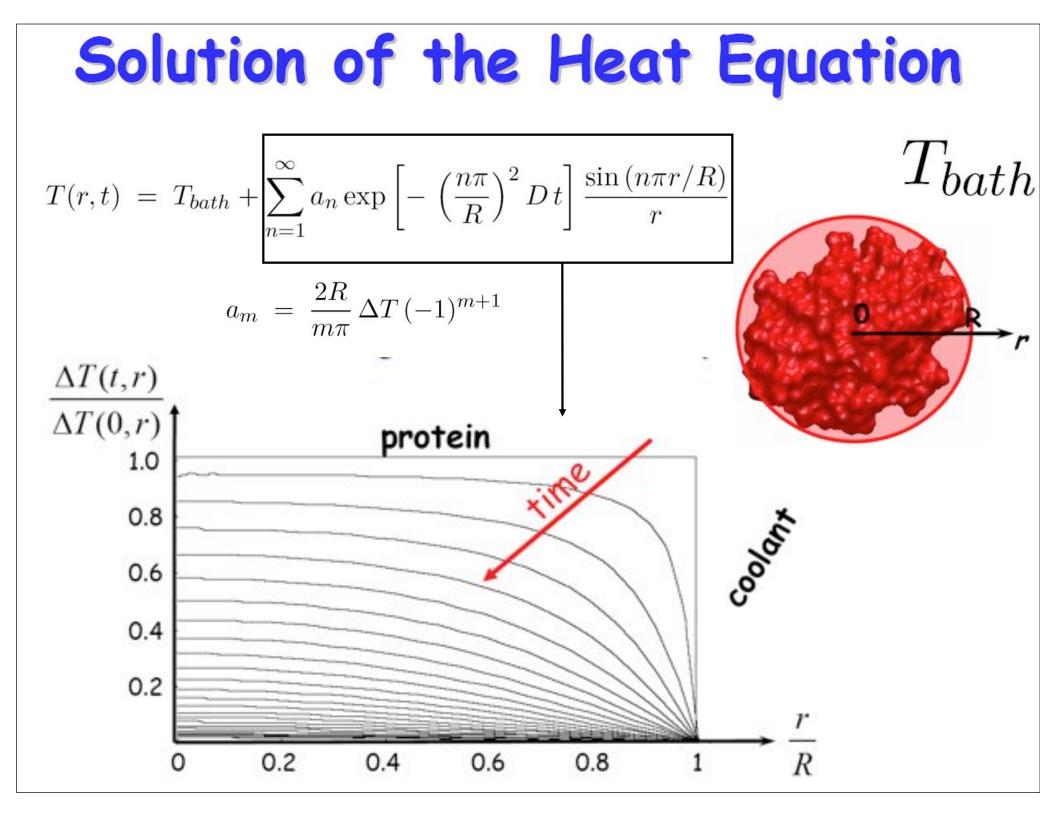
Boundary condition

$$T(R,t) = T_{bath}$$
.

Solution of the Heat Equation
Spherical symmetry
$$\frac{\partial T(r,t)}{\partial t} = D \frac{1}{r} \partial_r^2 r T(r,t)$$
 T_{bath}
We assume
 $T(r,t) = T_{bath} + \sum_{n=1}^{\infty} a_n e^{\lambda_n t} u_n(r)$
difference from bath

Here u_n are the eigenfunctions of the spherical diffusion operator $L \equiv \frac{D}{r} \frac{d^2}{dr^2} r$

$$\frac{D}{r}\frac{d^2}{dr^2}ru_n(r) = \lambda_n u_n(r) , \quad u_n(0) = \text{finite} , \quad u_n(R) = 0$$



Solution of the Heat Equation

Temperature averaged over volume

