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Foreword

Free-energy differences can be estimated computationally following four different routes:

Methods based on histograms,1

Non-equilibrium work simulations,2

Perturbation theory, 3

Measuring the derivative and integrating it.4

1
WIDOM (1963); TORRIE, VALLEAU (1977)

2
JARZYNSKI (1997); IZRAILEV ET AL. (1998); CROOKS (1999)

3
LANDAU (1938); ZWANZIG (1954); BENNETT (1976)

4
KIRKWOOD (1935); CARTER ET AL. (1989); WIDOM (1963)
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Free-energy perturbation calculations
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2 Reaction coordinate–based free-energy calculations
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Free-energy perturbation calculations Introduction

Perturbation theory is one of the oldest and most useful, general techniques in ap-
plied mathematics.

Its initial applications to physics were in celestial mechanics, and its goal was to
explain how the presence of bodies other than the sun perturbed the elliptical orbits
of planets.

Although applications of perturbation theory vary widely, the main idea remains the
same: One starts with an initial problem, called the unperturbed or reference prob-
lem.

The problem of interest, called the target problem, is represented in terms of a per-
turbation to the reference problem.

The effect of the perturbation is expressed as an expansion in a series with respect
to a small quantity, called the perturbation parameter.
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Free-energy perturbation calculations Introduction

Approach followed by the pioneers of free energy pertur-
bation (FEP) theory.5

The Hamiltonian of the target system was represented
as the sum of the reference Hamiltonian and the pertur-
bation term.

The free energy difference between the two systems was
expressed exactly as the ensemble average of the appro-
priate function of the perturbation term over the reference
system.

This statistical average was represented as a series.

5
BORN (1920); KIRKWOOD (1935); LANDAU (1938); ZWANZIG (1954)
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Free-energy perturbation calculations Introduction

FEP is not only the oldest but also one of the most use-
ful, general purpose strategies for calculating free energy
differences.

In the early years of molecular–level computer simula-
tions in chemistry and biology it was applied to small so-
lutes dissolved in water.6

Today, it is used for some of the most challenging appli-
cations, such as protein–ligand interactions and in silico
protein engineering.7

It can also be applied to examine the effect of force fields
on the computed free energies.

It forms the conceptual framework for a number of ap-
proximate theories.

6
JORGENSEN, RAVIMOHAN (1985)

7
SIMONSON ET AL. (2002)
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Free-energy perturbation calculations The perturbation formalism

N–particle reference system described by Hamiltonian H0(x, px), function of 3N
Cartesian coordinates, x, and conjugated momenta px.

Goal: Calculate the free energy difference between the reference system and the
target system characterized by Hamiltonian H1(x, px):

H1(x, px) = H0(x, px) + ∆H (x, px)

Example: Free energy of solvation of a chemical species at infinite dilution.
∆H (x, px) then consists of all terms in H1(x, px) that describe solute-solvent in-
teractions.

Example: Calculate the difference between the hydration free energies of sodium
and argon described as Lennard–Jones particles with and without a charge.
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Free-energy perturbation calculations The perturbation formalism

Difference in the Helmholtz free energy between the target and the reference sys-
tems:

∆A = −
1
β

ln
Q1

Q0

Partition function:

Q =
1

h3NN!

∫ ∫
exp [−βH (x, px)] dx dpx

Combining the expressions of ∆A and Q,

∆A = −
1
β

ln

∫ ∫
exp [−βH1(x, px)] dx dpx∫ ∫
exp [−βH0(x, px)] dx dpx

= −
1
β

ln

∫ ∫
exp [−β∆H (x, px)] exp [−βH0(x, px)] dx dpx∫ ∫

exp [−βH0(x, px)] dx dpx
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Free-energy perturbation calculations The perturbation formalism

Probability density function of finding the reference system in a state defined by x
and px:

P0(x, px) =
exp [−βH0(x, px)]∫ ∫

exp [−βH0(x, px)] dx dpx

Substituting in expression of ∆A,

∆A = −
1
β

ln
∫ ∫

exp [−β∆H (x, px)] P0(x, px) dx dpx

Fundamental FEP formula for the forward, 0→ 1 transformation:

∆A = −
1
β

ln〈exp [−β∆H (x, px)]〉0
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Free-energy perturbation calculations The perturbation formalism

If the kinetic term cancels out,

∆A = −
1
β

ln〈exp (−β∆U)〉0

excess Helmholtz free energy of the solute over that in the ideal gas.

Simplification true for any two systems of particles with the same masses.

If masses differ, additional term due to the change in the kinetic energy.
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Free-energy perturbation calculations The perturbation formalism

Reversing the reference and the target systems,

∆A =
1
β

ln〈exp (β∆U)〉1

Although forward and backward expressions are formally equivalent, their conver-
gence properties may be different.8

Preferred direction to carry out the required transformation between states.

8
WIDOM (1963)
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Free-energy perturbation calculations Interpretation of the free energy perturbation equation

Since ∆A is calculated as the average over a quantity that depends only on ∆U, this
average can be taken over the probability distribution P0(∆U) instead of P0(x, px):9

∆A = −
1
β

ln
∫

exp (−β∆U) P0(∆U) d∆U

If U0 and U1 were the functions of a sufficient number of identically distributed random
variables, then ∆U would be Gaussian–distributed (CLT).

In practice, the probability distribution P0(∆U) deviates somewhat from the ideal
Gaussian case, but still has a “Gaussian–like” shape.

The integrand, the probability distribution multiplied by the Boltzmann factor
exp (−β∆U), is shifted to the left and, hence, depends on the low-energy tail.

9
SHING, GUBBINS (1982)
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Free-energy perturbation calculations Interpretation of the free energy perturbation equation

Substitute

P0(∆U) =
1

√
2πσ

exp

[
−
(
∆U − 〈∆U〉0

)2

2σ2

]
where

σ2 =
〈

∆U2
〉

0
− 〈∆U〉0

2

to the expression of ∆A.

A Gaussian P0(∆U) obviates the need to carry out a numerical integration:

∆A = 〈∆U〉0 −
1
2
βσ2

This analytical expression of ∆A has a broader significance:

The first term, which is simply equal to the average energy difference mea-
sured in the reference state, can be either positive or negative.

The second term, which depends on fluctuations of ∆U, is always negative.
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Free-energy perturbation calculations Interpretation of the free energy perturbation equation
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exp (−β∆U) P0(∆U) is a Gaussian, as is P0(∆U), but is
not normalized and shifted towards low ∆U by βσ2/2.

Reasonably accurate evaluation of ∆A via direct numer-
ical integration is possible only if the probability distri-
bution function in the low ∆U region is sufficiently well
known up to two standard deviations from the peak of
the integrand or βσ/2 + 2 standard deviations from the
peak of P0(∆U), located at 〈∆U〉0.

If σ is small, e.g. equal to kBT, 97% of sam-
pled values of ∆U are within ±2σ from the peak of
exp (−β∆U) P0(∆U) at room temperature.

If σ is large, e.g. equal to 6kBT, this percentage drops
to 16%. Most of these samples correspond to ∆U larger
than the peak of the integrand, 〈∆U〉0 − βσ2/2. For this
value of σ, ∆U smaller than the peak of the integrand will
be sampled, on average, only 27 out of 104 times.
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Free-energy perturbation calculations Interpretation of the free energy perturbation equation
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Free-energy perturbation calculations Interpretation of the free energy perturbation equation
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Free-energy perturbation calculations Interpretation of the free energy perturbation equation

A small value of ∆A does not imply that this quantity is easy to estimate in
computer simulations. In fact, if 〈∆U〉0 and −βσ2 / 2 were equal but large, an
accurate estimate of ∆A would be evidently hard to achieve.

One consequence of the positivity of σ is that ∆A ≤ 〈∆U〉0. repeating the same
reasoning for the backward transformation, then ∆A ≥ 〈∆U〉1.

These inequalities, the Gibbs–Bogoliubov bounds on free energy, hold not only for
Gaussian distributions, but for any arbitrary probability distribution function.
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Free-energy perturbation calculations One simple application of perturbation theory

An uncharged Lennard–Jones particle immersed in a large container of water ac-
quires a charge q.

The free energy change associated with charging is given by the forward FEP equa-
tion, in which state 0 refers to the reference state of the solvated Lennard–Jones
sphere.

Electrostatic energy of interaction between charge q and all water molecules:

∆U = qV

V is the electrostatic potential created by the solvent and acting on the charge in the
center of the cavity.
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Free-energy perturbation calculations One simple application of perturbation theory

Second-order perturbation theory:

∆A = q〈V〉0 −
β

2
q2
[〈

(V − 〈V〉0)2
〉

0

]

If water is considered as a homogeneous dipolar liquid, 〈V〉0 = 0, the expression for
the free energy change further simplifies to:

∆A = −
β

2
q2
〈

V2
〉

0

This result implies that ∆A should be a quadratic function of the ionic charge.
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Free-energy perturbation calculations One simple application of perturbation theory

Born model: The ion is a spherical particle of radius a
and the solvent is represented as a dielectric continuum
characterized by a dielectric constant ε:10

∆A = −
ε− 1
ε

q2

2a

Comparison between prediction and computer simula-
tions requires care. In practice, the computed values
of ∆A exhibit considerable system–size dependence, i.e.
they vary with the size of the simulation box, because
charge–dipole interactions between the solute and sol-
vent molecules decay slowly as 1/r2.

10
BORN (1920)
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Free-energy perturbation calculations One simple application of perturbation theory

System–size effects can be greatly reduced by properly
correcting for the self–interaction term, which is due to
interactions between the charge and its images and the
neutralizing background.11

This is true for both Ewald lattice summation and gener-
alized reaction field treatments of finite–size effects.12

In general, free energy calculations, in which the system
is transformed such that its electrical charge changes,
should include system–size corrections.

11
HUMMER ET AL. (1996)

12
HÜNENBERGER, MCCAMMON (1999)
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Free-energy perturbation calculations One simple application of perturbation theory
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Monte Carlo simulations, in which a non-polar particle
is progressively charged to q = 1 or q = −1 in intervals
of 0.25 e, indicated that the predicted quadratic depen-
dence of ∆A on q is essentially correct.13

In agreement with experimental data14 negative ions are,
however, better hydrated than positive ions, reflected by
the different slopes of the straight line. This can be as-
cribed to different arrangements of water molecules in
the vicinity of the ion.

The positively charged hydrogen atoms of water, which
possess small van der Waals radii, can approach neg-
ative ions closer than large, negative oxygen atoms ap-
proach positive ions.

13
HUMMER ET AL. (1996)

14
MARKUS (1991)
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Free-energy perturbation calculations How to deal with large perturbations?

Direct use of the forward FEP equation can be successful only if P0(∆U) is a narrow
function of ∆U.

This does not imply that the free energy difference between the reference and the
target states must be small.

Example: Although the hydration free energy of benzene is only −0.767 kcal/mol at
298 K, this quantity cannot be successfully calculated by direct application of the FEP
equation to a simulation of a reasonable length, because low–energy configurations
in the target ensemble, which do not suffer from the overlap between the solute and
solvent molecules, are not sampled in simulations of the reference state.
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Free-energy perturbation calculations How to deal with large perturbations?

The difficulty in applying FEP theory can be circum-
vented through a stratification strategy, or staging.

It relies on constructing several intermediate states be-
tween the reference and the target state such that
P(∆Ui,i+1) for two consecutive states i and i+1 sampled
at state i is sufficiently narrow for the direct evaluation of
the corresponding free energy difference, ∆Ai,i+1.

With N−2 intermediate states,

∆A =

N−1∑
i=1

∆Ai,i+1 = −
1
β

N−1∑
i=1

ln
〈

exp
(
−β∆Ui,i+1

)〉
i
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Free-energy perturbation calculations How to deal with large perturbations?

Intermediate states do not need to be physically mean-
ingful, i.e. they do not have to correspond to systems that
actually exist.

More generally, the Hamiltonian can be considered to be
a function of some parameter, λ.

Without loss of generality, λ can be defined between 0
and 1, such that λ = 0 and λ = 1 for the reference and
target states, respectively.

A simple choice for the dependence of the Hamiltonian
on λ, the coupling parameter :15

H (λi) = λiH1 + (1− λi)H0 = H0 + λi∆H

∆H is the perturbation term in the target Hamiltonian,
equal to H1 −H0.

15
KIRKWOOD (1935)
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Free-energy perturbation calculations How to deal with large perturbations?

If N−2 intermediate states are created to link the reference and the target states
such that λ1 = 0 and λN = 1,

∆Hi = H (λi+1)−H (λi)

= (λi+1 − λi) ∆H

= ∆λi∆H

with ∆λi = λi+1 − λi.

Total free energy difference:

∆A = −
1
β

N−1∑
i=1

ln 〈exp(−β∆λi∆H )〉λi

Integrating out the kinetic term in the Hamiltonian,

∆A = −
1
β

N−1∑
i=1

ln 〈exp(−β∆λi∆U)〉λi
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Free-energy perturbation calculations How to deal with large perturbations?

As a function of the problem of interest, choosing inter-
mediate states separated by a constant ∆λ may not be
the best possible choice — e.g. charging of a Lennard–
Jones particle, for which ∆A is a quadratic function of the
charge.

How should N and ∆λi be chosen?

One method for optimizing both N and ∆λi consists in
starting with short runs with a large N and select the
number of intermediate states and the corresponding val-
ues of the coupling parameter on the basis of these runs,
such that the estimated variances in P(∆Ui,i+1) are suf-
ficiently small and approximately equal.16

N and ∆A are related through the work dissipated in the
process:17 N0 ∝ exp(βW1) and N1 ∝ exp(βW0), where
W0 = 〈∆U〉0 −∆A and W1 = −〈∆U〉1 + ∆A.

16
PEARLMAN, KOLLMAN (1989)

17
KULLBACK, LEIBER (1951); POHORILLE ET AL. (2010)
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Free-energy perturbation calculations A pictorial representation of free-energy perturbation

In FEP calculations, configurations are sampled according to the probability, P0(U),
of finding the reference system in a state corresponding to the potential energy U.

Does it guarantee that the key quantity for calculating ∆A, i.e. P0(∆U), is estimated
accurately?

Unfortunately, this does not have to be the case.

FEP will only provide accurate estimates of free energy differences under the sine
qua non condition that the target system be sufficiently similar to the reference sys-
tem.
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Free-energy perturbation calculations A pictorial representation of free-energy perturbation

Important regions are volumes that encompass configurations of the system with
highly probable energy values.

A configuration in the important region should have the potential energy, the proba-
bility of which is higher than a given, predefined value.

Configurations that belong to the important regions are expected to make significant
contributions to the free energy and ought to be adequately sampled.
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Free-energy perturbation calculations A pictorial representation of free-energy perturbation

-1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6
∆U

0.0

0.4

0.8

1.2

1.6

2.0

2.4

P
(∆

U
 )

P
1
(∆U )

P
0
(∆U )

(a)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
∆U

0.0

0.4

0.8

1.2

1.6

2.0

2.4

P
(∆

U
 )

P
1
(∆U )

P
0
(∆U )

(b)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
∆U

0.0

0.4

0.8

1.2

1.6

2.0

2.4

P
(∆

U
 )

P
1
(∆U )

P
0
(∆U )

no sampling

(c)

-1.2 -0.8 -0.4 0 0.4 0.8 1.2
∆U

0.0

0.4

0.8

1.2

1.6

2.0

2.4

P
(∆

U
 )

P
1
(∆U )

P
0
(∆U )

P(∆U
i,i+1

)

(d)

1

0

0
1

0
1

1

0
i

A pictorial representation of the relationship between the refer-
ence and the target systems may constitute a useful tool to detect
inaccuracies caused by incomplete sampling.18

If the important region of the target system fully overlaps, or is a
subset of the important region of the reference system, P0(∆U)
estimated from FEP calculations should be reliable.

Good sampling of the important region in the reference system
will also yield good sampling of the important region in the target
system.

If the important regions of the two systems do not overlap, the im-
portant region of the target state is not expected to be sufficiently
sampled during a simulation of the reference system. Satisfac-
tory estimates of ∆A are unlikely to be obtained.

18
LU, KOFKE (2001)
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In many instances, the important region of the reference system
overlaps with only a part of the important region of the target
system.

The poorly sampled reminder of these important region con-
tributes to inaccuracies in the estimated free energy differences,
which, in some circumstances, could be substantial.

If the two important regions do not overlap, or overlap only par-
tially, it is usually necessary to stratify.

The optimal enhanced sampling strategy is largely determined
by the relationship between the two important regions in phase
space.19

19
LU, KOFKE (2001)
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In many instances, the important region of the reference system
overlaps with only a part of the important region of the target
system.

The poorly sampled reminder of these important region con-
tributes to inaccuracies in the estimated free energy differences,
which, in some circumstances, could be substantial.

If the two important regions do not overlap, or overlap only par-
tially, it is usually necessary to stratify.

The optimal enhanced sampling strategy is largely determined
by the relationship between the two important regions in phase
space.19
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Free-energy perturbation calculations “Alchemical transformations”

How can the free energy differences associated with the transformation of a chemical
species into a different one be calculated?

Computational process often called “alchemical transformation” refers to the the in-
accessible dream of the proverbial alchemist to transmute matter.

The potential energy function is sufficiently malleable from a computational stand-
point, that it can be gently altered to transform one chemical system into another,
slightly modified one.20

FEP applications of this approach include protein–ligand binding, host–guest chem-
istry, and solvation properties.21

20
CHIPOT, POHORILLE (2007)

21
KOLLMAN (1993); KING (1993); KOLLMAN (1996); SIMONSON ET AL. (2002)
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Free-energy perturbation calculations “Alchemical transformations”

The concept of order parameter is central to free energy
calculations: They are collective variables used to de-
scribe transformations from the initial, reference system
to the final, target one.

An order parameter may, albeit does not necessarily
have to correspond to the path along which the trans-
formation takes place in nature, and would be called the
reaction coordinate or the reaction path if such were the
case.

There is more than one way to define an order parameter.
How to make the best, or at least an appropriate, choice
of an order parameter?

The choice of order parameters may have a significant
effect on the efficiency and accuracy of free energy cal-
culations. Some order parameters may map a smooth
path between the reference and target states whereas
others may lead through a rough energy landscape.
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Free-energy perturbation calculations “Alchemical transformations”

Central to the application of FEP to alchemical transfor-
mations is the concept of a thermodynamic cycle.

The cycle may be hypothetical, as individual transforma-
tions can be carried out only on the computer.

Considering that all transformations are reversible, the
cycle can be run in both directions and the free energy
of interest can be calculated from either forward or back-
ward transformations.

The computational efficiencies of carrying out these
transformations may, however, differ.22

22
POHORILLE ET AL. (2010)
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Free-energy perturbation calculations “Alchemical transformations”

In the FEP framework, hydration can be described by
turning on the perturbation term in the Hamiltonian re-
sponsible for solute-solvent interactions.

∆Ahydration is the excess free energy over that in the gas
phase.

When solute–solvent interactions are turned on, the sol-
vent undergoes substantial reorganization, and confor-
mational equilibria in flexible solutes may also be af-
fected.
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Free-energy perturbation calculations “Alchemical transformations”

∆Ahydration can be also obtained from the reverse pro-
cess, in which solute–solvent interactions are turned off.

This corresponds to moving the solute from the aqueous
solution to the gas phase. and the calculated quantity is
the negative of ∆Ahydration.

If the same order parameter, λ, is used for the for-
ward and the reverse transformations, the changes in
the free energy with λ should be reversible, and, con-
sequently, the sum of the calculated free energies differ-
ences should be zero.
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Free-energy perturbation calculations “Alchemical transformations”

Discrepancies between the forward and the reverse
transformations yield the hysteresis of the reaction,
which constitutes a measure of the error in the free en-
ergy calculation.

If the hysteresis is markedly larger than the estimated
statistical errors, it is usually indicative of ergodicity is-
sues during the transformations.

Even though the hysteresis is negligible and statistical
errors are small, it does not imply that the calculated
free energy difference is accurate, because it can be bur-
dened with systematic errors, due, for instance, to unsuit-
able potential energy functions.
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Free-energy perturbation calculations “Alchemical transformations”

Alternative approach: Double annihilation of the solute,

∆Ahydration = ∆A0
annihilation −∆A1

annihilation

The transformation to nothing should not be taken liter-
ally. The perturbed Hamiltonian contains not only terms
responsible for solute–solvent interactions, but also all
the terms that involve intramolecular interactions in the
solute.

Symmetrically,

∆Ahydration = ∆A1
creation −∆A0

creation
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Free-energy perturbation calculations “Alchemical transformations”

Comparison of the “alchemical” scheme with the direct trans-
formation 23 reveals two important differences:

The “alchemical” transformations require two set of
simulations instead of one, one of them involving only
the solute in the gas phase and is much less compu-
tationally intensive. Ignoring intra-perturbed interac-
tions in the implementation obviates the need to run
separate gas-phase calculations (caveat emptor).

The two methods differ in their description of the so-
lute in the reference state. In both cases, the solute
does not interact with the solvent. In the “alchemical”
transformations, all interactions of atoms forming the
solute vanish, whereas in the direct transformation,
the molecule remains intact.

23
POHORILLE, WILSON (1993); CHIPOT ET AL. (1997)

Chris Chipot Free-energy calculations






Free-energy perturbation calculations “Alchemical transformations”

A

protein     nothing

protein     ligand

1
annihilation∆ A∆

∆ restrainA

=0

annihilation
0

∆ A 

∆ bindingA
... 

... 

protein + ligand 

protein + nothing

The binding free energy of two molecules, ∆Abinding,
defined as the free energy difference between these
molecules in the bound and the free, unbound states, can
be determined experimentally through the measurement
of binding constants using isothermal microcalorimetry,24

electrospray ionization mass spectrometry, 25 or
BIAcore.26

The computationally equivalent procedure corresponds
to calculating ∆Abinding directly, by means of an order pa-
rameter that measures the separation between the ligand
and the binding center of the protein.

Definition of a relevant order parameter to describe
protein-ligand association may be difficult, in particular
when the ligand is buried deep in the binding pocket,
and access to the latter involves large conformational
changes in the protein.

24
WADSÖ (1995)

25
FENN ET AL. (1989)

26
KARLSSON, LARSSON (2004)
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A

protein     nothing

protein     ligand

1
annihilation∆ A∆
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annihilation
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∆ bindingA
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protein + ligand 

protein + nothing

Alternative route: Double annihilation of the ligand,

∆Abinding = ∆A0
annihilation −∆A1

annihilation

This implies obtaining ∆A0
annihilation and ∆A1

annihilation in the
thermodynamic cycle.

FEP is the appropriate technique, which, however, some
care.
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A

protein     nothing

protein     ligand

1
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∆ restrainA

=0

annihilation
0

∆ A 

∆ bindingA
... 

... 

protein + ligand 

protein + nothing

The ligand in the binding pocket is annihilated from a
strongly constrained position, whereas the free, unbound
ligand can translate, rotate and isomerize freely during
annihilation.

This means that the thermodynamic cycle reflecting
micro-reversibility of the transformations may not zero
out unless proper corrections for the loss of translational,
rotational and conformational entropies are taken into
account.27

Under favorable circumstances, these corrections can be
evaluated analytically.28

27
GILSON ET AL. (1997); HERMANS, WANG (1997); DIXIT, CHIPOT (2001)

28
DENG, ROUX (2009)

Chris Chipot Free-energy calculations






Free-energy perturbation calculations “Alchemical transformations”

bindingA

∆ bindingA

mutation

∆ A

B

10
mutation∆ A∆ A

protein     ligand A... 

protein     ligand B... 

protein + ligand A

protein + ligand B

In many instances, determining relative binding free en-
ergies for a series of ligands is preferred over a single
binding free energy.

This is the case, for example, potential inhibitors of a tar-
get protein are sought in the context of computer–aided
drug design.29

This can be handled by repeating the “absolute” transfor-
mations for each ligand of interest.

There is an alternate pathway, likely to be more efficient:
Mutation of ligand A into ligand B in both the bound and
the free states, following a different thermodynamic cy-
cle.

29
PEARLMAN, CHARIFSON (2001); CHIPOT ET AL. (2005)
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Free-energy perturbation calculations “Alchemical transformations”

In the single-topology paradigm, a common topology is
sought for the initial state and the final states.30

The most complex topology serves as the common de-
nominator for both states, and the missing atoms are
treated as vanishing particles, the non–bonded param-
eters of which are progressively set to zero as λ varies
from 0 to 1.

Example: In the mutation of ethane into methanol, the
former serves as the common topology.31 As the carbon
atom is transformed into oxygen, two hydrogen atoms of
the methyl moiety are turned into non–interacting, “ghost”
particles by annihilating their point charges and van der
Waals parameters.

30
JORGENSEN, RAVIMOHAN (1985); PEARLMAN (1994)

31
JORGENSEN, RAVIMOHAN (1985)
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Free-energy perturbation calculations “Alchemical transformations”

In contrast with the single-topology paradigm, the topolo-
gies of the reference, 0, and the target, 1, states coexist
in the dual–topology scheme, throughout the “alchemical
transformation”.32

Using an exclusion list, atoms that are not common to 0
and 1 never interact during the simulation.

Their intra– and intermolecular interaction with other
atoms in the system are scaled by λ, which varies from
0 to 1.

In the initial state, only topology 0 interacts with the rest
of the system, whereas in the final state, only topology 1
does:

U(x;λ) = λU1(x) + (1− λ)U0(x)

32
GAO ET AL. (1989); BORESCH, KARPLUS (1999a,b)
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Free-energy perturbation calculations “Alchemical transformations”

The dual–topology paradigm avoids several complica-
tions inherent to the single-topology approach.

The problem of growing or shrinking chemical
bonds is not present here.

Decoupling electrostatic and non-electrostatic
contributions during simulations is no longer
needed.

Dual–topology also suffers from problems when λ ap-
proaches 0 or 1, which are often referred to as “end-point
catastrophes”.

At these end points, interaction of the reference, or the
target topology with its environment is extremely weak,
yet still non–zero, which in turn allows the surrounding
atoms to clash against the appearing or vanishing chem-
ical moieties.

Chris Chipot Free-energy calculations






Free-energy perturbation calculations “Alchemical transformations”

The resulting numerical instabilities cause large fluctua-
tions in the estimated 〈∆U〉, attenuated only after exten-
sive sampling.

The most trivial one consists in splitting the reaction path-
way into windows of uneven widths, δλ, and using a large
number of narrow windows when λ approaches 0 or 1.

Equivalent to adopting a non-linear dependence of the
interaction potential energy on λ.

Clashes between the appearing atoms and the rest of the
system occur even for windows as narrow as δλ ' 10−5.
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Free-energy perturbation calculations “Alchemical transformations”

Solution: Modification of the parametrization of the van
der Waals term in the potential energy function that gov-
erns the interaction of an appearing, or disappearing,
atom, i, with an unaltered one, j:33

UvdW
ij (rij;λ) = 4 εij λ

n×
1[

αvdW (1− λ)
2

+

(
rij

σij

)6]2 −
1

αvdW (1− λ)
2

+

(
rij

σij

)6



Or equivalently,34

UvdW
(rij;λ) = 4εij(1− λ)

 σ2
ij

r2
ij + αλ

6

−

 σ2
ij

r2
ij + αλ

3

Possibility to scale interactions with different schedules.

33
BEUTLER ET AL. (1994)

34
ZACHARIAS ET AL. (1994)
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BEUTLER ET AL. (1994)

34
ZACHARIAS ET AL. (1994)
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Free-energy perturbation calculations “Alchemical transformations”

1 Build the topologies representative of state 0 and state 1, and establish an exclu-
sion list to prevent atoms that are not common to 0 and 1 from interacting.

2 Generate an ensemble of configurations that are representative of the reference
state, λ.

3 For each configuration, evaluate the potential energy using the reference state
Hamiltonian, U(x;λ).

4 Repeat the same calculations using the Hamiltonian of the target state.

5 For each configuration, evaluate the potential energy difference.

6 Compute the ensemble average 〈exp {−β [U(x;λ+ ∆λ)− U(x;λ)]}〉λ, from
which the free energy difference ∆A = A(λ+ δλ)− A(λ) can be derived.

7 Increment λ and go to stage 2.
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Free-energy perturbation calculations Improving the efficiency of FEP calculations

Computing ∆U for several different values of λ might be
helpful in optimizing choices of intermediate states for
stratification.

The simplest implementation is to calculate ∆Ai,i+1 in
the forward and backward directions, starting from i or
i + 1 and using the relevant FEP formulas. The results of
these two calculations may then be combined, for exam-
ple by simple averaging.

This procedure has a serious drawback: In general, the
accuracies of estimating ∆Ai,i+1 from the forward and
the backward simulations are not identical.35

In fact, it is common that they differ substantially, because
the corresponding probability distributions, Pi

(
∆Ui,i+1

)
and Pi+1

(
∆Ui+1,i

)
have different widths.

35
WIDOM (1963); POHORILLE ET AL. (2010)
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Free-energy perturbation calculations Improving the efficiency of FEP calculations

Performing a forward calculation from state i, corre-
sponding to λi, to an additional intermediate at λi+∆λ/2,
and a backward calculation from state i + 1 — which cor-
responds to λi + ∆λ — to the same additional interme-
diate.

The difference in the free energies obtained from these
calculations is equal to ∆Ai,i+1. Combining forward and
backward FEP equations,36

∆Ai,i+1 = −
1
β

ln
〈exp

(
−β∆Ui,i+1/2

)
〉i

〈exp
(
β∆Ui,i+1/2

)
〉i+1

Simple overlap sampling (SOS) method37 — one of the
oldest techniques for improving FEP calculations.38 In
general, markedly more accurate than simple averaging.

36
POHORILLE ET AL. (2010)

37
LU ET AL. (2003, 2004)

38
LEE, SCOTT (1980)
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Free-energy perturbation calculations Improving the efficiency of FEP calculations

It requires that one forward and one backward calculation
be performed at every intermediate state.

Additional intermediate does not have to be located at
λi + ∆λ/2, but, instead, may be chosen at any value
comprised between λi and λi + ∆λ.

Ideally, the location of the intermediate should be found
to minimize the statistical error of ∆Ai,i+1.39

39
BENNETT (1976)
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Free-energy perturbation calculations Improving the efficiency of FEP calculations

This is tantamount to calculating

exp(−β∆Ai,i+1) =

〈{
1 + exp[β(∆Ui,i+1 − C)]

}−1
〉

i〈
{1 + exp[−β(∆Ui,i+1 − C)]}−1

〉
i+1

× exp(−βC)

C is a constant that determines the position of the addi-
tional intermediate,

C = ∆Ai,i+1 +
1
β

ln
ni

ni+1

C cannot be accessed directly because it involves the
unknown value of ∆Ai,i+1. Instead, the equations for
exp(−β∆Ai,i+1) and C are solved iteratively at a post–
processing stage.

Chris Chipot Free-energy calculations






Free-energy perturbation calculations Measuring the error associated to an FEP calculation

Estimating the error associated to a computed free-energy difference has been re-
currently overlooked, or simply ignored.

Convoluted nature of the sources of error responsible for the discrepancy between
theoretical and experimental measures.

Common belief that a single simulation cannot provide both a free-energy difference
and the error associated to it with an equal accuracy.

Error associated to a free-energy change has a systematic origin, which primarily
stems from finite sampling, and a statistical origin related to the width of the underly-
ing probability distributions.40

In a more general sense, systematic errors also embrace force-field inaccuracies, as
well as algorithmic artifacts arising primarily from flawed numerical integration of the
equations of motion and inappropriate treatment of intermolecular interactions.

40
KOFKE, CUMMINGS (1998); CHIPOT, POHORILLE (2007)
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Free-energy perturbation calculations Measuring the error associated to an FEP calculation

The statistical error can be expressed in terms of the variance of the ensemble aver-
age, viz. exp(−β∆Â) = 〈exp(−β∆U)〉0, measured over the n samples accrued in a
single simulation.

Using the propagation of uncertainty,41

σ2
∆Â

=
(1 + 2κ)

nβ2

1
〈exp(−β∆U)〉20

σ2
〈exp(−β∆U)〉0

where κ is the correlation length of the series and (1 + 2κ), the sampling ratio,
corresponds to the minimum number of samples found between two independent
observables.42

A similar formula can be devised for the BAR 43 estimator,

σ2
∆Â

=
(1 + 2κ0)

n0β2

(
〈f 2(x)〉0
〈f (x)〉20

− 1

)
+

(1 + 2κ1)

n1β2

(
〈f 2(−x)〉1
〈f (−x)〉21

− 1

)

where f (x) = 1/(1 + ex) and x = β(∆U − C).
41

MEYER (1992)
42

STRAATSMA ET AL. (1986); FLYVBJERG, PETERSEN (1989)
43

BENNETT (1976); HAHN, THEN (2009); POHORILLE ET AL. (2010)
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Free-energy perturbation calculations Measuring the error associated to an FEP calculation

Measuring the systematic, finite-sampling error is less straightforward.

To a large extent, the accuracy of a free-energy estimate is intimately related to the
sampling of the associated probability distribution.

Simulations of finite length are necessarily prone to sample preferentially states of
energy close to the peak of the probability distributions, i.e. either 〈∆U〉0 or 〈∆U〉1,
at the expense of their tails.

Yet, insufficient sampling of the latter is tantamount to ignoring the most significant
contributions to the free-energy difference.

In a forward transformation, these contributions are found in the lower tail of P0(∆U).
Symmetrically, they correspond to the higher tail of P1(∆U) in a backward transfor-
mation.
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Free-energy perturbation calculations Measuring the error associated to an FEP calculation

A naive view of this problem can be put forth in terms of
a frontier value of the perturbation, ∆U0, below which,
in a forward transformation, states characterized by an
energy difference ∆U < ∆U0 are never sampled.

The systematic error then arises from failure to explore
important regions of configurational space that corre-
spond to ∆U < ∆U0.

In the ergodic limit, the exact free-energy difference, ∆A,
of a forward transformation can be expressed as a sum
of two contributions reflecting sampling of regions above
and below the frontier value, ∆U0,

exp(−β∆A) =

∫ ∆U0

−∞
P0(∆U) exp(−β∆U) d∆U

+

∫ +∞

∆U0

P0(∆U) exp(−β∆U) d∆U
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Free-energy perturbation calculations Measuring the error associated to an FEP calculation

In simulations of finite length, where regions contribut-
ing significantly to the free-energy difference are ignored,
only the second term obviously prevails.

exp(−β∆Â0) =

∫ +∞

∆U0

P0(∆U) exp(−β∆U) d∆U

The systematic error is the difference between the ex-
act free-energy difference and its finite-sampling biased
estimator,

δε0
bias,∆Â

= −
∫ ∆U0

−∞
P0(∆U) exp(−β∆U) d∆U

Of practical interest is the relative systematic error asso-
ciated to the measure of the forward free-energy differ-
ence,

δε0
bias,∆Â

exp(−β∆A)
= −

∫ ∆U0

−∞
P1(∆U) d∆U
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Foreword

Free-energy differences can be estimated computationally following four different routes:

Methods based on histograms,44

Non-equilibrium work simulations,45

Perturbation theory,46

Measuring the derivative and integrating it.47

44
WIDOM (1963); TORRIE, VALLEAU (1977)

45
JARZYNSKI (1997); IZRAILEV ET AL. (1998); CROOKS (1999)

46
LANDAU (1938); ZWANZIG (1954); BENNETT (1976)

47
KIRKWOOD (1935); CARTER ET AL. (1989); WIDOM (1963)
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Reaction coordinate–based free-energy calculations

Synopsis

1 Free-energy perturbation calculations

2 Reaction coordinate–based free-energy calculations

3 Good practices
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Reaction coordinate–based free-energy calculations Bridging biological and computational time scales
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Reaction coordinate–based free-energy calculations A host of methods

Umbrella sampling
TORRIE, VALLEAU (1977)

Constrained MD
CARTER ET AL. (1989)

DEN OTTER, BRIELS (2000)

Non-equilibrium MD
JARZYNSKI (1997)

PARK (2003)

Adaptive umbrella sampling
BARTELS, KARPLUS (1998)

Local elevation/flooding
HUBER (1994)

GRUBMÜLLER (1995)

Adaptive biasing force
DARVE, POHORILLE (2001)

HÉNIN, CHIPOT (2004)

MINOUKADEH ET AL. (2010)

Metadynamics
LAIO, PARRINELLO (2002)

Adaptively biased MD
BABIN ET AL. (2008)

Degree of evolution
DE DONDER (1927)

Generalized extent parameter
KIRKWOOD (1935)

Commitment probability
ONSAGER (1938)

Minimum-resistance path
BERKOWITZ ET AL. (1983)

Minimum-action path
OLENDER, ELBER (1996)

FRANKLIN (2007)

Transition path sampling
BOLHUIS ET AL. (2002)

String method
E ET AL. (2002)

PAN ET AL. (2008)

Milestoning
FARADJIAN (2004)

Maximum flux transition path
ZHAO ET AL. (2010)
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Reaction coordinate–based free-energy calculations Order parameters

The reaction coordinate is the committor function in
R3N , defined between 0 and 1.48

The definition of order parameter ξ : R3N → Rn, with
n small, is reasonable if ξ is essentially decoupled
from the slow manifolds.

The choice of an order parameter, or combination
thereof, unlikely to embrace concerted, collective
movements is prone to yield quasi non-ergodicity
scenarios.

48
BOLHUIS ET AL. (2002); E ET AL. (2005); ZHAO ET AL. (2010)
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Reaction coordinate–based free-energy calculations A backdrop on potential of mean force calculations

Generalization of the classical definition of w(r), based on g(r), w(r) = −1/β ln g(r), is not
straightforward.49

Turn to an alternate definition:

A(ξ) = −
1
β

ln Pξ + A0

Probability to find the system at ξ along the order parameter:

Pξ =

∫
δ[ξ − ξ(x)] exp[−βH (x, px)] dx dpx

First derivative of the free energy with respect to the order parameter:

dA(ξ)

dξ
=

〈
∂H (x, px)

∂ξ

〉
ξ

49
CHANDLER (1987)
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Reaction coordinate–based free-energy calculations A backdrop on potential of mean force calculations

ξ and {x} are not independent variables:

Pξ =

∫
|J| exp[−βU(q; ξ)] dq

∫
exp[−βT(px)]dpx

Derivative of the probability distribution with respect to ξ:

dPξ
dξ

=

∫
exp[−βU(q; ξ)]

{
−β|J|

∂U(q; ξ)

∂ξ
+
∂|J|
∂ξ

}
dq

×
∫

exp[−βT(px)] dpx

The kinetic contribution vanishes in dA(ξ)/dξ:

dA(ξ)

dξ
= −

1
β

1
Pξ

∫
exp[−βU(q; ξ∗)] δ(ξ∗ − ξ)

×
{
−β|J|

∂U(q; ξ∗)

∂ξ
+
∂|J|
∂ξ

}
dq dξ∗
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Reaction coordinate–based free-energy calculations A backdrop on potential of mean force calculations

Back transformation into Cartesian coordinates:

dA(ξ)

dξ
= −

1
β

1
Pξ

∫
exp[−βU(x)] δ[ξ(x)− ξ]

×
{
−β

∂U(x)

∂ξ
+

1
|J|

∂|J|
∂ξ

}
dx

The derivative of the free energy with respect to the order parameter may be expressed as a
sum of configurational averages at constant ξ: 50

dA(ξ)

dξ
=

〈
∂U(x)

∂ξ

〉
ξ

−
1
β

〈
∂ ln |J|
∂ξ

〉
ξ

:= −〈Fξ〉ξ

50
CARTER ET AL. (1989); CHIPOT, POHORILLE (2007)
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Reaction coordinate–based free-energy calculations A vector field approach

Derivative of the free energy with respect to the order
parameter:

dA(ξ)

dξ
= −

1
β

1
Q(ξ)

dQ(ξ)

dξ

Partition function:

Q(ξ) =

∫
δ[ξ − ξ(x)] exp[−βU(x)] dx

The δ–function can be viewed as a square pulse of
width ∆ξ. Q(ξ) is an integral over a thin slab of
configurational space, i.e. a sum of the Boltzmann
weight over the volume elements vi(ξ), so that:

Q(ξ) =
1

∆ξ

∑
i

exp[−βUi(ξ)] vi(ξ)
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Reaction coordinate–based free-energy calculations A vector field approach

Increase the order parameter by δξ. The partition
function, Q(ξ+δξ), is obtained from summing all vol-
ume elements in the new slab bounded by surfaces
ξ(x) = ξ + δξ ± 1/2∆ξ:

Q(ξ + δξ) =
1

∆ξ

∑
i

exp[−βUi(ξ + δξ)] vi(ξ + δξ)

Assuming that the changes in the volume elements
is sufficiently small, δQ(ξ) can be approximated from
a Taylor expansion:

δQ(ξ)

δξ
=

1
∆ξ

∑
i

[
−β

δUi(ξ)

δξ
+

1
vi(ξ)

δvi(ξ)

δξ

]
× exp[−βUi(ξ)] vi(ξ)
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Reaction coordinate–based free-energy calculations A vector field approach

Procedure to move and transform vi(ξ) into vi(ξ+δξ).
It converts a grid of points in the old slab into another
grid of points in the new slab. In continuous space,
this is tantamount to:

ξ[P(x; δξ)] = ξ(x) + δξ

For a small projection:

P(x; δξ) = x + δξ V(x)

V = (vT
1 , . . . )

T is an arbitrarily chosen vector field of
R3N → R3N , which verifies:

vi ·∇xξj = δij ∀i, j
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Reaction coordinate–based free-energy calculations A vector field approach

From P(x; δξ) = x + δξ V(x), it follows to first order
in δξ, that the potential energy changes by:

δUi(ξ)

δξ
= V ·∇xU(x)

From the fact that vector x2 − x1 is projected onto
x2−x1 +δξ(x2−x1) ·∇xV(x1), it follows to first order
in δξ, that the kinetic term changes by:

1
vi(ξ)

δvi(ξ)

δξ
= ∇x · V

Derivative of the free energy with respect to the order
parameter:51

dA(ξ)

dξ
=

〈
V ·∇xU(x)−

1
β
∇x · V

〉
ξ

51
DEN OTTER (2000)
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Reaction coordinate–based free-energy calculations The algorithm

Accrue the instantaneous force exerted
along ξ in bins of finite size, δξ, and provide
an estimate of dA(ξ)/dξ.

The biasing force, −
〈

Fξ
〉
ξ
∇ξ, is applied af-

ter a user-defined number of steps.

ABF erases the roughness of the free energy
surface along ξ.

The system is in principle driven only by
its self–diffusion properties, granted that
ξ is essentially decoupled from the slow
manifolds.52

ABF formally converges.53

52
DARVE, POHORILLE (2001); HÉNIN, CHIPOT (2004); CHIPOT,

HÉNIN (2005)
53

LELIÈVRE ET AL. (2007)

Chris Chipot Free-energy calculations






Reaction coordinate–based free-energy calculations The algorithm

Accrue the instantaneous force exerted
along ξ in bins of finite size, δξ, and provide
an estimate of dA(ξ)/dξ.

The biasing force, −
〈

Fξ
〉
ξ
∇ξ, is applied af-

ter a user-defined number of steps.

ABF erases the roughness of the free energy
surface along ξ.

The system is in principle driven only by
its self–diffusion properties, granted that
ξ is essentially decoupled from the slow
manifolds.52

ABF formally converges.53

52
DARVE, POHORILLE (2001); HÉNIN, CHIPOT (2004); CHIPOT,
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Reaction coordinate–based free-energy calculations Reversible unfolding of a short peptide

Pulling of deca–alanine to investigate the equilibrium be-
tween the native, α–helical conformation and an ensem-
ble of extended structures.

Steered molecular dynamics and the application of the
Jarzynski equality with a cumulant expansion:54

exp[−β ∆A(ξ)] = 〈exp[−β w(ξ)]〉

Reference reversible pulling: 200.0 ns
Jarzynski: 100× 2.0 ns (v = 10.0 Å/ns)

100× 0.2 ns (v = 100.0 Å/ns)

Unconstrained dynamics with the formalism of the aver-
age force. The chosen order parameter, ξ, is the distance
separating the first and the last α–carbon atoms.55

54
PARK ET AL. (2003)

55
HÉNIN, CHIPOT (2004); CHIPOT, HÉNIN (2005)
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PARK ET AL. (2003)

55
HÉNIN, CHIPOT (2004); CHIPOT, HÉNIN (2005)
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PARK ET AL. (2003)
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HÉNIN, CHIPOT (2004); CHIPOT, HÉNIN (2005)
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HÉNIN, CHIPOT (2004); CHIPOT, HÉNIN (2005)
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age force. The chosen order parameter, ξ, is the distance
separating the first and the last α–carbon atoms.55

54
PARK ET AL. (2003)

55
HÉNIN, CHIPOT (2004); CHIPOT, HÉNIN (2005)
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Reaction coordinate–based free-energy calculations Hydrophobic hydration

Translocation of a single methane molecule across a
water–air interface, using unconstrained MD and the av-
erage force exerted along ξ, the direction normal to the
aqueous interface.

The free energy difference between the tail–ends of the
PMF yields the hydration free energy: +2.4±0.4 kcal/mol
(exp. +2.0 kcal/mol).

FEP creation and annihilation of methane in vacuum and
in water. 1.02 ns forward and reverse simulations.
∆Ghydr = +2.5±0.4 kcal/mol.

This agrees nicely with the recent estimate of
+2.44 kcal/mol, based on a 73.2 ns simulation.56

56
SHIRTS ET AL. (2003)
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Reaction coordinate–based free-energy calculations Measuring the error associated to an ABF calculation

Midpoint rule: ∆A ' −∆ξ

p∑
i=1

〈Fξ〉ξi

Average and variance of the force over the reaction pathway:
µ = 〈Fξ〉ξ =

1
p

p∑
i=1

〈Fξ〉ξi =
1
p

p∑
i=1

µi

σ2 =
1
p

p∑
i=1

σ2
i + (µ− µi)

2

Fluctuation on the free-energy difference:

〈|∆A−∆A|2〉 = (∆ξ)2
p∑

i,j=1

ni∑
k=1

nj∑
l=1

1
ninj
〈(Fi

ξ,l − µ)(Fi
ξ,k − µ)〉

' (∆ξ)2

{
p
N

p∑
i=1

[
σ2

i + (µ− µi)
2
]

+ 2σ2 p2

N
κ

}

Standard deviation:57 σ∆A ' ∆ξ
σ

N1/2
(1 + 2κ)1/2

57
RODRIGUEZ-GOMEZ ET AL. (2004)
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Good practices

Synopsis

1 Free-energy perturbation calculations

2 Reaction coordinate–based free-energy calculations

3 Good practices
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Good practices Free-energy perturbation calculations

1 All free-energy calculations should be accompa-
nied by an error estimate. A distinction between
statistical and systematic error ought to be made.

2 Since the reliability of free-energy estimates de-
pends on the overlap between P0(∆U) and
P1(∆U), these distributions should be monitored
to assess the degree of overlap.

3 Stratification provides an effective, general
method for reducing the variance and improving
overlap at each stage.

4 Combining forward and backward simulations
using, for instance, the BAR estimator is strongly
recommended.
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Good practices Reaction-coordinate based free-energy calculations

1 The continuity of the derivative dA(ξ)/dξ across
the reaction pathway imposes that 〈Fξ〉ξ be con-
tinuous throughout.

2 Since the dynamics of ξ corresponds to a ran-
dom walk at zero mean force, sampling across
the reaction pathway ought to be completely uni-
form. A markedly uneven sampling may be sym-
ptomatic of a poorly chosen order parameter.

3 Like any free-energy measure, potentials of
mean force should be provided with error bars.

4 Since the kinetic properties of the system de-
pend on the choice of the order parameter, it is
recommended to ascertain that the latter consti-
tutes a reasonable model of the reaction coordi-
nate.
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